ASReml-R Reference Manual
Version 4.2

ASReml estimates variance components under a general linear

mixed model by residual maximum likelihood (REML)

D. G. Butler!, B. R. Cullis!, A. R. Gilmour?, B. J. Gogel', and R. Thompson?®

!'National Institute for Applied Statistics and Research, Australia
School of Mathematics and Applied Statistics University of Wollongong, Australia

2VSN International Ltd., United Kingdom (formerly NSW Department of Primary Industries, Orange, Australia)

3Centre for Mathematical and Computational Biology, and Department of Biomathematics and Bioinformatics,
Rothamsted Research, United Kingdom

May 27, 2023

ASReml-R Reference Manual Version 4.2

D. G. Butler, B. R. Cullis, A. R. Gilmour, B. J. Gogel and R. Thompson

Published by

VSN International Ltd. 2 Amberside House, Wood Lane, Hemel Hempstead, HP2 4TP, UK.
email: asreml@vsni.co.uk

website: https://vsni.co.uk/

Copyright notice

Copyright © 2023, VSN International Ltd. All rights reserved.

Bibliographical reference

The correct bibliographical reference for this document is:

Butler, D.G., Cullis, B.R., Gilmour, A.R., Gogel, B.G. and Thompson, R. 2023. ASReml-R Refer-
ence Manual Version 4.2. VSN International Ltd., Hemel Hempstead, HP2 4TP, UK.

Author’s email addresses

David G. Butler: david butler@Quow.edu.au
Brian R. Cullis: brian_cullis@Quow.edu.au
Arthur R. Gilmour: arthur.gilmour@vsni.co.uk
Beverley G. Gogel: beverley_gogel@Quow.edu.au

Robin Thompson: robin.thompson@rothamsted.ac.uk

Companion documents

An additional document, the ASReml-R package reference, complements this reference manual.
The ASReml-R package reference is a pdf version of the ASReml-R help pages obtained in R by
typing help(asreml). This, and other resources, are also available at the VSN International website
https://asreml.kb.vsni.co.uk/article-categories/asreml-r-resources/.

mailto:david_butler@uow.edu.au
mailto:brian_cullis@uow.edu.au
mailto:arthur.gilmour@vsni.co.uk
mailto:beverley_gogel@uow.edu.au
mailto:robin.thompson@rothamsted.ac.uk
https://asreml.kb.vsni.co.uk/article-categories/asreml-r-resources/

Acknowledgements

The authors gratefully acknowledge the Grains Research and Development Corporation of Australia
for their financial support. We thank the University of Wollongong (Australia) and Queensland
Department of Agriculture and Fisheries (Australia) for permitting this research to be undertaken
and for providing a stimulating environment for applied biometrical consulting and research. We
sincerely thank Sue Welham for her contribution toward research into the use of linear mixed models
and the development of appropriate software. ITan White is acknowledged for suggesting a convenient
way of computing approximate variances of functions of variance parameters.

We also acknowledge the contributions of many members from the VSN International team, includ-
ing Darren Murray, Martyn Byng, Giovanni Galli and Salvador Gezan, and many of the innumerable
users that have contributed with suggestions, detected bugs and provided additional ideas to im-
prove the library.

Contents

Preface

1 Introduction

1.1 What ASReml-Rcando e
1.2 Getting started
1.3 Datasets used

Some theory

2.1 The general linear mixed model
2.2 Estimation
2.3 What are BLUPS?
2.4 Inference: fixed effects L
2.5 Inference: random effects

Fitting the mixed model

3.1 Thedataframe
3.2 Introducing the asreml () functioncall
3.3 Components of the fitted model: the asreml object
34 Anoteondataorder
3.5 Fixed terms oL
3.6 Random terms
3.7 Conditional factors: the at() and dsum() functions
3.8 Two rules for defining the residual error term
3.9 Diagnostic plots L
3.10 Weights o o

11

12
12
19
23
24
28

Contents

3.11 Missing values oL Lo
3.12 Generalized linear (mixed) modelso L
3.13 Multivariate analyses L oL Lo

3.14 Testing of terms: the wald() method

4 Specifying variance structures
4.1 A sequence of structures for the NIN field trial data
4.2 Types of variance models oL oL L
4.3 Variance model functions Lo oL
4.4 Rules for combining variance modelso oo oL
4.5 Default initial values and constraints for variance parameters
4.6 Estimates from functions of variance components oo,
4.7 Switching between the gamma and sigma parameterization

4.8 Comparing models with different variance structures

5 Specifying variance structures using genetic and other relationships
5.1 Imtroduction
5.2 Pedigree and the numerator relationship matrix
5.3 Specifying relationship and inverse relationship matrices

5.4 Generating an A-inverse matrix using ainverse()

6 Prediction from the linear model
6.1 Introduction L
6.2 Estimating means: the predict() method
6.3 Aliasing e
6.4 Complicated weighting L L

6.5 Further examples L

7 Examples
7.1 Introduction L
7.2 Split-plot design
7.3 Unbalanced nested designo
7.4 Sources of variability in unbalanced data,

7.5 Balanced repeated measures L e

51
52
o7
59
71
72
77
79
81

83
83
84
86
87

93
93
95
97
98
99

Contents

7.6 Spatial analysis of a field experiment L oo
7.7 Unreplicated early generation variety trial
7.8 Paired case-control study L

7.9 Balanced longitudinal data - random coefficients and cubic smoothing splines

A Some technical details about model fitting in ASReml-R
A.1 Sparse versus dense
A.2 Ordering of terms in ASRemI-R oo
A.3 Aliasing and singularities L

B Description of features in ASReml-R
B.1 Model formula terms
B.2 Reserved names/words
B.3 The asreml () arguments o
B.4 The asreml object list L
B.5 The asreml.options() arguments
B.6 Methods and functionso Lo
B.7 GLM/GLMM and the exponential family of distributions

C Variance structures in ASReml-R
C.1 Variance and correlation structure functions

C.2 Further details on variance structures oo

Bibliography

153
153
154
154

156
156
158
159
164
166
171
172

174
174
179

183

Preface

ASReml-R is a statistical package that fits linear mixed models using Residual Maximum Likelihood
(REML) in the R environment. This package uses the same computational kernel as its companion
package ASReml. This computational kernel has been under development since 1993 and arose out of
collaboration between Arthur Gilmour and Brian Cullis (NSW Department of Primary Industries)
and Robin Thompson and Sue Welham (Rothamsted Research) to conduct research into the analysis
of mixed models and to develop appropriate software, building on their wide expertise in relevant
areas including the development of methods that are both statistically and computationally efficient,
the analysis of animal and plant breeding data, the analysis of spatial and longitudinal data and the
production of widely used statistical software. Arthur Gilmour wrote the ASReml package. VSN
International acquired the rights to the computational kernel and ASReml from these sponsoring
organizations, and now directly supports Arthur Gilmour for further computational developments.
In parallel, David Butler and Brian Cullis (University of Wollongong) extended the computational
kernel of ASReml to produce ASReml-R to work in the R environment. Beverley Gogel has been
extensively involved in the documentation of both packages, and many other people have been
involved with this package at VSN International to make sure it runs well, is well documented and
supported.

This reference manual documents the features of the methods for objects of class asreml. Outside
of the worked examples, it does not consider the statistical issues involved in fitting models.

The features of ASReml-R include:

o A flexible syntax for specifying variance models for the random effects, and the scope this
offers the user. Users should be aware of the dangers of either overfitting or attempting to
fit inappropriate variance models to small or highly unbalanced data sets. We stress the
importance of the use of data driven diagnostics and encourage the user to read the examples
chapter, in which we have attempted to not only present the syntax of ASReml-R in the
context of real analyses but also to indicate some of the modelling approaches we have found
useful.

o The REML routines use the Average Information (Al) algorithm, and sparse matrix methods
for fitting the mixed model. This enables ASReml-R to efficiently analyse large and complex
data sets.

