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Preface

ASRgenomics is a package that presents a series of molecular and genetic routines in the
R environment with the aim of assisting in analytical pipelines before and after the use
of ASReml-R or another library to perform analyses such as Genomic Selection (GS) or
Genome-Wide Association Studies (GWAS).
The main tasks considered are:

• Preparing and exploring pedigree, phenotypic and genomic data.
• Calculating and evaluating genomic matrices and their inverse.
• Complementing and expanding results from genomic analyses.

The functions implemented consider aspects such as: filtering SNP data for quality control;
assessing a kinship matrix by reporting diagnostics (statistics and plots); performing
Principal Component Analysis (PCA) based on kinship or SNP matrices for understanding
population structure; calculating the genomic matrix G and its inverse and assessing their
quality; matching pedigree- against genomic-based matrices; tuning up a genomic matrix
(bend, blend or align); and obtaining the hybrid matrix H as required for single-step
GBLUP (ssGBLUP).
The routines presented here are the product of years developing code and applying these tools
to genomic data from animal and plant breeding programs. The initial concept originated
from Nazarian and Gezan (2016) who considered some of these elements in their software
GenoMatrix, but this has been extended further in the R environment (R Core Team 2020)
by considering additional statistical routines and elements developed during the last few
years.
The intent of this tool is to facilitate the performance of genomic analyses such as GS and
GWAS, in a straightforward and efficient manner, along with providing full replicability to
these analyses. Our aim is that these functions can be easily used with ASReml-R (Butler
et al. 2009) to fit linear mixed models (LMMs). However, these LMMs can be fitted in any
other software, library or routine of your choice.
We have attempted to consider some of the latest publications and developments, but this
is in no way comprehensive, especially given the dynamics of this field with a constant flow
of new analytical improvements and developments.
In this manual, we will present some of the structure of ASRgenomics illustrating its
capabilities with examples using datasets provided in this package.
ASRgenomics is a tool that is provided “as is”. We have made all efforts to check our routines
carefully and we have used real, publicly available datasets as much as possible, and in cases
with limited information, we have considered some simplifying assumptions.
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1 Getting Started

ASRgenomics is an R package available for Linux, Windows and Mac OS that can be
downloaded from https://vsni.co.uk/free-software/asrgenomics
Download the appropriate version of ASRgenomics for your operating system.

• For Windows, the download will be a .zip file.
• For Linux, the download will be a .tgz file.
• For Mac, the download will be a .tar.gz file.

Before installing ASRgenomics you will need to install the following packages:

• AGHmatrix
• cowplot
• crayon
• data.table
• ellipse
• factoextra
• ggplot2
• scattermore
• superheat

These are available for installation from the CRAN website https://cran.r-project.org/.
Start an R session and install the packages above.
Install ASRgenomics using one of the following commands as appropriate for your operating
system.
For Windows:

install.packages(path, repos = NULL, type = "win.binary")

For Linux:

install.packages(path, repos = NULL)

For Mac:

install.packages(path, repos = NULL, type = "source")

where path is the location and name of the appropriate file for your operating system to
install, for example: "/home/<yourusername>/ASRgenomics1.1.0.zip".
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Another option is to install ASRgenomics directly from RStudio by first going to the menu:
>Tools/InstallPackages..., in the Install from select
"Package Archive File (.zip; .tgz; tar.gz)"

and then you will have to search for the location of the file on your computer and select it.
Finally, you just need to click on Install.
Once installed, load the library using the command:

library(ASRgenomics)

Now you are ready to use it! A good way to get started is to request help directly from this
library. For example, you can type:

help("G.inverse")

A complete description of the functions and the datasets used in this manual are given in
the ASRgenomics Package Reference or directly from the help pages available in R by typing:

help(ASRgenomics)

Once ASRgenomics is loaded, you can also access the datasets by using the data() function,
for example:

data(geno.apple)

In the next sections we will present how to prepare and run genomic analyses for an array
of different cases and situations.
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2 Analytical Genomics Flow with ASRgenomics

Performing statistical analyses with molecular data, in the context of GS or GWAS, using
data from operational breeding programs can be a difficult task. Traditional genetic analyses
using only pedigree data requires that the phenotypic data and pedigree communicate
properly. This implies, for example, that all individuals present in the phenotypic data
have been included in the kinship matrix. Once we add molecular information to our genetic
analyses, then we have an additional layer of complexity, as now we need to manage the
molecular data to communicate properly with our phenotypic data, and sometimes, with
our pedigree data. The success of this depends on an additional set of checks, verifications,
filters, and careful preparation of all these datasets in order to be able to fit our genetic
models succesfully and to obtain our required output of interest.
As indicated before, ASRgenomics aims to assist in the analytical pipelines or workflows
required for genomic analyses. These pipelines are specific to each breeding program and
they will also depend on the type and quality of the information available. In the following
section, we illustrate this flow in a series of steps, with the main goal of implementing genomic
prediction.

1. Preparing molecular matrix M. Read SNP data and perform quality control and
filtering. In some cases, pruning or simple imputations might be required. This step
ensures that the data presents reasonable levels of information.

2. Verifying structure of the population. Use different tools, with the marker
matrix M or a genomic-based matrix G, to determine the structure of the genotyped
individuals. Tools such as clustering and PCA analyses help reveal patterns in the
data, allowing us to identify population structure.

3. Generating initial genomic-based kinship matrix G. The genomic matrix is
generated and used to obtain further insight into the structure of the population or to
identify inconsistencies in the marker matrix M.

4. Verifying genomic matrix G. Perform validation and checking; for example, by
identifying pairs of individuals that appear to be duplicates, or individuals with
unreasonable levels of inbreeding.

5. Correcting and tuning-up the genomic matrix G. Here, inconsistencies in the
matrix G are dealt with. This might require revisiting the original molecular data or
phenotypic records for additional filters or checks. In addition, we can tune up the
matrix G (or any kinship matrix K) to help with its stability in later use.

6. Generating pedigree-based kinship matrix A. If pedigree information is available,
it can be used to detect further inconsistencies in the matrix G. This can require
corrections for the pedigree, the molecular data or both. In addition, the matrices A
and G might be aligned to obtain a more stable G matrix.
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7. Generating final genomic matrix G. After performing a few iterations of cleaning,
correcting pedigree, and tuning up and re-assessment of the matrix G, a final genomic
matrix is generated and it is now available for any of the downstream statistical
analyses.

8. Generating inverse of genomic matrix G. For some statistical packages (such as
ASReml-R) the inverse of the G matrix is required. This matrix is generated, but tools
are used to check if it is ill-conditioned and whether some form of tune-up or correction
is required.

9. Matching a genomic-based or any kinship matrix with phenotypic data. As
we get ready for our statistical analyses, the subset of phenotypic data is obtained for
those individuals present in the kinship matrix. In turn, this also allows us to detect
further inconsistencies between these datasets.

10. Fitting linear mixed model. We proceed to fit our statistical genetics model, assess
distributional assumptions and verify the inclusion and significance of model terms.