This manual consists of seven chapters. Chapter 1 introduces ASReml-R, describes the conventions
used throughout the manual, and describes the various data sets used for illustration; Chapter 2

7

presents a general overview of basic theory; Chapter 3 presents an introduction to fitting models
in ASReml-R followed by a more detailed description of fitting the linear mixed model; Chapter 4
is a key chapter that presents the syntax for specifying variance models for random effects in the
model; Chapter 5 describes special functions and methods for genetic analyses; Chapter 6 outlines
the prediction of linear functions of fixed and random effects in the linear mixed model and Chapter
7 presents a comprehensive and diverse set of worked examples. In addition, the Appendix provides
additional details on some of the options and functions that can help with specific analyses.

There are a number of new developments in Version 4.2. These include improvements in speed and
memory management, together with additional options in some of the library functions.

e Memory access has been increased to a maximum of 96 GB, enabling you toanalyse larger
problemsin less time.

e ASReml-R 4.2 has been optimised for multi-threaded processing, enabling you to use up to 16
threads.

e« Many of ASReml-R 4.2 core routines have been reworked making it much faster than the
previous version.

e Stability and optimisation have been enhanced to facilitate consistent results for future re-
leases.

The data sets and ASReml-R input files used in this manual are included in the software distribution.
They remain the property of the authors or of the original source, but may be freely distributed
provided the source is acknowledged. Additional data sets, particularly for larger examples, can
be easily accessed from the R library ASRdata which can be downloaded from https://github.com/
asrtools/asrdata.

We have extensively tested the software but it is inevitable that bugs will exist. These may be
reported to support@vsni.co.uk. The authors and developers would also appreciate being informed
of errors and requests of improvements to the manual and software.

https://github.com/asrtools/asrdata
https://github.com/asrtools/asrdata
mailto:support@vsni.co.uk

Chapter 1

Introduction

1.1 What ASRemlI-R can do

ASReml-R is designed to fit the general linear mixed model to moderately large data sets with
complex variance models. ASRem|-R has application in the analysis of:

(Un)balanced longitudinal data.

Repeated measures data (including multivariate analysis and trajectory-type models).

(Un)balanced designed experiments.
e Multi-environment trials and meta analysis.

Regular or irregular spatial data.

The computational engine of ASReml-R is the algorithm of Gilmour et al. (1995) adapted from the
standalone program ASReml-SA (Gilmour et al. 2002). The computational efficiency of ASReml-
R arises from using the Average Information REML algorithm (giving quadratic convergence) and
sparse matrix operations. However, because of overheads inherent in R language implementations,
some very large problems may need to use the ASReml-SA program to overcome memory limitations.

The asreml () function returns an object of class asreml. Standard methods resid(), fitted(),
coef (), summary (), plot(), anova() and predict() work with this object, and other methods
including varioGram() and wald() also exist.

1.2 Getting started

1.2.1 Installation

Installation instructions are provided on the VSN International website https://asreml.kb.vsni.co.
uk/knowledge-base/asreml-r-installation-guide/

https://asreml.kb.vsni.co.uk/knowledge-base/asreml-r-installation-guide/
https://asreml.kb.vsni.co.uk/knowledge-base/asreml-r-installation-guide/

Chapter 1. Introduction

1.2.2 Help and references

Documentation for the asreml() function, support functions and related methods are available
via the standard help mechanism; that is, help(asreml) or 7asreml will display the ASReml-R
documentation in text or HTML form depending on implementation and help system state.

A complete description of the components of an asreml object and the data sets used in this manual
are given in the ASReml-R Package Reference, which is a pdf version of the ASReml help pages
obtained in R by typing help(asreml). This document is also available at the VSN International
website. For additional resources, we encourage you to visit https://asreml.kb.vsni.co.uk/article-
categories/asreml-r-resources/.

1.2.3 Using this manual

Users may find the introductory sections of Chapter 3 useful before reading further. This gives an
introduction to analysis in ASReml-R using an example from the literature and covers some common
tasks from creating a data frame to setting initial values for variance components. An introduction
to the theory that underpins the methods in ASReml-R is covered in Chapter 2.

Variance modelling is a complex aspect of linear mixed modelling. Chapter 4 gives details of variance
modelling in ASReml-R. You should refer to this chapter if you wish to fit more complex variance
models. Chapter 5 describes the inclusion of known variance structures, such as those from ancestral
pedigree information, in the model fitting process.

Prediction from the fitted linear mixed model is discussed in Chapter 6. In Chapter 7 you will find a
wide range of additional worked examples. In the Appendixes, tables with descriptions and details
of some options of functions and modules are presented with further relevant details.

Once ASReml-R is loaded, the data sets can be directly accessed via their names due to the LazyData
characteristics of the library. For example, the grass data can be accessed using:

grass

or via the conventional call with the data() function of R:

data(grass)

The first few lines of the grass data are:

head(grass)

Tmt Plant y1 y3 yb y7 y10

1 MAV 121.0 39.7 47.0 53.0 55.0
2 MAV 2 32.0 59.5 63.5 65.0 67.6
3 MAV 3 35.5 54.6 58.0 61.5 61.5
4 MAV 4 33.5 41.0 48.0 57.0 58.0
5 MAV 5 31.5 45.3 62.0 104.0 104.0
6 MAV 6 27.0 43.3 56.4 74.5 62.0

10

https://asreml.kb.vsni.co.uk/article-categories/asreml-r-resources/
https://asreml.kb.vsni.co.uk/article-categories/asreml-r-resources/

Chapter 1. Introduction

1.3 Data sets used
Below we list the data sets used in this manual.

Table 1.1: Data sets available in ASReml|-R library

Name Description

binnor Footrot scores on lambs

coop Coopworth lamb data

ebay Ebay bids

grass Plant height disease study (multivariate form)
grassUV Plant height disease study (univariate form)
harvey Weights of Hereford cattle

harvey.ped Pedigree of Hereford cattle

harveyg.ped
lamb

Pedigree of Hereford cattle (with genetic groups)
Footrot counts on lambs

met Raw wheat data from 8 locations with spatial information
naf Barley study (naf)

naf31H Marker scores barley study (naf)

naf32H Marker scores barley study (naf)

nassau Loblolly pine clone trial

nassau.grm
nassau.snp
nin89

Loblolly genetic relationship matrix (GRM)
Loblolly genetic marker scores
Wheat advanced breeding trial

oats Oats variety-nitrogen factorial study

orange Orange tree circumference

owt Orange wether wool trial

pixel Repeated CT scans on dogs

rats Reproductive study on rats

rice Rice resistance to bloodworms (univariate form)
riceMV Rice resistance to bloodworms (multivariate form)
shf Slate Hall farm wheat variety trial

voltage Voltage regulators

wheat Wheat variety trial

wolfinger Growth curve study on rats

11

Chapter 2

Some theory

2.1 The general linear mixed model

If y (n x 1) denotes the vector of observations, the general linear mixed model can be written as

y=Xt+Zu+te (2.1)

where 7 (p x 1) is a vector of fixed effects, X (n x p) is the design matrix of full column rank that
associates observations with the appropriate combination of fixed effects, u (¢ x 1) is a vector of
random effects, Z (n x q) is the design matrix that associates observations with the appropriate
combination of random effects, and e (n x 1) is the vector of residual errors.

2.1.1 Sigma parameterization of the linear mixed model

Model (2.1) is called a linear mixed model or linear mixed effects model. It is assumed

u 0| |G(oy) 0
e (55) &

where the matrices G and R, are variance matrices for u and e, and are functions of parameters
o, and o,. This requires that the random effects u and residual errors e are uncorrelated. The
variance matrix for y is then of the form

var(y) = ZG(og4)Z' + Ry(o,) (2.3)

which we will refer to as the sigma parameterization of the G and R variance structures, and the
individual variance structure parameters in o, and o, will be referred to as sigmas. The variance
models given by G and R, are referred to as G structures and R structures, respectively.

We illustrate these concepts using the simplest linear mixed model, that is, the one-way classifica-
tion.

12

Chapter 2. Some theory

Example 2.1. A simple example. Consider a one-way classification comprising a single random
effect u, and a residual error term e. The two random components of this model, namely uw and
e, are each assumed to be independent and identically distributed (IID) and to follow a Normal
distribution such that u ~ N(0,021,) and e ~ N(0,021I,), where I, and I,, are identity matrices
of dimension ¢ and n, respectively. Hence the variance of y has the form

var(y) = 02ZZ' + 0’1, (2.4)
This model has two variance structure parameters or sigmas: the variance component o2 associated

with u, and the variance component o2 associated with e. Mapping this equation back to 2.3, we
have oy = 02, G(o,) = 021,, 0, = 0%, and R,(0,) = 021 ,.

2.1.2 Partitioning the fixed and random model terms

Typically, 7 and u are composed of several model terms, that is, 7 can be partitioned as 7 =

[7! ... 7}]" and u can be partitioned as u = [u] ... u]’, with X and Z partitioned conformably as

X=[X,.. X Jand Z=1[Z,...Z)).

2.1.3 G structure for the random model terms

. _ we i . . wri
For w partitioned as u u’1 u/b ' we impose a direct sum structure on the matrix G, written

Gy 0 ... 0 0
0 Gy 0 0
G=a" G =| : : - : :
0 0 ... Gy_1 O
0 0 ... 0 Gy

where @ is the direct sum operator, each G; is of size ¢; and ¢ =), ¢;.

The default assumption is that each random model term generates one component of this direct
sum (then ¥ = b and var(u;) = G; for i = 1...b). This means that the random effects from any
two distinct model terms are uncorrelated. However, in some models, one component of G may
apply across several model terms, for example, in random coefficient regression where the random
intercepts and slopes for subjects are correlated. To accommodate these cases, one component of
G may apply across several model terms (then b’ < b).

Example 2.2. Variance components mixed models. Building example 2.1 to a linear mixed model
with more than one (b > 1) random effect (typically known as a variance components mixed model),
the random effects u; in u, and the residual errors e, are assumed pairwise uncorrelated and to
each be normally distributed with mean zero and variance given by

var(w;) = o I,

13

Chapter 2. Some theory

and

var(e) = oI,

where I, and I,, are identity matrices of dimension ¢; and n, respectively. In this case

b
var(y) = ZagiZZ—Z;—FUgIn (2.5)
i=1

2.1.4 Partitioning the residual error term

As for the fixed and random model terms, it is often useful or appropriate to consider a partitioning
of the vector of residual errors e according to some conditioning factor. We use the term section
to describe this partitioning and the most common example of the use of sections in e is when we
wish to allow sections in the data to have different variance structures. For example, in the analysis
of multi-environment trials (METs) it is natural to expect that each trial will require a separate
(possibly spatial) error structure. In this case, for s sections we have e = [€],€],..., €’] assuming
that the data vector is ordered by section, and where e; represents the vector of errors for the gt
section.

2.1.5 R structure for the residual error term

!/

']’ we allow the matrix R, to have a similar direct sum

For e partitioned as e = [e],é€),... e
structure formed by s sections, with

R, 0 0 0
0 R, 0 0
R, = &Ry, = : : :
0 0 R, , 0
0 0 0 R,

for s > 1 sections and the data ordered by section. Note that it may be necessary to re-order (re-
number) the data units in order to achieve this structure. In ASReml-R it is easy and straightforward
to apply possibly different variance structures to each component of R,.

In many cases, the residual errors (e) can be expected to share a common variance structure. In
this case there is only one section (s = 1).

Typically a variance structure is specified for each random model term and often more complex
models than the simple [ID model are specified. ASReml-R offers a wide range of variance models
to choose from. A full listing is in Table C.1 and details are provided in Chapter 4.

14

Chapter 2. Some theory

2.1.6 Gamma parameterization for the linear mixed model

The sigma parameterization of model (2.3) is one possible parameterization of var(y). In this pa-
rameterization both G(o4) and R, (0,) are variance matrices and the variance structure parameters
in o, and o, are referred to as sigmas. Other parameterizations are possible and are sometimes
useful. For example, in some of the early development of REML for the traditional mixed model of
(2.5), the variance matrix was parameterized as the equivalent model

b
var(y) = o2 (Z SIVAVARS In> (2.6)

where 4, is the ratio of the variance component for the random term wu; relative to error variance,
that is, 74, = 02, /oZ. In this case, ASReml-R calculated a simple estimate of o2 and initial values
for the iterative process were specified in terms of the ratios 7, rather than in terms of the variance
components 072”. It was often easier to specify initial values in terms of these ratios rather than the
variance components which is why this approach was adopted. Where R, (o) can be written as a
scaled correlation matrix, that is, R,(o,) = 02R.(7,),. This suggests the alternative specification

of (2.2)
u 0
e} ((e]-) &

where 7, and -, represent the variance structure parameters associated with scaled (by 0?) variance
matrices.

G(v,) 0

2
c 0 RC (77")

In this case

varly) = of (2G(v,)Z' + Re(v,)) (2.8)

which we will refer to as the gamma parameterization, and the individual variance structure pa-
rameters in v, and v, will be referred to as gammas. ASReml-R switches between the sigma and
gamma parameterizations for estimation. This is discussed further in Section 4.7.

ASReml-R uses either the gamma or sigma parameterization for estimation depending on the residual
specification. The current default for univariate, single section data sets is the gamma parameter-
ization. In this case, all scale parameters are estimated as a ratio with respect to the residual
variance, o2, and any parameters that measure only correlation are unchanged. See Chapter 4 for
more detail.

2.1.7 Parameter types
Each sigma in o, and o, and each gamma in 7, and «, has a parameter type, for example, variance

components, variance component ratios, autocorrelation parameters, and/or factor loadings. Fur-
thermore, the parameters in o4, oy, 7, and 7, can span multiple types. For example, the spatial

15

Chapter 2. Some theory

analysis of a simple column trial would involve variance components (sigma parameterization) or
variance component ratios (gamma parameterization) and spatial autocorrelation parameters.

2.1.8 Variance structures for the random model terms

The random model terms w; in u define the random effects and associated design matrices, Z; € Z,
but additional information is required before the model can be fitted. This extra step involves
defining the G structure for each term. In ASReml-R, this is achieved by using functions to directly
apply variance models to the individual component factors in a random model term to define
G;. This approach produces a consolidated model term that simultaneously defines both the design
matrix (Z;) and variance model (G;). This process is described in detail in Chapter 4 with examples.

2.1.9 Variance models for terms with several factors

A random model term may comprise either a single factor or several component factors to give a
compound model term. Consider a compound model term represented by A:B, where the component
factors A and B have a and b levels, respectively. The vector u ,,, for the term A:B is generated with
the levels of B nested within the levels of A, that is, the levels of B cycling fastest:

— !/
= (U, Upgs oo Uy, Ugyy Uggy e Ugyse ey Uy Uygs - - - Ugh)

To illustrate the variance structure clearly, let u,, be the vector with b elements containing effects
for the ith level of A and u,, be the vector with a elements containing effects for the kth level of B.
Now consider the variance model for the term A:B. Let X, = [a;;] be an a x a symmetric variance
matrix and let ¥, = [b;;] be a b x b symmetric variance matrix. The assumption of separability
(for example, Gelfand et al. (2010)) suggests modelling the variances using cov(u,,, ug 5)as a3,
This model is called separable as we have factorized the covariances into terms dependent on factor
A (a;5) and on factor B (X,). We find

2uAB - Ua’r(uAB) = 2A®2B

(see next section for the mathematical definition of a direct product structure ®), and
cov(Uik, uji) = aij X by

The latter is easily obtained by constructing cov(u,, u;) = a;;X, and then extracting the (k,l)th
term a;;by;. Two simple examples are:

16

Chapter 2. Some theory

o Y,z =1, ®3%, where ¥ has an unstructured form. This means that the elements of u,,
are IID N (0, X). This model is widely used in the analysis of multivariate data.

o Y,z =2, ®I, where ¥, represents a first order autoregressive process. This means that
the elements of u,, are IID realisations of this process. This model is used widely in the
analysis of field trial data to model the spatial trend in one direction.