The above flow is not comprehensive, and might require several other steps (or iterations
of these steps) depending on the problem in hand. Also, we have not described the
steps following the fitting of the linear mixed model, which might include for example:
inspection of residuals for outliers, calculation of heritabilities, extraction of genomic
breeding values, estimation of functions of random effects, and in cases of GWAS, extraction
and summarization of SNP effects, just to name a few.
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3 Reading and Filtering a Molecular Dataset

To illustrate the flow of functions and show some of the capabilities of ASRgenomics we are
going to use a real dataset from Loblolly Pine (Pinus taeda L.) published by Resende et
al. (2012). The genotypic portion of this dataset contains a total of 655 genotypes and
4,853 SNPs (coded as 0, 1, and 2, and here -9 is used for missing data). This is a subset of
the original dataset where some full-sib genomic records have been artificially eliminated for
illustration purposes.
We can call this dataset directly from ASRgenomics using:

data(geno.pine655)

and we can observe the first five genotypes (rows) and first five SNP markers (columns) with:

geno.pine655[1:5, 1:5]

## X0.10024.01.114 X0.10037.01.257 X0.10040.02.394 X0.10040.02.41 X0.10044.01.392
## 1087120 -9 1 -9 -9 -9
## 1085618 2 2 2 2 2
## 1091040 2 1 2 2 2
## 1091686 2 1 2 2 2
## 1082624 2 2 0 1 1

The dataset geno.pine655 is of class matrix and you can see the use of -9 to indicate missing
data, but NA or other representations of missing values are also valid within ASRgenomics.
A reasonable initial step is to filter this molecular dataset, as it might contain large amounts
of missing values and/or non-informative markers. This quality control step is critical to
facilitate downstream analyses and further calculations (particularly to ensure that the
genomic-based matrix G is invertible. For this, the function qc.filtering() can be used
as illustrated below:

M_filter <- qc.filtering(M = geno.pine655, base = FALSE, ref = NULL,
marker.callrate = 0.2, ind.callrate = 0.2, maf = 0.05, heterozygosity = 0.95,
Fis = 1, impute = FALSE, na.string = "-9", plots = TRUE)

## Initial marker matrix M contains 655 individuals and 4853 markers.

## A total of 119670 values were identified as missing with the string -9 and were
replaced by NA.

## A total of 156 markers were removed because their proportion of missing values was
equal or larger than 0.2.
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## A total of 11 individuals were removed because their proportion of missing values was
equal or larger than 0.2.

## A total of 1626 markers were removed because their MAF was smaller than 0.05.

## A total of 0 markers were removed because their |F| was larger than 1.

## A total of 25 markers were removed because their heterozygosity was larger than 0.95.

## Final cleaned marker matrix M contains 2.37% of missing SNPs.

## Final cleaned marker matrix M contains 644 individuals and 3046 markers.

This function removes markers and individuals according to some specifications. The options
considered above are detailed below in the order in which they are implemented in the code;
however, note that this filtering process is internally repeated twice as some markers (or
individuals) are dropped, affecting the calculations:

• marker.callrate = 0.2 removes markers with 20% or more missing values.
• ind.callrate = 0.2 removes individuals with 20% or more missing values.
• maf = 0.05 removes markers with minor allele frequency (MAF) below 0.05.
• Fis = 1 removes markers with inbreeding value Fis larger than 1.
• heterozygosity = 0.95 removes markers with observed heterozygosity larger than

0.95.

Note, we have used the threshold value of 1 for Fis, requesting, for this example, not to
eliminate any markers under this criteria.
The messages from this function reports that 11 individuals were dropped, and a total of
156 + 1,626 + 25 markers were eliminated. In addition, a new cleaned matrix, M.clean,
was generated which can be explored with the commands:

M_filter$M.clean[1:5, 1:5]
dim(M_filter$M.clean)

## X0.10037.01.257 X0.10040.02.394 X0.10040.02.41 X0.10044.01.392 X0.10048.01.60
## 1085618 2 2 2 2 1
## 1091040 1 2 2 2 2
## 1091686 1 2 2 2 2
## 1082624 2 0 1 1 0
## 1088628 1 2 2 1 1

## [1] 644 3046

The dimension of this cleaned genomic matrix is 644 individuals by 3,046 markers.
The same function produces five plots based on the original geno.pine655 matrix, that can
be inspected to decide better what threshold level to use on each of the criteria. Note that
these plots are obtained using the original data as read in the M matrix.
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M_filter$plot.missing.ind
M_filter$plot.missing.SNP
M_filter$plot.maf
M_filter$plot.heteroz
M_filter$plot.Fis
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Previously in our filtering, we used the option impute = FALSE, which has not implemented
any form of imputation on the M matrix. However, it is possible to perform a simple
imputation (average method) of missing values within this function. This method is only
recommended when the proportion of missing values in the matrix is less than 5% (in this
case, after filtering we only have ~2.4% missing values). More sophisticated imputations can
be used but these need to be implemented using specific software outside of ASRgenomics.
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4 Generating a Kinship Matrix

In order to fit a genomic-BLUP (or GBLUP) model for either genomic prediction (GP) or
GWAS analyses, you will need to generate a genomic-based kinship matrix G. This can be
easily obtained with the function G.matrix() using the cleaned M matrix produced before:

G <- G.matrix(M = M_filter$M.clean, method = "VanRaden", na.string = NA)$G

The dimension of this matrix is 644 × 644 individuals, and the first few records are:

G[1:5, 1:5]

## 1085618 1091040 1091686 1082624 1088628
## 1085618 0.948774 0.057050 0.0565112 -0.014318 0.1023679
## 1091040 0.057050 0.931190 0.0741684 -0.021068 0.1623575
## 1091686 0.056511 0.074168 0.9272810 -0.011731 0.0082731
## 1082624 -0.014318 -0.021068 -0.0117306 1.019321 -0.0180782
## 1088628 0.102368 0.162358 0.0082731 -0.018078 0.9702646

It is possible to generate the additive relationship matrix (using the methods of "VanRaden"
or "Yang") and the dominant relationship matrix (methods of "Su" or "Vitizeca"). In the
case of high levels of inbreeding in a population we recommend the use of the "Yang" method
as it tends to produce more stable matrices. Further details on these methods can be found
in Nazarian and Gezan (2016).
The pedigree-based kinship matrix A is also very useful for genomic analyses, and we will
explore it later. This matrix requires the pedigree file as a data frame. For the Loblolly Pine
study this is loaded below and a portion of it is shown:

data(ped.pine)
head(ped.pine)
tail(ped.pine)

## Indiv Mother Father
## 1 14006 0 0
## 2 14046 0 0
## 3 14060 0 0
## 4 14070 0 0
## 5 14104 0 0
## 6 14106 0 0

## Indiv Mother Father
## 2029 1085440 142024 44112
## 2030 1085916 52010 22022
## 2031 1087214 14114 20012
## 2032 1090230 52004 50148
## 2033 1091200 50148 14006
## 2034 1092034 44128 44112

ASRgenomics Page 13



User’s Manual

The pedigree data frame ped.pine has each individual identified together with its maternal
and paternal parents. There are a few conditions for this data frame to be valid: the
individuals need to be sorted by generation and each individual needs to have their parents
specified (with a 0 or NA whenever these are unknown).
In order to obtain the pedigree-based A matrix we will use the function Amatrix() from the
library AGHmatrix (Amadeu et al. 2016):