Example 2.3. A simple separable structure. If factor A has 3 levels and B has 2 levels, then the
vector u ,, for the term A:B would be

_ !/
uAB - (ull’ u127 u217 u227 u317 U32)

Let ¥,,, =¥, ® 3, where

ail a2 as
EA = a21 agy 423 and 23 =
azy asz2 ass

bii b1z
ba1 b2

If w,, is the set of effects in u,, for level 1 of B and u ,, is the set of effects in u,,, for level 2
of B, then cov(u,,,u’) = var(u,,) = b,,%, and cov(u,,,u’,,) = b,3,. Similarly for u,,, u,,
and wu,;, being the combined vectors of effects for each level of A. As examples, cov(u,,,u’)
var(u, ;) = a,, X5 and cov(u,,, w.) = a,;% ;. Finally, using magenta and blue to highlight terms

associated with A and B, respectively,

cov(Us,, , Uy,) = a23 X byo

2.1.10 Direct product structures

ay, ... ay,

For the matrix A = e and a second matrix B,
Aml .- Amp

the direct product structure of A and B is written in full as

a,B ... a,,B

B ... a B

ml mp

a

As explained in the previous section, structures associated with direct product construction are
known as separable variance structures and we call the assumption that a separable variance struc-
ture is plausible the assumption of separability.

17

Chapter 2. Some theory

2.1.11 Direct products in R structures

Separable structures occur naturally in many practical situations. Consider a vector of common
errors associated with an experiment. The usual least squares assumption (and the default in
ASReml-R) is that these are independently and identically distributed (ID). However, if e was from
a field experiment laid out in a rectangular array of r rows by ¢ columns, we could arrange the
residuals as a matrix and might consider that they were autocorrelated within rows and columns.
Writing the residuals as a vector in field order, that is, by sorting the residuals by rows within
columns (plots within blocks) the variance of the residuals might then be

0’3 3 (pr) @ Be(pe)

where X,.(p,) and X.(p.) are correlation matrices for the row model (order r, autocorrelation param-
eter p,) and column model (order ¢, autocorrelation parameter p.) respectively. More specifically, a
two-dimensional separable autoregressive spatial structure (AR1 ® AR1) is sometimes assumed for
the common errors in a field trial analysis (see Gogel (1997) and Cullis et al. (1998) for examples).
In this case

1 1
Pr 1 Pe 1

S,=| 0 1 and S.=| e pe 1
Lot e e L] N 1]

Alternatively, the residuals might relate to a multivariate analysis with ¢ traits and n units and be
ordered traits within units. In this case an appropriate variance structure might be

I,®%

where 3) g g general or unstructured variance matrix. See Chapter 4 for details on specifying
separable R structures in ASReml-R.

2.1.12 Direct products in G structures

Likewise, the random model terms in «w may have a direct product variance structure. For example,
for a field trial with s sites, g varieties and the effects ordered varieties within sites, the random
model term site.variety may have the variance structure

Xl
where X (*5) is the variance matrix for sites. This would imply that the varieties are independent
random effects within each site, have different variances at each site, and are correlated across sites.

Important Whenever a random term is formed as the interaction of two factors you should consider
whether the [ID assumption is sufficient or if a direct product structure might be more appropriate.
See Chapter 4 for details on specifying separable G structures in ASReml|-R.

18

Chapter 2. Some theory

2.1.13 Range of variance models for R and G structures

A range of models are available for the components of both R and G structures. They include
correlation (C') models (that is, where the diagonals are 1), or covariance (V') models. All of these
are discussed in detail in Chapter 4.

Among the range of correlation models are:

identity (that is, independent and identically distributed with variance 1)
 autoregressive (order 1 or 2)

o moving-average (order 1 or 2)

o autoregressive-moving-average, ARMA(1, 1)

e uniform

e banded

e general correlation.

Among the range of covariance models are:

scaled identity (that is, independent and identically distributed with homogeneous variances)
o diagonal (that is, independent with heterogeneous variances)
e antedependence
e unstructured
o factor analytic
e reduced rank.
There is also the facility to define models based on genetic relationship matrices, including additive

relationship matrices generated by pedigrees or considering user-specified variance (or correlation)
matrices. Further details are presented in Chapter 5.

The combination of variance models in separable G and R structures is a difficult and important
concept. This is discussed in detail in Chapter 4.

2.2 Estimation

Consider the sigma parameterization of Section 2.1.1. Estimation involves two processes that are
closely linked. They are performed within the ‘engine’ of ASReml-R. One process involves estimation
of 7 and prediction of w (although the latter may not always be of interest) for given o4 and o,.
The other process involves estimation of these variance parameters.

19

Chapter 2. Some theory

2.2.1 Estimation of the variance parameters

Estimation of the variance parameters is carried out using residual or restricted maximum likelihood
(REML), developed by Patterson and Thompson (1971). An historical development of the theory
can be found in Searle et al. (1992). Note firstly that

y~NXT, H) (2.9)

where H = ZG(0,)Z' + R,(o,). REML does not use (2.9) for estimation of variance parameters,
but rather uses a distribution free of 7, essentially based on error contrasts or residuals. The
derivation given below is presented in Verbyla (1990).

We transform y using a non-singular matrix L = [Ly Ls] such that

L\X =1, L,X=0

vil on (|7 L'HL, L\HL,
Yo 0|’ |LLtHL, LLHL,
The full distribution of L'y can be partitioned into a conditional distribution, namely y,|y,, for

estimation of 7, and a marginal distribution based on y, for estimation of o4 and o,; the latter is
the basis of the residual likelihood.

The estimate of 7 is found by equating y; to its conditional expectation, and after some algebra
we find,

F=(X'H'X)"'X'H 'y

Estimation of the vector of variance parameters k = [0}, 0]’ is based on the log-residual likelihood,

1 _ _
g = —§(log]L'2H "Lo| + (LY HLy) 'y,)

1
= —5(log | X'H'X|+log |H| + y' Py) (2.10)
where

P=H'-H'X(X'H'X)'X'H!

Note that y' Py = (y — X#) H '(y — X#). The log-likelihood (2.10) depends on X and not on
the particular non-unique transformation defined by L.

The log-residual likelihood (ignoring constants) can be written as

20

Chapter 2. Some theory

1
lp = —5(10g|C|+log]RU\+log|G|+y’Py) (2.11)

We can also write

P = R'-R;'WC'WR!

with W = [X Z]. Letting k = [0, 0;]', the REML estimates of #; are found by calculating the
score

Ulks) = 00n/Or; = —%[tr(PHi)—y’PHiPy] (2.12)

and equating to zero. Note that H; = O0H /0k;.

The elements of the observed information matrix are

g
8/@8/@

1 1
= itr(PHij) — §tT(PHZPH])
1
+yPH,PH,;Py — 5y’PHiij (2.13)

where H;; = 82H/8/@-8/€j.

The elements of the expected information matrix I(k, k) are

g e) _ ltr(PH~PH-) (2.14)
8/%8/1]' N 2 ’ J '

Given an initial estimate x(?), an update of &, k1), using the Fisher-scoring (FS) algorithm is

kD = kO + 1(k©, k) 1y () (2.15)

where U (k(9)) is the score vector (2.12) and I(k(®), k(9)) is the expected information matrix (2.14)
of k evaluated at k().

For large models or large data sets, the evaluation of the trace terms in either (2.13) or (2.14) is
either not feasible or is very computer intensive. To overcome this problem ASReml-R uses the
Al algorithm (Gilmour et al. 1995). The average information matrix, denoted by Z4, is obtained
by averaging (2.13) and (2.14) and approximating y’'PH;; Py by its expectation, tr (PH,j) in
those cases when H;; # 0. For variance components models (those that are linear with respect to
variances in H), the terms in Z4 are exact averages of those in (2.13) and (2.14). The basic idea is
to use Za(kj, k;) in place of the expected information matrix in (2.15) to update k.

21

Chapter 2. Some theory

The elements of Z4 are

1
I_A(Ki,lij) = iy/PHZPH]Py (216)

The 74 matrix is the (scaled) residual sums of squares and products matrix of y = [y;,..., Yl
where y, is the working variate for k; and is given by

y, = HPy

H,R'e

RyiRglé, K; € Oy
= ZG,G'a, K €o,

where € =y — X7 — Zu, 7 and @ are solutions to (2.17). In this form the Al matrix is relatively
straightforward to calculate.

The combination of the Al algorithm with sparse matrix methods, in which only non-zero values
are stored, gives an efficient algorithm in terms of both computing time and workspace.

2.2.2 Estimation/prediction of the fixed and random effects

To estimate T and predict w the objective function

log fy(y |u; 7, Ry) +1og fu(u; G)
is used. This is the log-joint distribution of (Y, u).

Differentiating with respect to 7 and w leads to the mixed model equations (Robinson 1991) which
are given by

X'R;'X X'R;'z +] _ | X'Rj'y (2.17)
Z'R;'X Z'R,'Z+ G | Z'R; 'y :
These can be written as
CB=W'R,'y

where C = W/R;'W + G*, B = [+ @]’ and

., o o
e

22

Chapter 2. Some theory

The solution of (2.17) requires values for o4 and o,. In practice we replace o4 and o, by their
REML estimates 4 and o).

Note that 7 is the empirical best linear unbiased estimator (E-BLUE) of 7, while @ is the empirical
best linear unbiased predictor (E-BLUP) of w for known o4 and o,. We also note that

SR

2.3 What are BLUPs?

Consider a balanced one-way classification. For data records ordered r repeats within b treatments
regarded as random effects, the linear mixed model is y = X7 + Zu + e where X = 1, ® 1, is
the design matrix for 7 (the overall mean), Z = I, ® 1, is the design matrix for the b (random)
treatment effects u;, and e is the error vector with e ~ N(O, 0?1 +b)- Assuming that the treatment
effects are random implies that u ~ N (A1, UI?I b), for some design matrix A and parameter vector
1. It can be shown that

2 2
2 b (g~ 1) + —o s At (2.18)

u =
Tag—i-aQ

ro} + o?
where y is the vector of treatment means and .. is the grand mean. The differences of the treatment
means and the grand mean are the estimates of treatment effects if treatment effects are fixed. The

BLUP is therefore a weighted mean of the data based estimate and the prior mean A. If b = 0,
the BLUP in (2.18) becomes

2
- ro
u= b

——(y — 1y.. 2.19
A1) (219)

and the BLUP is a so-called shrinkage estimate. As rcrg becomes large relative to o2, the BLUP
tends to the fixed effect solution, while for small rag relative to o2 the BLUP tends towards zero, the
assumed initial mean. Thus (2.19) represents a weighted mean which involves the prior assumption
that all the u; have zero mean.

Note also that the BLUPs in this simple case are constrained to sum to zero. This is essentially
because the unit vector defining X can be found by summing the columns of the Z matrix. This
linear dependence of the matrices translates to dependence of the BLUPs and hence constraints.
This aspect occurs whenever the column space of X is contained in the column space of Z. The
dependence is slightly more complex with correlated random effects.

23

Chapter 2. Some theory

2.4 Inference: fixed effects

2.4.1 Introduction

Inference for fixed effects in linear mixed models introduces some difficulties. In general, the methods
used to construct F-tests in analysis of variance and regression cannot be used for the diversity of
applications of the general linear mixed model available in ASReml-R. One approach would be to
use likelihood ratio methods such as Welham and Thompson (1997), although their approach is not
easily implemented.

Wald-type test procedures are generally favoured for conducting tests concerning 7. The traditional
Wald statistic to test the hypothesis Hy : LT =1 for given L () and 1 "D, is given by

W= (L# - 1){L(X'H'X)'L'} YL+ - 1) (2.20)

and asymptotically, this statistic has a chi-square distribution on r degrees of freedom. These are
marginal tests, so that there is an adjustment for all other terms in the fixed part of the model. It
is also anti-conservative if p-values are constructed because it assumes the variance parameters are
known.

The small sample behaviour of such statistics has been considered by Kenward and Roger (1997)
in some detail. They presented a scaled Wald statistic, together with an F-approximation to its
sampling distribution which they showed performed well in a range (though limited in terms of the
range of variance models available in ASRemlI-R) of settings.

In the following sections we describe the facilities currently available in ASReml-R for conducting
inference concerning terms which are in the dense fixed effects model component of the general linear
mixed model. These facilities are not available for any terms in the sparse model. These include
facilities for computing two types of Wald statistics and partial implementation of the Kenward and
Roger adjustments.

2.4.2 Incremental and conditional Wald statistics

The basic tool for inference is the Wald statistic defined in equation (2.20). However, there are
several ways L can be defined to construct a test for a particular model term, two of which are
available in ASReml-R. An F-statistic is obtained by dividing the Wald statistic by r, the numerator
degrees of freedom. In this form it is possible to perform an approximate F-test if we can deduce
the denominator degrees of freedom. For balanced designs, these Wald F'-statistics are numerically
identical to the F-tests obtained from the standard analysis of variance.

The first method for computing Wald statistics (for each term) is the incremental form. For this
method, Wald statistics are computed from an incremental sum of squares in the spirit of the
approach used in classical regression analysis (see, Searle 1971). For example, if we consider a
very simple model with terms relating to the main effects of two qualitative factors A and B, given
symbolically by

y~1+A+B

24

Chapter 2. Some theory

where 1 represents the constant term (u), then the incremental sums of squares for this model can
be written as the sequence

R(1)
R(A]l) = R(1,A)— R(1)
R(B|1,A) = R(1,A,B)— R(L,A)

where the R(-) operator denotes the reduction in the total sums of squares due to a model containing
its argument and R(:|-) denotes the difference between the reduction in the sums of squares for any
pair of (nested) models. Thus R(B|1, A) represents the difference between the reduction in sums of
squares between the maximal model

y~1+A+B
and
y~14+A

Implicit in these calculations is that

o we only compute Wald statistics for estimable functions (Searle 1971, 408),
 all variance parameters are held fixed at the current REML estimates from the maximal model.

In this example, it is clear that the incremental Wald statistics may not produce the desired test
for the main effect of A, as in many cases we would like to produce a Wald statistic for A based on

R(A|1,B) = R(1,A,B) — R(1,B)

The issue is further complicated when we invoke marginality considerations. The issue of marginality
between terms in a linear (mixed) model has been discussed in much detail by Nelder (1977). In this
paper the author defines marginality for terms in a factorial linear model with qualitative factors, but
later Nelder (1994) extended this concept to functional marginality for terms involving quantitative
covariates and for mixed terms which involve an interaction between quantitative covariates and
qualitative factors. Referring to our simple illustrative example above, with a full factorial linear
model given symbolically by

y~1+A+B+A:B

then A and B are said to be marginal to A:B, and 1 is marginal to A and B. In a three way factorial
model given by

y~1+4A+B+C+A:B+A:C+B:C+A:B:C

25

Chapter 2. Some theory

the terms A, B, C, A:B, A:C and B:C are marginal to A:B:C. Nelder (1977) and Nelder (1994)
argue that meaningful and interesting tests for terms in such models can only be conducted for those
tests which respect marginality relations. This philosophy underpins the following description of the
second Wald statistic available in ASReml-R, the so-called conditional Wald statistic. This method
is invoked by specifying ssType = "conditional" in wald(). ASReml-R attempts to construct
conditional Wald statistics for each term in the fixed dense linear model so that marginality relations
are respected. As a simple example, for the three-way factorial model the conditional Wald statistics
would be computed as