A <- AGHmatrix::Amatrix(data = ped.pine)

This matrix has a larger dimension than our G matrix, containing a total of 2,034 individuals.
As before, we can explore a few records with:

A[601:605, 601:605]

## 1087776 1087786 1087806 1087808 1087810
## 1087776 1.0 0.5 0.0 0.0 0.0
## 1087786 0.5 1.0 0.0 0.0 0.0
## 1087806 0.0 0.0 1.0 0.5 0.5
## 1087808 0.0 0.0 0.5 1.0 0.5
## 1087810 0.0 0.0 0.5 0.5 1.0

Here, we can clearly identify some full-sib individuals (a value of 0.5) and others completely
unrelated (a value of 0.0).
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5 Diagnostics on the Kinship Matrix

The genomic matrix G obtained earlier, and in general any genomic matrix generated
with ASRgenomics or other packages, will always correspond to an estimation of the true
relationships based on the available observed markers. In our Loblolly Pine example, only
3,046 SNPs were used to generate the matrix G, and therefore it is prone to sampling errors
and other inconsistencies. A small number of markers (e.g., < 1,000 SNPs), poor genotyping
quality, high levels of inbreeding and large portions of missing data are likely to affect even
more the quality of this matrix. These problems are reduced with adequate filtering, as we
illustrated previously, but they might still persist.
ASRgenomics incorporates a series of functions that will help us with diagnostics, exploration
and further tuning up of kinship matrices in order to reduce inconsistencies. The main
function to use is kinship.diagnostics() as shown below:

check_G <- kinship.diagnostics(K = G, diagonal.thr.small = 0.8,
diagonal.thr.large = 1.2, duplicate.thr = 0.95)

## Matrix dimension is: 644x644

## Range diagonal values: 0.84781 to 1.09544

## Mean diagonal values: 0.99592

## Range off-diagonal values: -0.16193 to 0.67935

## Mean off-diagonal values: 0.01379

## There are 0 extreme diagonal values, outside < 0.8 and > 1.2

## There are 0 records of possible duplicates, based on:
k(i,j)/sqrt[k(i,i)*k(j,j)] > 0.95

This function generates several diagnostic reports on the matrix, including the range and
mean values of the diagonal and off-diagonal values. Here, no observations were reported
as extreme on the diagonals (with a reasonable range specified between 0.8 and 1.2), and
no duplicate genotypes were reported (based on the correlation value between individuals
found on the off-diagonal being larger than 0.95). Thresholds for these flagged values can
be modified as desired.
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The flagged elements of the diagonal, or reported duplicates can be listed with:

check_G$list.diagonal
check_G$list.duplicate

The diagonal values correspond to 1 + Fi where Fi is the inbreeding coefficient that can take
a theoretical range between 0 and 1. Hence, any values on the diagonal of the G matrix
that are much lower than 1 and higher than 2 are considered suspicious. However, if the
population is known to not have large levels of inbreeding, then these values should not be
much larger than 1 or 1.2. Reported duplicate individuals can correspond to those with
genotyping issues, and therefore we need to evaluate if they should be dropped from any
further analyses.
In addition, you can view histogram plots for the diagonal and off-diagonal values using:

check_G$plot.diag
check_G$plot.offdiag

The first plot has a reasonable shape, and note that it is centred at ∼ 0.995, just slightly
lower than what is expected for non-inbred individuals (i.e., 1.0). The second plot, provides
several modes corresponding, for this population, to the unrelated individuals, half-sibs and
full-sibs, and these modes should be centred at 0, 0.25 and 0.50, respectively. However, this
is not happening with our estimated genomic matrix G, reflecting bias in the estimation of
the genomic relationships between individuals.
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ASRgenomics has a few additional tools to help identifying issues in this or any other kinship
matrices. For example, the function matchG2A() can be used to compare the values from
the pedigree-based matrix against the genomic-based relationship matrix. This is something
we will explore further in the next section.
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6 Tuning a Genomic-based Kinship Matrix

Clearly, as we noted in the previous section, our calculated genomic matrix G has some
bias, with genomic relationships underestimated from what is expected based on pedigree
information. Such bias is not uncommon in any genomic matrix, as its calculation requires
knowledge of the allele frequencies of the base population (i.e., founders) but this is often
not available as we only have the genotyping for a sample of individuals in the population.
Nevertheless, this bias and other inconsistencies can be easily managed within ASRgenomics
using the G.tuneup() function. The main tuning options available are: bending, blending
and aligning of the G matrix.
Given that we have identified overall bias in the relationships, we will proceed to perform an
alignment of our G matrix based on information on the expected relationships as included
in the previously calculated A matrix from the pedigree.
In order to make these two matrices G and A compatibles, the alignment implemented in
ASRgenomics follows the procedure suggested by Christensen et al. (2012), which basically
modifies the diagonal and off-diagonal values of a G matrix to match the values of the
provided A matrix for the common genotypes. This concept is implemented by solving the
following system of equations for α and β:

α + β × mean(diag(G)) = mean(diag(A))
α + β × mean(G) = mean(A)

which results in the modified aligned matrix:

Gb = α̂ + β̂ × G

However, before proceeding, we need the portion of the individuals from the A matrix
(which in our example has dimensions 2,034 × 2,034) that are present in our G matrix (with
dimensions 644 × 644). To do this we use the function matchG2A(), as shown below:

G2A <- match.G2A(A = A, G = G, clean = TRUE, ord = TRUE, mism = TRUE,
RMdiff = TRUE)

## All 644 individuals from matrix G match those individuals from matrix A.

## Matrix A has 1390 individuals (out of 2034) NOT present on matrix G.

which produces the matched matrices G2A$Aclean and G2A$Gclean that we need, both of
dimensions 644 × 644.
Because we used the option clean = TRUE we have the matching matrices from above, with
the same dimensions and exactly the same order of the genotypes. If we had genotypes
missing in G but present in A, these will all be dropped, and vice-versa.
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A look at some of the values of these cleaned matrices shows some interesting differences,
and the bias is evident:

G2A$Aclean[343:347, 343:347]

## 1087776 1087786 1087806 1087808 1087810
## 1087776 1.0 0.5 0.0 0.0 0.0
## 1087786 0.5 1.0 0.0 0.0 0.0
## 1087806 0.0 0.0 1.0 0.5 0.5
## 1087808 0.0 0.0 0.5 1.0 0.5
## 1087810 0.0 0.0 0.5 0.5 1.0

G2A$Gclean[343:347, 343:347]

## 1087776 1087786 1087806 1087808 1087810
## 1087776 0.975246 0.38692 -0.080196 -0.06751 -0.05307
## 1087786 0.386917 1.01028 -0.121400 -0.11889 -0.10270
## 1087806 -0.080196 -0.12140 0.946546 0.45083 0.48740
## 1087808 -0.067510 -0.11889 0.450827 0.95207 0.38793
## 1087810 -0.053070 -0.10270 0.487399 0.38793 0.98878

The function matchG2A(), as stated earlier, has additional diagnostics that are useful for
assessing both of these matrices together. A useful scatterplot that can be generated is one
that pairs the values from G against A from these cleaned matrices.