Term Sums of Squares M code

1 R(1) .

A R(A | 1,B,C,B:C) = R(1,A,B,C,B:C) - R(1,B,C,B:C) A

B R(B | 1,A,C,A:C) = R(1,A,B,C,A:C) - R(1,A,C,A:C) A

C R(C | 1,A,B,A:B) = R(1,A,B,C,A:B) - R(1,A,B,A:B) A

A:B R(A:B | 1,AB,C,A:C,B:C) = R(1,A,B,C,A:B,A:C,B:C) - R(1,A,B,C,A:C,B:C) B

A:C R(A:C | 1,A,B,C,A:B,B:C) = R(1,A,B,C,A:B,A:C,B:C) - R(1,A,B,C,A:B,B:C) B

B:C R(B:C | 1,A,B,C,A:B,A:C) = R(1,A,B,C,A:B,A:C,B:C) - R(1,A,B,C,A:B,A:C) B
A:B:C R(A:B:C| 1,A,B,C,A:B,A:C,B:C) = R(1,A,B,C,A:B,A:C,B:C,A:B:C) -

R(1,A,B,C,A:B,A:C,B:C) C

Of these the conditional Wald statistic for the 1, B:C and A:B:C terms would be the same as the
incremental Wald statistics produced using the linear model

y~1+A+B+C+A:B+A:C+B:C+A:B:C

The preceding table includes a marginality or M code column reported when conditional Wald
statistics are requested. All terms with the highest M code letter are tested conditionally on all
other terms in the model, that is, by dropping the term from the maximal model. All terms with
the preceding M code letter are marginal to at least one term in a higher group, and so forth. For
example, in the table, model term A:B has M code B because it is marginal to model term A:B:C
and model term A has M code A because it is marginal to A:B, A:C and A:B:C. Model term mu (M
code .) is a special case in that it is marginal to factors in the model but not to covariates.

Consider now a nested model which might be represented symbolically by

y ~ 1 4 Region + Region : Site

For this model, the incremental and conditional Wald tests will be the same. However, it is not
uncommon for this model to be specified as

y ~ 1+ Region + Site

with Site identified across Region rather than within Region. Then the nested structure is hidden
but ASReml-R will still detect the structure and produce a valid conditional Wald F-statistic. This
situation will be flagged in the M code field by changing the letter to lower case. Thus, in the nested
model, the three M codes would be ., A and B because Region:Site is obviously an interaction
dependent on Region. In the second model, Region and Site appear to be independent factors
so the initial M codes are ., A and A. However they are not independent because Region removes
additional degrees of freedom from Site, so the M codes are changed to ., a and A.

26

Chapter 2. Some theory

We advise users that the aim of the conditional Wald statistic is to facilitate inference for fixed
effects. It is not meant to be prescriptive nor is it foolproof for every setting.

The Wald statistics are collectively returned by wald(). The basic table includes the numerator
degrees of freedom (denoted vy;) and the incremental Wald F-statistic for each term. To this is
added the conditional Wald F-statistic and the M code if ssType = "conditional".

2.4.3 Kenward and Roger adjustments

In moderately sized analyses, ASReml-R can also calculate the denominator degrees of freedom
(denDF, denoted by rg;, Kenward and Roger (1997)) and a probability value if these can be com-
puted. They will be for the conditional Wald F-statistic if it is reported. The denDF argument of
wald() controls the suppression (denDF = "none") or the use of a particular algorithmic method:
denDF = "numeric" for numerical derivatives or denDF = "algebraic" for algebraic derivatives.
The value in the probability column is computed from an F, , ,,, reference distribution. When the
denDF is not available, it is possible, though anti-conservative, to use the residual degrees of freedom
for the denominator.

Kenward and Roger (1997) pursued the concept of construction of Wald-type test statistics through
an adjusted variance matrix of #. They argued that it is useful to consider an improved estimator
of the variance matrix of # which has less bias and accounts for the variability in estimation of the
variance parameters. There are two reasons for this; firstly, the small sample distribution of Wald
tests is simplified when the adjusted variance matrix is used; secondly, if measures of precision are
required for 7 or effects therein, those obtained from the adjusted variance matrix will generally
be preferred. Unfortunately, for ASReml-R the Wald statistics are currently computed using an
unadjusted variance matrix.

2.4.4 Approximate stratum variances

The stratumVariances method generated after running wald() returns approximate stratum vari-
ances and degrees of freedom for simple variance components models.

For the linear mixed effects model with variance components (setting 0'?{ = 1) where G = @3:17]‘ Iy,
it is often possible to consider a natural ordering of the variance component parameters including
o2. Based on an idea due to Thompson (1980), ASReml-R computes approximate stratum degrees of
freedom and stratum variances by a modified Cholesky diagonalisation of the expected (or average)
information matrix. That is, if F' is the average information matrix for the vector o, let U be an
upper triangular matrix such that F = U'U. Further we define

U.=D.U

where D, is a diagonal matrix whose elements are given by the inverse elements of the last column
of U i.e. deyj = 1/ujp,i =1,...,7. The matrix U, is therefore upper triangular with the elements
in the last column equal to 1. If the vector o is ordered in the natural way, with o2 being the last
element, then we can define the vector of so called pseudo stratum variance components by

27

Chapter 2. Some theory

E=U.o

Thence

var(€) = D?

The diagonal elements can be manipulated to produce effective stratum degrees of freedom Thomp-
son (1980) viz

Vv; = 2512/612

cit

In this way the closeness to an orthogonal block structure can be assessed.

2.5 Inference: random effects

2.5.1 Tests of hypotheses: variance parameters

Inference concerning variance parameters of a linear mixed effects model usually relies on approxi-
mate distributions for the (RE)ML estimates derived from asymptotic results.

It can be shown that the approximate variance matrix for the REML estimates is given by the inverse
of the expected information matrix (Cox and Hinkley 1974, 4.8). Since this matrix is not available
in ASReml-R we replace the expected information matrix by the Al matrix. Furthermore, the REML
estimates are consistent and asymptotically Normal, though in small samples this approximation
appears to be unreliable.

A general method for comparing the fit of nested models fitted by REML is the REML likelihood
ratio test, or REMLRT. The REMLRT is only valid if the fixed effects are the same for both models.
In ASReml-R this requires not only the same fixed effects model, but also the same parameterization.

If /Ry is the REML log-likelihood of the more general model and ¢g; is the REML log-likelihood of
the restricted model (that is, the REML log-likelihood under the null hypothesis), then the REMLRT
is given by

D= 210g(€Rg/€R1) =2 [log(ﬁRg) — log(€Rl)] (2.21)

which is strictly positive. If r; is the number of parameters estimated in model i (i = 1,2), then
the asymptotic distribution of the REMLRT, under the restricted model is x2,_,. .

The REMLRT is implicitly two-sided, and must be adjusted when the test involves a hypothesis
with the parameter on the boundary of the parameter space. It can be shown that for a single
variance component, the theoretical asymptotic distribution of the REMLRT is a mixture of y?
variates, where the mixing probabilities are 0.5, one with 0 degrees of freedom (spike at 0) and the
other with 1 degree of freedom. The approximate p-value for the REMLRT statistic (D), is 0.5(1-
Pr(x? < d)) where d is the observed value of D. This has a 5% critical value of 2.71 in contrast to

28

Chapter 2. Some theory

the 3.84 critical value for a x? variate with 1 degree of freedom. The distribution of the REMLRT
for the test that k variance components are zero, or tests involved in random regressions, which
involve both variance and covariance components, involves a mixture of y? variates from 0 to k
degrees of freedom. See Self and Liang (1987) for details.

Tests concerning variance components in generally balanced designs, such as the balanced one-way
classification, can be derived from the usual analysis of variance. It can be shown that the REMLRT
for a variance component being zero is a monotone function of the F' statistic for the associated
term.