G2A$plotG2A
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Note that in this plot the values are concentrated on vertical lines for the A matrix (as the
pedigree is shallow) with reasonable ranges from the G matrix. Points that are found outside
the expected relationships can be the result of errors in the pedigree or in the molecular data
and should be explored carefully. However, in this case, there are no large inconsistencies.
Also, this function produces an output matrix with the pairs (points) shown in the above
plot, that if requested (with the option RMdiff = TRUE) it can help identify matching errors
or inconsistencies between these matrices. The first few records in this example are shown
below as part of the data frame G2A$RM:

head(G2A$RM)

## Row Col IDRow IDCol AValue GValue absdiff Diag
## 1 1 1 1080008 1080008 1.0 1.01582 0.015817 1
## 2 2 1 1080024 1080008 0.5 0.43065 0.069353 0
## 3 2 2 1080024 1080024 1.0 1.05715 0.057150 1
## 4 3 1 1080030 1080008 0.5 0.46777 0.032228 0
## 5 3 2 1080030 1080024 0.5 0.52349 0.023487 0
## 6 3 3 1080030 1080030 1.0 1.06642 0.066421 1

This dataset, presented in lower-diagonal form, has the calculated relationships for both
of the input matrices together with their absolute difference. In addition, the last column
identifies values belonging to the diagonal (1) or off-diagonal (0).
Many additional checks can be performed on this dataset. For example, we can explore the
observations that have absolute differences larger than 0.20, and these can be displayed with:

head(G2A$RM[G2A$RM$absdiff > 0.2, ])

## Row Col IDRow IDCol AValue GValue absdiff Diag
## 2997 77 71 1081474 1081426 0.5 0.29274 0.20726 0
## 3398 82 77 1081598 1081474 0.5 0.29455 0.20545 0
## 20095 200 195 1084642 1084618 0.5 0.26982 0.23018 0
## 21727 208 199 1084732 1084632 0.5 0.25987 0.24013 0
## 21936 209 200 1084734 1084642 0.5 0.26988 0.23012 0
## 29643 243 240 1086246 1086222 0.5 0.29748 0.20252 0

This subset corresponds to a total of 648 records, and from the reduced output above we
can see that potentially some individuals in the pedigree are declared as full-sibs (AValue
= 0.50), but they are possible half-sibs (GValue ∼ 0.25). In addition, we do not show but
some individuals were declared as half-sibs (AValue = 0.25) when in fact they are unrelated
(GValue ∼ 0). Hence, these results indicate that some pedigree corrections might be required.
We recommend a careful assessment, as these differences reflect errors in pedigree or DNA
samples, and they are likely to affect downstream analyses.
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Finally, we can proceed with our alignment using the clean Gclean and Aclean matrices
from above. This is executed using the function G.tuneup() as:

G_align <- G.tuneup(G = G2A$Gclean, A = G2A$Aclean, align = TRUE)$Gb

## Reciprocal conditional number for original matrix is: 0.000212653427326154

## Determinant for original matrix is: 2.76768888610265e-251

## Matrix was ALIGNED.

## Reciprocal conditional number for tune-up matrix is: 0.000196850315087818

Some of the reports on this function (presented for blend, bend or align) are in reference to
the stability of this matrix, and are associated with the feasibility of the matrix inversion
of the generated tuned-up matrix. For the reciprocal conditional number, values near zero
are associated with an ill-conditioned matrix (e.g., < 1e-05). For moderate size matrices (<
1,500), the determinant is also calculated, where again values at or near zero are associated
with a singular or near-singular matrix, respectively. Further details will be considered later
when we obtain the inverse of this matrix with ASRgenomics.
Lets explore some of the values of the original (cleaned) matrix and its aligned version:

G2A$Gclean[343:347, 343:347]

## 1087776 1087786 1087806 1087808 1087810
## 1087776 0.975246 0.38692 -0.080196 -0.06751 -0.05307
## 1087786 0.386917 1.01028 -0.121400 -0.11889 -0.10270
## 1087806 -0.080196 -0.12140 0.946546 0.45083 0.48740
## 1087808 -0.067510 -0.11889 0.450827 0.95207 0.38793
## 1087810 -0.053070 -0.10270 0.487399 0.38793 0.98878

G_align[343:347, 343:347]

## 1087776 1087786 1087806 1087808 1087810
## 1087776 0.980271 0.413438 -0.036610 -0.024387 -0.010475
## 1087786 0.413438 1.014029 -0.076308 -0.073887 -0.058295
## 1087806 -0.036610 -0.076308 0.952620 0.475012 0.510248
## 1087808 -0.024387 -0.073887 0.475012 0.957938 0.414412
## 1087810 -0.010475 -0.058295 0.510248 0.414412 0.993307

As expected, there are differences between these matrices, but the aligned matrix G_align
is closer to our expected values.
It is recommended to perform another evaluation of the matching of the matrices in order
to explore once more the object RM, using:
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Ga2A <- match.G2A(A = A, G = G_align, clean = TRUE, ord = TRUE,
mism = TRUE, RMdiff = TRUE)

## All 644 individuals from matrix G match those individuals from matrix A.

## Matrix A has 1390 individuals (out of 2034) NOT present on matrix G.

dim(Ga2A$RM[Ga2A$RM$absdiff > 0.2, ])

## [1] 90 8

This time we only find 90 records (instead of the 648 we found earlier) that have an absolute
difference larger than 0.20, reflecting a matrix with better quality. And now, we can perform
another set of diagnostics on the aligned matrix, as shown in the code below:

check_G_align <- kinship.diagnostics(K = G_align)

## Matrix dimension is: 644x644

## Range diagonal values: 0.85749 to 1.09607

## Mean diagonal values: 1.00019

## Range off-diagonal values: -0.11535 to 0.69519

## Mean off-diagonal values: 0.05394

## There are 0 extreme diagonal values, outside < 0.8 and > 1.2

## There are 0 records of possible duplicates, based on:
k(i,j)/sqrt[k(i,i)*k(j,j)] > 0.95

Once more, we can request the histograms for the diagonal and off-diagonal values.

check_G_align$plot.diag
check_G_align$plot.offdiag
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The most striking aspect of the off-diagonal plot is that its three modes are now centred at
approximately 0, 0.25 and 0.5, as we would expect given the pedigree information. Hence,
we will use this matrix for downstream analyses, as it has eliminated that bias.
The function G.tuneup() includes two additional methods for tune-up, these are: blend
and bend. Both of these methods, as with the align option, help to improve the stability
of the inverse (and avoid ill-conditioning).
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Under blending the G matrix is averaged with another matrix, ideally a pedigree-based A
matrix, but if this is not available or it is unreliable, then an identity matrix of the same
dimensions is used. Its general expression is:

Gb = (1 − pblend) × G + pblend × A

where pblend is the proportion of the matrix A to blend in.
Under bending the original G matrix is adjusted to obtain a near positive definitive matrix,
which is done by making some of its very small or negative eigenvalues slightly positive. This
option makes use of the internal R function Matrix::nearPD().
We are not exploring these methods here, but if you require further details we recommend
to read Nazarian and Gezan (2016).
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7 Exploring the Kinship Matrix

In this section we will present a few additional functions from ASRgenomics that are useful for
obtaining greater insight from any kinship matrix K. These functions can help us understand
the population, generate output for use in other analyses, and also to identify potential issues
that might need to checked/corrected.