To compare two (or more) non-nested models we can evaluate the Akaike Information Criteria
(AIC) or the Bayesian Information Criteria (BIC) for each model. These are given by

AIC = —20p; + 2t;
BIC = —2lp;+t;logv (2.22)

where t; is the number of variance parameters in model ¢ and v = n — p is the residual degrees
of freedom. AIC and BIC are calculated for each model and the model with the smallest value is
chosen as the preferred model.

2.5.2 Diagnostics

In this section we will briefly review some of the diagnostics that have been implemented in ASReml-
R for examining the adequacy of the assumed variance matrix for either R or G structures, or for
examining the distributional assumptions regarding e or u. Firstly, we note that the E-BLUP of
the residual vector is given by

e = y—WB
= R,Py (2.23)

It follows that

E@E = 0
var(é) = R,—-WC'W’

The matrix WC™!W’ (under the sigma parameterization) is the so-called extended hat matrix.
ASReml-R includes the ¢? in this hat matrix under the gamma parameterization. It is the linear
mixed effects model analogue of 02 X (X’X)~! X’ for ordinary linear models. The diagonal elements
are returned in the hat component of the asreml object.

If aom = TRUE in the call to asrem1 () (aom = TRUE can also be set in asreml.options()), ASReml-
R returns

29

Chapter 2. Some theory

e G '@ and G’_lﬁ/diag\/G'_1 — G7'C??G™! as a two-column matrix

« R 'éand R;lé/diag\/R;1 — R,'WC'W'R,! as a two-column matrix.

Note aom = TRUE has not been validated for multivariate models or factor analytic models with
zero specific variances.

2.56.3 Variogram

The variogram has been suggested as a useful diagnostic for assisting with the identification of
appropriate variance models for spatial data (Cressie 1991). Gilmour et al. (1997) demonstrate its
usefulness for the identification of the sources of variation in the analysis of field experiments. If
the elements of the data vector (and hence the residual vector) are indexed by a vector of spatial
coordinates, s;,7 = 1,...,n, then the ordinates of the sample variogram are given by

1 N o ..
vij = = [6i(si) —&(s)]” dj=1,...,n5 i#]

2
The sample variogram is calculated from the triple (I;;1,lij2,vij) where ;1 = [s;1 — sj1| and
lijo = |si2 — sj2| are the absolute displacements. As there will be many v;; with the same dis-

placements, ASReml-R calculates the means for each absolute displacement pair l;;1,l;j2 in which
case the function plot () displays the vector (l;1,lij2,v;;) as a perspective plot of the one or two
surfaces indexed by the absolute displacement group. In this case, the two directions may be on
different scales.

If the coordinates do not form a complete lattice, the varioGram() method can be used to form
variograms based on polar coordinates. Given a coordinate system (x,y), a response vector z
(from the resid() method, say), a vector of directions and a strategy for binning distances,
asreml_varioGram() will return a data frame of variogram estimates indexed by direction and
distance suitable for a trellis plot.

ASReml-R also computes the variogram from predictors of random effects which appear to have
a variance structure defined in terms of distance. The coordinates can be accessed using the
varioGram() function, see the ASReml-R Package Reference https://asreml.kb.vsni.co.uk/article-
categories/asreml-r-resources/for details.

30

https://asreml.kb.vsni.co.uk/article-categories/asreml-r-resources/
https://asreml.kb.vsni.co.uk/article-categories/asreml-r-resources/

Chapter 3

Fitting the mixed model

This chapter begins with a brief introduction covering data frame preparation, fitting the linear
model and the fitted asreml object. This is followed by a detailed description of the asreml ()
function call and some technical details of model fitting, including the treatment of missing values
and setting initial values for variance parameters. The basic concepts are illustrated using a real
example and pointers to following chapters are given. For consistency, the same data are also used
for illustration in later chapters where possible.

Advanced topics such as models for variance components or genetic models are considered in later
chapters. Chapter 7 gives a lengthy set of additional worked examples.

3.1 The data frame

Data for analysis using ASReml-R are generally contained in a text file or a spreadsheet and are
read into a data frame using the appropriate R functions. Variates and factors in the data frame
are then resolved through the data argument of the asreml () function call.

Six rows of the NIN field trial data (available via data(nin89)) are reproduced below. Note that
the data are in field order (rows within columns) and a header line (first row) is included. In this
case there are 11 comma-separated data fields (Variety...Column) and the complete file has 242
data rows, one for each variety in each replicate.

Variety Id pid raw Rep nloc yield lat long Row Column

16 LANCER 1 1101 585 1 4 29.25 4.3 19.2 16 1
17 BRULE 2 1102 631 1 4 31.55 4.3 20.4 17 1
18 REDLAND 3 1103 701 1 4 35.05 4.3 21.6 18 1
19 CODY 4 1104 602 1 4 30.10 4.3 22.8 19 1
20 ARAPAHOE 5 1105 661 1 4 33.05 4.3 24.0 20 1
21 NE83404 6 1106 605 1 4 30.25 4.3 256.2 21 1

31

Chapter 3. Fitting the mixed model

This is typical of the required format: a matrix of observations with a row for each sampling unit
and columns containing variates, covariates, factors, weights and identities in any convenient order.
An optional, though recommended, header line can be used to name the data columns and missing
values are denoted by NA.

A data frame is internally created from a text file source using an R function call like:

nin89 <- read.table(file = "/path/nin89.csv", header = TRUE, sep = ",")

Consult the R documentation for a detailed description of importing data, but some general points
to note are:

o Blank lines are ignored.

o It is sensible to include a header line in the data file; if no header line is included, the columns
are labelled V'1...V,, where n is the number of columns.

e The same column name should not be repeated. The numerals 1, 2, etc. are appended to
subsequent repeated column labels.

e NA is the default code for missing values.

o In comma-separated text (.csv) files:

— Consecutive commas imply a missing value.

— Provided the number of fields is consistent, a line beginning (ending) with a comma will
generate NA for that observation in the first (last) variate or a zero length string if a text
field.

e Blanks may be embedded in text fields provided the field delimiter is not also the space
character, otherwise the string must be enclosed in quotes.

e Too many or too few data fields on a line will cause an error.

Character fields such as Variety above are not always converted to factors with read.table().
However, numeric fields such as Rep remain as variates so that the user must manually convert
numeric fields into factors as required.

The utility function asreml.read.table () offers a convenient alternative. This function reads data
from a text file and automatically converts variates whose names begin with a capital letter in the
header line into factors. So, for the NIN data we have

nin89 <- asreml.read.table(file = "/path/nin89.csv", header = TRUE, sep = ",")

which creates a data frame in which pid, raw, nloc, yield, lat and long are variates, but Variety,
I4d, Rep, Row and Column are factors. This is equivalent to the sequence

32

Chapter 3. Fitting the mixed model

nin89 <- read.table(file = "/path/nin89.csv", header = TRUE, sep = ",")
nin89$Id <- as.factor(nin89$Id)

nin89%Rep <- as.factor(nin89$Rep)

nin89%Row <- as.factor (nin89$Row)

nin89$Column <- as.factor(nin89$Column)

3.2 Introducing the asreml () function call

A complete asreml () function call for a simple randomized complete block (RCB) design analysis
of the NIN yield data are

nin89.asr <- asreml(
fixed = yield ~ Variety,
random = ~idv(Rep),

residual = ~idv(units),
na.action = na.method(x = "include"),
data = nin89

where nin89. asr is the name we have chosen for the returned object, and idv () is the homogeneous
identify variance structure (assumed by default). The key elements of this call are outlined below
while the components of the returned object are described in Section 3.3.

3.2.1 Model formulae: specifying the linear mixed model

The linear model is specified in the fixed (required), random (optional) and residual (optional
error component) arguments as formula objects. A third optional model argument sparse is also
available but is not used explicitly (see also Section 3.11) in this example.