7.1 Heatmap and Dendrogram from a Kinship Matrix

The function kinship.heatmap() is useful for displaying and exploring kinship matrices.
This function produces an enhanced heatmap plot based on a provided kinship matrix
together with a dendogram. This plot can be used to visualise the structure of a breeding
population. For example, we can display the G_align matrix with:

kinship.heatmap(K = G_align, dendrogram = TRUE, row.label = FALSE,
col.label = FALSE)

In the above figure, we can identify ~ 50 sibships. There are also interesting relationships in
the off-diagonal denoting a good connectivity between individuals from different families.
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7.2 Population Structure with Genomics Data

The cleaning and processing of the marker information to obtain genomic-based kinship
matrices and/or their inverses helps not only with genomic predictions but also with other
statistical analyses.
For GWAS analyses, genomic matrices are used to control for family relationships (often
known as the K matrix). In addition, often a matrix is included to control for population
structure (often known as the Q matrix). The former matrix, as shown before, can be
obtained with ASRgenomics using the function G.matrix(). The latter, can be generated
from either the marker data matrix M or the genomic-based kinship matrix G with the
functions snp.pca() or kinship.pca(), respectively.
As an example, we illustrate this using the kinship.pca() function with the code presented
below that makes use of our previously generated G_align matrix:

pca_pine <- kinship.pca(K = G_align, ncp = 15)

Here, we have requested 15 eigenvectors (dimensions) with the option ncp = 15, but this
function also generates a scree plot and the PCA plot for the first two dimensions. All of
this is obtained with the following code:

pca_pine$eigenvalues
pca_pine$plot.scree
pca_pine$plot.pca

## eigenvalue variance.percent cumulative.variance.percent
## Dim.1 35.7957 5.5583 5.5583
## Dim.2 31.0358 4.8192 10.3776
## Dim.3 29.0641 4.5131 14.8906
## Dim.4 26.1347 4.0582 18.9488
## Dim.5 20.0666 3.1159 22.0647
## Dim.6 18.1353 2.8160 24.8808
## Dim.7 16.4156 2.5490 27.4298
## Dim.8 15.3856 2.3891 29.8189
## Dim.9 14.8350 2.3036 32.1224
## Dim.10 13.3380 2.0711 34.1936
## Dim.11 12.0630 1.8731 36.0667
## Dim.12 10.8853 1.6903 37.7570
## Dim.13 10.1845 1.5814 39.3384
## Dim.14 8.9513 1.3900 40.7284
## Dim.15 8.1763 1.2696 41.9980
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From the above tables and plots we see that four dimensions explain almost 19% of the
variability in the provided genomic matrix and that the vertical grouping observed in the
PCA plot are likely to be associated with the different sibships reflecting the structure of
this population.
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The scores of these 15 dimensions (or PCs) can be accessed using:

head(pca_pine$pca.scores)

## PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8
## 1080008 -1.1945 -0.91485 -1.6401 -1.8619 -0.15952 -1.05204 0.46695 -0.37887
## 1080024 -1.2066 -1.02832 -1.6041 -2.0615 -0.29179 -1.04005 0.26372 -0.34721
## 1080030 -1.2105 -1.02527 -1.5416 -2.0125 -0.34073 -1.03975 0.36178 -0.30125
## 1080086 -1.2798 -1.03675 -1.4963 -1.8809 -0.27364 -1.06959 0.40968 -0.38590
## 1080116 -1.2150 -0.90508 -1.6009 -1.9537 -0.28889 -0.79574 0.50727 -0.39928
## 1080132 -1.2014 -1.02834 -1.5310 -1.8730 -0.14265 -0.92580 0.51383 -0.19873

## PC9 PC10 PC11 PC12 PC13 PC14 PC15
## 1080008 0.67614 0.050220 -0.072388 0.153265 -0.138734 -0.54841 -0.28107
## 1080024 0.57462 -0.019170 0.072282 0.050428 -0.061157 -0.63495 -0.34329
## 1080030 0.73670 -0.121177 0.102896 0.140770 -0.072745 -0.67924 -0.28590
## 1080086 0.61338 -0.057232 -0.047775 0.150117 -0.128881 -0.69164 -0.25053
## 1080116 0.68346 -0.014549 0.126670 0.108943 -0.091612 -0.56892 -0.27086
## 1080132 0.75156 0.077890 -0.163355 0.201931 -0.205385 -0.53503 -0.25566

These scores can be used in downstream GWAS analyses to form the Q matrix.
In the PCA scatterplot of the first two-dimensions it is also possible to draw ellipses around
pre-defined groups that are requested with ellipses = TRUE and the groups are specified
with a factor in the option groups. For example, we could specify all full-sib families in this
factor.
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8 Preparing to Fit a Genomic-BLUP (GBLUP) model
with ASReml-R

The majority of the previous dataset cleaning, preparation, and exploring is aimed at
obtaining a reliable genomic matrix that can be used to fit a linear mixed model (LMM)
to the phenotypic data in what is known as GBLUP. In the next example, we will fit a
traditional animal model, where the pedigree-based kinship matrix A is replaced by its
genomic counterpart, the G matrix. Later, the fitted model can be used to obtain predictions
of other genotypes in what is know as Genomic Prediction.
However, in order to fit this LMM we require proper communication between our G matrix
and the phenotypic data. Mainly, all individuals included in the phenotypic dataset need to
be included in the G matrix to fit the model; however, not all individuals from the G matrix
need to have phenotypic information, as often these are the target genotypes for genomic
predictions.
The phenotypic data that we will use is also extracted from Resende et al. (2012), and this
can be loaded and explored with the commands:

data(pheno.pine)
head(pheno.pine)

## Genotype Mother Father DBH_Adj
## 1 1090230 52004 50148 -5.4394
## 2 1082740 202096 22022 -4.7640
## 3 1086884 222056 202060 -4.6807
## 4 1084222 44126 142170 -4.5188
## 5 1082164 20022 44090 -4.5146
## 6 1086512 44012 17766 -4.3376

In this phenotypic dataset the response variable corresponds to the deregressed estimated
breeding values (or DEBV) for the trait diameter at breast height (DBH) at 6 years of age
from trees grown at site Nassau. The dataset contains a total of 861 loblolly pine (Pinus
taeda L.) individuals. Recall that we only have 644 genotyped individuals in the G_align
matrix. Hence, our first step is to identify those individuals that are genotyped to subset
the phenotypic data. This can be done with the help of ASRgenomics by using the function
match.kinship2pheno() as shown below:

pheno.G <- match.kinship2pheno(K = G_align, pheno.data = pheno.pine,
indiv = "Genotype", clean = FALSE, mism = TRUE)

## All individuals within the kinship matrix match the phenotyped individuals.

## Phenotypic data contains 217 individuals that DO NOT match the kinship
matrix individuals.

ASRgenomics Page 29



User’s Manual

## Phenotypic data contains 644 individuals that match the kinship matrix
individuals.

The main objective of this function is to identify matches and mismatches of individuals
between the kinship matrix, here G_align, and the phenotypic dataset, here pheno.pine.
In our case, we need the matched individuals from the phenotypic data that are listed under
the output:

pheno.G$matchesP

This contains a total of 644 elements. Note, having individuals on the phenotypic data that
are not genotyped will lead to errors in the fitting of the genomic model. Hence, the subset
of the phenotypic data that we require is:

pheno.subset <- pheno.pine[pheno.G$matchesP, ]

The pheno.subset dataset, as expected, has 644 rows. Here we are using a single record
per genotype, but under the framework of the models fitted with ASReml-R, it is possible to
use multiple measurements in more complex, and often more realistic, linear mixed models.
The function match.kinship2pheno() can also provide a G with only the subset of
individuals/genotypes that match the phenotypic data by using the option clean = TRUE.
This is particularly useful where a reduced animal model is desired, as we will be able to fit
our LMM to only those individuals with phenotypic data, and thus reducing the size of the
model to fit.
Given that we have our phenotypic dataset ready and our G matrix all prepared and checked
(G_align in this case), we can now proceed to use ASReml-R to fit our model. ASReml-R
can accept both the G matrix or its inverse in full or sparse form. However, we strongly
recommend to supply the inverse of G, i.e. G−1, and in sparse form. This is because
obtaining the G−1 before model fitting is allowing us to assess its stability and to avoid
ill-conditioning. In addition, a sparse form matrix requires less computer resources (i.e.,
memory) as only the non-zero lower-diagonal of the relevant matrix is stored.
To obtain this, or any other inverse matrices, we use the function G.inverse(). For our
example the code looks like:

Ginv.sparse <- G.inverse(G = G_align, sparseform = TRUE)$Ginv

## Reciprocal conditional number for original matrix is: 0.000196850315087818

## Reciprocal conditional number for inverted matrix is: 0.000194808044388302

## Inverse of matrix G does not appear to be ill-conditioned.
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head(Ginv.sparse)

## Row Col Value
## [1,] 1 1 3.894719
## [2,] 2 1 0.155490
## [3,] 2 2 3.953677
## [4,] 3 1 -0.048134
## [5,] 3 2 -0.203026
## [6,] 3 3 4.637955

From the report we see that the reciprocal conditional number is small, however it is not
too small to indicate problems. This is also confirmed by the message telling us that the
matrix does not appear to be ill-conditioned. As an empirical rule values larger than 1e-05
are considered reasonable. In addition, we used the option sparseform = TRUE to obtain
the inverse in sparse form.
If this inverse fails (e.g., due to the matrix being singular or near singular) or if the report
indicates that it is ill-conditioned, then a revisit of the genomic matrix might be necessary.
This often requires further evaluations ensuring that, for example, duplicate individuals
are dropped, and kinship relationships between individuals are within reasonable ranges,
amongst other things including additional tune up.
Critically, the function G.inverse() provides the generated matrix G−1 in full or sparse
form, with all the required attributes to be used directly in ASReml-R without further
manipulations. Here, the key elements are the attributes of "rowNames", "colNames" and
"INVERSE" as shown below for our sparse form matrix:

head(attr(Ginv.sparse, "rowNames"))

## [1] "1080008" "1080024" "1080030" "1080086" "1080116" "1080132"

head(attr(Ginv.sparse, "colNames"))

## [1] "1080008" "1080024" "1080030" "1080086" "1080116" "1080132"

attr(Ginv.sparse, "INVERSE")

## [1] TRUE
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9 Fitting a Genomic-BLUP (GBLUP) model with
ASReml-R

Using ASReml-R we can now proceed to fit our LMM based on an animal model to the
response variable DBH_Adj. But first, we will load the asreml library and define factor terms
using:

library(asreml)
pheno.subset$Genotype <- as.factor(pheno.subset$Genotype)

The code to fit our LMM using the asreml() function is:

GBLUP <- asreml(fixed = DBH_Adj ~ 1, random = ~vm(Genotype, Ginv.sparse),
residual = ~idv(units), na.action = na.method(y = "include"),
workspace = 1e+07, data = pheno.subset)

We are not going to explain this code in much detail, as this information is available directly
from the ASReml-R manual. However, in the above model we only have a single factor
(Genotype) that is assumed to be random, and with the use of the command vm() we assign
a variance model that links this factor to the provided inverse Ginv.sparse. As everything
in this matrix is in order, this model should not have fitting issues. However, if your G−1

is large (> 2,000 individuals) and/or dense, this model might take some time to fit. You
may also need to increase the memory workspace required by the core routines using the
workspace option. For additional tricks we recommend you read https://vsni.co.uk/blogs/
faster_GBLUP_ASReml-R.
In the above model we have not included other fixed or random effects (such as blocks
or plots), but this is easily done. Also, more complex LMMs such as multi-trait or
multi-environment trial analyses can be fitted. Again, the software manual is a good
resource for these and other statistical analyses.
For our fitted model, we can print out the estimated REML variance components and assess
the residual plots by using:

summary(GBLUP)$varcomp
plot(GBLUP)

## component std.error z.ratio bound %ch
## vm(Genotype, Ginv.sparse) 1.1717 0.25001 4.6865 P 0
## units!units 1.3835 0.13688 10.1077 P 0
## units!R 1.0000 NA NA F 0

ASRgenomics Page 32

https://vsni.co.uk/blogs/faster_GBLUP_ASReml-R
https://vsni.co.uk/blogs/faster_GBLUP_ASReml-R


User’s Manual

We can also calculate a genomic narrow-sense heritability from this analysis using:

vpredict(GBLUP, h2 ~ V1/(V1 + V2))

## Estimate SE
## h2 0.45855 0.071426

This is a reasonable heritability for this trait, and the approximated standard error is small.
Finally, the first few genomic expected breeding values (GEBVs) from this model can be
extracted with:

head(summary(GBLUP, coef = TRUE)$coef.random)

## solution std.error z.ratio
## vm(Genotype, Ginv.sparse)_1080008 0.7154172 0.67482 1.0601538
## vm(Genotype, Ginv.sparse)_1080024 -0.4899763 0.67809 -0.7225835
## vm(Genotype, Ginv.sparse)_1080030 -0.0028485 0.66397 -0.0042901
## vm(Genotype, Ginv.sparse)_1080086 0.3045619 0.65774 0.4630444
## vm(Genotype, Ginv.sparse)_1080116 0.0099787 0.67516 0.0147799
## vm(Genotype, Ginv.sparse)_1080132 0.9060461 0.68281 1.3269385

It is also possible to use G matrices with slightly different tune up options (e.g., blend with
different proportions), and this might yield slightly different model fits. We recommend the
use of the log-likelihood value to compare models as some fits might be better or more stable
than others.
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10 Generating a Hybrid Genomic Matrix (H)

In the previous section we successfully fitted a GBLUP genomic prediction model with
ASReml-R using the inverse of an aligned G matrix resulting in a reasonable heritability and
estimates of GEBVs that allow us to select outstanding genotypes for a breeding program.
For illustration, in our example, the G_align (or corresponding Ginv.sparse) matrix only
considered the phenotypic and genomic data from the subset of 644 genotyped individuals,
thereby limiting our selection to this reduced set. However, we had a phenotypic dataset
containing 861 individuals, of which 217 were (artificially) dropped because of their lack
of genomic data. This is clearly suboptimal, as all this phenotypic information should be
considered in our analyses, and some of these records are from relatives of our genotyped
individuals.
In addition, we had available a pedigree dataset for a total of 2,034 individuals, which was
also not considered in our GBLUP model. However, we might be interested in obtaining
breeding values for the totality of these individuals regardless of the type of information
available.
The methodology of single-step GBLUP, or ssGBLUP, allows to combine the information
from the pedigree-based kinship matrix A together with the genomic-based G matrix to
generate a so-called hybrid matrix H, and uses this matrix (or its inverse) in place of the G
matrix (or its inverse). This H matrix has the same dimensions as the A matrix, and for
the genotyped individuals, it can use either of their available relationship calculations, or a
combination of these.
ASRgenomics includes the function H.inverse() to facilitate the generation of the inverse of
this hybrid matrix, H−1, which can be used directly within ASReml-R to fit what is sometimes
known as HBLUP. This function can accept as input the A matrix, or its inverse A−1, and
a previously generated genomic inverse G−1. Further information on these procedures are
available in Christensen and Lund (2010) and Legarra et al. (2009).
The function H.inverse() contains a few scaling factors to help with the calculation of this
inverse and to allow further exploration of the combination of the information from the A−1

and G−1. We follow the specifications described by Martini et al. (2018), which is done by
specifying the parameters λ, or the pair τ and ω. The general expression used is:

H−1 = A−1 +
[
0 0
0 (τG−1 − ωA22

−1)

]

where A22
−1 is the pedigree relationship of the genotyped individuals.

A more common representation of the above expression is found when τ = ω = λ, as shown
below:

H−1 = A−1 +
[
0 0
0 λ(G−1 − A22

−1)

]
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To illustrate the H.inverse() function we will continue using the Loblolly pine dataset
presented earlier, and we supply our A matrix and the G−1 obtained from our G_align
matrix. Note that both of these matrices need to be in full form.

Ginv <- G.inverse(G = G_align, sparseform = FALSE)$Ginv
Ginv[1:5, 1:5]

## 1080008 1080024 1080030 1080086 1080116
## 1080008 3.894719 0.155490 -0.048134 -0.248860 0.245216
## 1080024 0.155490 3.953677 -0.203026 0.021871 0.182718
## 1080030 -0.048134 -0.203026 4.637955 -0.204719 -0.099534
## 1080086 -0.248860 0.021871 -0.204719 4.571356 -0.307563
## 1080116 0.245216 0.182718 -0.099534 -0.307563 4.143026

To get the H−1 matrix (in sparse form), which is more computationally efficient than getting
the H matrix, we will use the following code:

Hinv.sparse <- H.inverse(A = A, G = Ginv, lambda = 0.9, sparseform = TRUE)

## A lambda value was provided and it will be used instead of tau and omega.

## Matrix A or Ainv has 1390 individuals that are not present in Ginv.

This matrix has, as expected, a dimension of 2,034 × 2,034 individuals. In this example, we
have used a λ = 0.90 for the scaling parameter, but other values are possible. Here, a value
of 0 indicates that, for those individuals that are genotyped, no information is used from the
G matrix, and a value of 1 indicates that no information from the A matrix is used.
As indicated before, the H.inverse() function can accept a different set of scaling
parameters, such as τ and ω, as described by Martini et al. (2018), with a range of possible
values. We will not explore these options any further but we refer to the above manuscript.
Sometimes, it might be of interest to obtain the H matrix directly, and for this we can use
the function H.matrix() within ASRgenomics. This might be computationally intensive,
but it can be very useful to explore the hybrid genetic relationship between some of the
genotypes, particularly those not genotyped. This H matrix is obtained with the code:

H <- H.matrix(A = A, Ginv = Ginv, lambda = 0.9, sparseform = FALSE)

We can now explore some of the differences between the A and H matrices to shed light on
the relationships between some of the base parents (founders). For example, we have:

A[34:39, 34:39]
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## 44126 44128 50148 50152 51810 52004
## 44126 1 0 0 0 0 0
## 44128 0 1 0 0 0 0
## 50148 0 0 1 0 0 0
## 50152 0 0 0 1 0 0
## 51810 0 0 0 0 1 0
## 52004 0 0 0 0 0 1

H[34:39, 34:39]

## 44126 44128 50148 50152 51810 52004
## 44126 0.902037 0.059341 0.031676 0.069001 0 0.073155
## 44128 0.059341 0.946418 0.045060 0.032968 0 0.037496
## 50148 0.031676 0.045060 0.947384 0.067636 0 0.055413
## 50152 0.069001 0.032968 0.067636 0.972216 0 0.047243
## 51810 0.000000 0.000000 0.000000 0.000000 1 0.000000
## 52004 0.073155 0.037496 0.055413 0.047243 0 1.035070

and some of the offspring:

A[601:605, 601:605]

## 1087776 1087786 1087806 1087808 1087810
## 1087776 1.0 0.5 0.0 0.0 0.0
## 1087786 0.5 1.0 0.0 0.0 0.0
## 1087806 0.0 0.0 1.0 0.5 0.5
## 1087808 0.0 0.0 0.5 1.0 0.5
## 1087810 0.0 0.0 0.5 0.5 1.0

H[601:605, 601:605]

## 1087776 1087786 1087806 1087808 1087810
## 1087776 0.9129987 0.392395 -0.027461 -0.016209 -0.0057651
## 1087786 0.3923949 0.925100 -0.056083 -0.048156 -0.0407531
## 1087806 -0.0274612 -0.056083 0.909735 0.453037 0.4857556
## 1087808 -0.0162089 -0.048156 0.453037 0.905317 0.3985635
## 1087810 -0.0057651 -0.040753 0.485756 0.398564 0.9298915

As with any other kinship matrix, we can assess the quality of the H matrix using the
diagnostic tools within ASRgenomics as shown below:

check_H <- kinship.diagnostics(K = H)

We do not show the results, but there were no extreme values reported here, and the plots
obtained from this function using this H matrix are somewhat different to the ones obtained
using the A matrix. But given the combination of different sources of information, they still
reflect a reasonable kinship matrix.
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11 Fitting a Single-Step Genomic-BLUP model
(ssGBLUP) with ASReml-R

As we did earlier with GBLUP, we can now proceed to fit our LMM using the H−1 matrix
within ASReml-R. We will be using similar code as in the previous case, but this time we
will use the complete phenotypic data pheno.pine that includes a total of 861 individuals,
together with the Hinv.sparse matrix that includes 2,034 genotypes. This matrix was
generated with all the required attributes to be used directly within ASReml-R.
We obtained our H−1 previously, however, in the following code we are requesting this matrix
in sparse form, and we are defining our relevant factors for our LMM:

Hinv.sparse <- H.inverse(A = A, G = Ginv, lambda = 0.9, sparseform = TRUE)
pheno.pine$Genotype <- as.factor(pheno.pine$Genotype)

We can then proceed to fit our ssGBLUP model to the response variable DBH_Adj using:

ssGBLUP <- asreml(fixed = DBH_Adj ~ 1, random = ~vm(Genotype,
Hinv.sparse), residual = ~idv(units),
na.action = na.method(y = "include"),
workspace = 1e+07, data = pheno.pine)

As before, the critical element is the use of Hinv.sparse associated with the factor Genotype,
but essentially this is the same model as before.
It is possible to assess the residuals and estimated variance components with:

plot(ssGBLUP)
summary(ssGBLUP)$varcomp

ASRgenomics Page 37



User’s Manual

## component std.error z.ratio bound %ch
## vm(Genotype, Hinv.sparse) 1.3411 0.24874 5.3916 P 0
## units!units 1.2447 0.12663 9.8297 P 0
## units!R 1.0000 NA NA F 0

These components can be used to calculate a genomic heritability based on our hybrid H−1

matrix as:

vpredict(ssGBLUP, h2 ~ V1/(V1 + V2))

## Estimate SE
## h2 0.51864 0.067075

This, as before, is a reasonable heritability for this trait that in contrast with our GBLUP
analyses has a larger value and slightly smaller approximated standard error.
Finally, we can extract GEBVs from the ssGLUP model. These are shown below for a subset
of genotypes together with, for comparison, the ones from our previously fitted GBLUP
model:

summary(ssGBLUP, coef = TRUE)$coef.random[601:605, ]

## solution std.error z.ratio
## vm(Genotype, Hinv.sparse)_1087776 5.7614e-01 0.66289 8.6914e-01
## vm(Genotype, Hinv.sparse)_1087786 7.0410e-01 0.65578 1.0737e+00
## vm(Genotype, Hinv.sparse)_1087806 3.6868e-02 0.67098 5.4946e-02
## vm(Genotype, Hinv.sparse)_1087808 1.0793e-05 0.66676 1.6188e-05
## vm(Genotype, Hinv.sparse)_1087810 2.9264e-01 0.66443 4.4044e-01

summary(GBLUP, coef = TRUE)$coef.random[343:347, ]

## solution std.error z.ratio
## vm(Genotype, Ginv.sparse)_1087776 0.409274 0.66610 0.614437
## vm(Genotype, Ginv.sparse)_1087786 0.512070 0.65973 0.776182
## vm(Genotype, Ginv.sparse)_1087806 -0.054346 0.67207 -0.080864
## vm(Genotype, Ginv.sparse)_1087808 -0.083940 0.66986 -0.125310
## vm(Genotype, Ginv.sparse)_1087810 0.083121 0.67003 0.124056

Note that there are some changes in these two sets of solutions, but also that there is a small
reduction in their standard errors with the use of the H matrix. This is likely a result of the
increased heritability value, but is also due to the use of the additional information available
for each genotype, which was incorporated in the generation of the H−1 to estimate breeding
values.
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12 Additional Tools in ASRgenomics

In this section we will present a few extra functions from ASRgenomics that are useful for
additional file reading formats and manipulations of the molecular matrix M and also to
expand this matrix to generate synthetic offsprings.

12.1 SNP Recoding

It is common to have the original molecular matrix M available in the bi-allele SNP data
format (AA, AG, GG, CC, etc.). This matrix will need to be recoded into the numeric values
0, 1, 2 for use in ASRgenomics and other packages. For this, the function snp.recode() can
be used. In earlier versions of ASRgenomics this capability was available under the function
qc.filtering().
In the following example, we illustrate its use based on an hypothetical bi-allele matrix
named Mnb.

M.recoded <- snp.recode(M = Mnb, map = mapnb, marker = "marker",
ref = "ref", alt = "alt", rename.markers = TRUE, na.string = NA)

The data frame mapnp is optional but in this case was included as it has the information
about the reference allele used to calculate the allele proportions. This might be relevant if we
want to match the same reference and alternative alleles from other previously available M
matrices. Here, the options marker = "marker", alt = "alt" and ref = "ref" indicate
the relevant names of the columns within the data frame mapnb. Further details can be
found in the help associated with this function.

12.2 SNP Pruning

Good filtering of the M matrix is recommended in order to avoid issues with the generation
of the genomic matrix G but also for downstream statistical analyses. Several options for
filtering were presented before, but ASRgenomics has another important filtering option to
consider: SNP pruning.
The function snp.pruning() finds and drops some of the SNPs that are highly correlated.
This is recommended as a large portion of SNPs in high linkage disequilibrium (LD) can
affect genomic selection or GWAS analyses. This function uses the Pearson’s Correlation
between the markers (as a proxy for LD) and its use is illustrated below:

Mpr <- snp.pruning(M = M_filter$M.clean, pruning.thr = 0.9, window.n = 40,
overlap.n = 10, seed = 1208)

##
## Creating dummy map.
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##
## Initiating pruning procedure.

## Initial marker matrix M contains 644 individuals and 3046 markers.

## Requesting pruning without chromosome indexing.

## Iteration: 1

## Iteration: 2

## Iteration: 3

##
## Summary statistics.

## Final pruned marker matrix M contains 644 individuals and 2951 markers.

## A total of 95 markers were pruned.

## Range of minor allele frequency after pruning: 0.05 ~ 0.5

## Range of marker call rate after pruning: 80.28 ~ 100

## Range of individual call rate after pruning: 81.67 ~ 99.19

In this particular case, some of the markers that have a correlation of 0.90 or higher are
eliminated. This is done by blocks (windows), where we have indicated that we want windows
of 40 SNPs with an overlap of 10 markers. If a map is provided, then this can be done by
chromosome. The report from this function indicates that a total of 95 markers were pruned
out, and therefore our cleaned matrix is reduced from 3,046 to 2,951 SNPs.

12.3 Generation of Synthetic Offspring

Sometimes is required to generate molecular data from hypothetical crosses based only on
genomic information from the parents. The function synthetic.offspring() can be used
for this purpose, which will generate genomic data for offspring without marker information.
This is required for some plant breeding programs that deal with crossing of parental inbred
lines, where it is possible to generate (i.e., impute) the molecular matrix of any offspring
based on this original M matrix of the parents. Further details of this function, together
with an example, and a description of how heterozygotic records are treated can be found
in the associated help.
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12.4 Other Tools

Other functions are available within ASRgenomics, including G.predict() to generate
conditional predictions of random variables. There are also additional functions to
manipulate and transform matrices, such as full2sparse() and sparse2full() used to
change matrices from full to sparse form and vice versa, respectively.
Further details on these and other functions can be found in the documentation for this
package.
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13 Closing Remarks

The array of functions implemented in the ASRgenomics library are critical tools to facilitate
preparation and manipulation of genomic data and to obtain kinship matrices to use in
downstream analyses such as genomic prediction and GWAS.
ASRgenomics reflects the current advancement and methodologies reported in the available
scientific literature to deal with these matrices, including aspects such as manipulations
and their tuning up as shown earlier in this manual. A full understanding of the correct
procedures to use and to manipulate these matrices requires empirical work using the
specific datasets from an operational breeding program or a research project, but we believe
ASRgenomics should make these decisions easier, faster and more reliable.
This package is in no way comprehensive, and given the fast changing field of genomics and
bioinformatics, we suspect additional options and functions will be required in the future.
Hence, we consider this library as a dynamic source that in future versions will be expanded
to incorporate new functionalities.
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