The fixed terms in the model are specified as a formula with the response on the left of a ~ operator
and the terms separated by + operators on the right. In this case Variety is a fixed factor in a
model for the response variate yield so that the fixed argument is given as

nin89.asr <- asreml(
fixed = yield ~ Variety,

The random terms in the model are specified as a formula. However, unlike the fixed formula there
is no response on the left of the ~ operator. In this example Rep is a random term so the random
argument is

33

Chapter 3. Fitting the mixed model

nin89.asr <- asreml(
L

random = ~idv(Rep),

The residual or error component of the model is specified in a formula object through the residual
argument. The default is a simple error term representing independent and identically distributed
(1ID) effects and does not need to be formally specified (as this is assumed by default). However, a
special factor units defined as factor(seq(1, n)) where n is the number of observations (rows), is
always automatically generated by asreml (), so that the default error model in this case could be
specified explicitly in the call as

nin89.asr <- asreml(
.

residual = ~idv(units),

3.2.2 Finding the data

The data argument to asreml() is an optional, though strongly recommended, argument that
identifies a data frame containing the variables named in the model specification. The data frame is
nin89 in our current example. If the data argument is missing then ASReml-R attempts to obey the
usual rules for resolving variate names, however, this is not always possible in complex situations
with certain special model functions.

3.3 Components of the fitted model: the asreml object

A call to asreml () produces an object of class asreml which contains numerous components of the
fit, some of these are

The REML log-likelihood.

o Best linear unbiased predictors (BLUPs) of the random effects.

o Generalized least squares estimates of the fixed effects (or BLUEs).
e REML estimates of variance components.

o (optionally) Part of the inverse coefficient matrix.

e The inverse of the average information matrix.

¢ Residuals and fitted values from the linear model.

34

Chapter 3. Fitting the mixed model

A complete description of the components of an asreml output object is given in the ASReml-R
Package Reference which is a pdf version of the ASReml-R help pages obtained in R by typing
help(asreml).

3.3.1 Methods and related functions

Specific instances of the standard extractor functions coef(), resid() and fitted() exist, as
do summary (), plot() and predict() (see Chapter 6) methods. Also an anova type method is
implemented by wald() (see Section 3.14).

The summary () function returns a list with a range of components. The variance components are
returned with

summary (nin89.asr) $varcomp

and the coefficients from the fixed, random and sparse parts of the model are available in the
coef.fixed, coef.random and coef.sparse components, respectively. For example, the fixed
effects for Variety are given by

summary (nin89.asr, coef = TRUE)$coef.fixed

3.4 A note on data order

The observations must be presented in the order specified by the error model, that is, the value of the
residual argument. The assumption of separability is implicit in the use of the colon operator (:).
Furthermore, the sort order outer:inner of the observations is implied by the order of appearance
of the factors in the residual formula. In the case, for example, where

residual = ~arilv(Column) :aril(Row)

the data are assumed to be sorted as rows within columns. Note that if the sort order of observations
is incorrect an error is generated.

3.5 Fixed terms

3.5.1 Dense fixed terms

The fixed model formula specifies the response, fixed factors, interactions and covariates for which
standard errors and tests of significance are required. These terms may also include those specified
by the relevant model functions from Appendix B.1. The fixed formula must contain at least one
term which may simply be the intercept. By default the intercept is included in the fixed model;
for example,

35

Chapter 3. Fitting the mixed model

asreml (
fixed = y ~ Variety,

includes an intercept plus the main effects for Variety. To specify a model with no overall mean,
include a -1 after ~ in the list of primary fixed terms, for example, use

asreml (
fixed = y ~ -1 + Variety,

An intercept-only fixed model is specified by including only a 1 after ~, for example,

asreml (
fixed =y ~ 1,

Terms can be modified or generated by special model functions such as 1in(). For example, to
include a linear (single degree of freedom) effect of Row (a factor with 22 levels) use

asreml(
fixed = y ~ lin(Row),

Model functions also exist to generate orthogonal polynomials (pol () and leg()) or splines (sp1())
and to fit terms conditionally (at (); see Appendix B.1 and Section 3.7). Note that argument fixed
is the only model formula where the response may be specified.

3.5.2 Sparse fixed terms

The sparse argument specifies those covariates, factors and interactions for which standard errors
and tests of significance are not required or not desired. These effects are estimated using sparse
matrix methods that typically require fewer memory resources and less execution time. ASReml-R
automatically includes in the sparse component the missing values defined with a factor named mv.
This is a reserved word and should not be used to label variates or factors.

3.5.3 Covariates

For analysis purposes it is recommended that covariates be centred and rescaled to have a mean
of 0 and a variance of 1 to avoid failure by potential singularities. In addition, missing values in

36

Chapter 3. Fitting the mixed model

covariates are replaced with zeros so it is important in these circumstances to centre the covariate
in question. For example, the command

nin89%linrow2 <- scale(as.numeric(nin89$Row), center = TRUE, scale = FALSE)

could be used to create a mean centred row covariate. Care should also be exercised when scaling
variates for use in random coefficient or spline models.

3.6 Random terms

The random model formula specifies the factors, interactions, covariates and special terms that
comprise the random component of the model. All of these effects are estimated using sparse
matrix methods. Each random term will have a variance model associated with it which, when
no variance model function is specified, defaults to a scaled identity ~I, or oI, where v is a
variance ratio, depending on whether a sigma or gamma parameterization is used for fitting. This
is equivalent to idv() and further details are presented in {sec:var}.

3.6.1 Initial values and constraints for variance parameters

Initial values and constraints for variance parameters are held in list objects that represent the
structure of the error variance matrix (referred to as R structures in this manual and denoted R
algebraically, see Chapter 4) and the variance matrix for the other random terms in the model
(referred to as G structures and denoted G algebraically). Initial values are for the parameters
being fitted so they depend on the parameterization used. The default initial values are 0.1 for
variance ratios (when parameters are estimated using the gamma parameterization) and 0.1 % v for
variance components (when parameters are estimated using the sigma parameterization), where v
is half the raw variance of the response. Using both parameterizations correlations are assumed to
have a starting value of 0.1. The corresponding default parameter constraints are P (positive) for
variance component ratios, U (unconstrained) for correlations and P for variance components.

For example, in the simple RCB field trial analysis
nin89.asr <- asreml(

fixed = yield ~ Variety,
random = ~idv(Rep),

residual = ~units,
na.action = na.method(x = "include"),
data = nin89

the gamma parameterization is used and a single variance component ratio is estimated for the
random Rep term using an initial starting value of 0.1 and default constraint of P (that is, the
parameter is constrained to be positive).

37

Chapter 3. Fitting the mixed model

The default starting values and boundary constraints may not be either adequate or appropriate in
all circumstances. There are two ways to alter the starting values and constraints from their default
state, both of which rely on exporting the internally generated names of the variance components
along with their values and constraints to an R object or external text file. The G.param and
R.param arguments are used to subsequently overwrite the default initial values and constraints in
an analysis. An initial value object is created by setting the start.values argument to asreml ().

3.6.2 Replacing elements in an internal object
As an example, to set a different initial value for the Rep component, the call

nin89.start <- asreml(
fixed = yield ~ Variety,
random = ~idv(Rep),
residual = ~units,
na.action = na.method(x = "include"),
data = nin89,
start.values = TRUE

returns a list object nin89.start with components G.param, R.param and vparameters.table
The first two components are list objects while vparameters.table is a data frame containing the
parameter names, their initial values and boundary constraints.

(iv <- nin89.start$vparameters.table)

Component Value Constraint
1 Rep!Rep 0.1 P
2 units!R 1.0 P

Elements of this table can be set by the usual R replacement methods. The new initial value for
Rep (specified as 0.5) can be used in asreml () with the G.param argument. That is,

iv$Value[1] <- 0.5
nin89.asr <- asreml(
fixed = yield ~ Variety,
random = ~idv(Rep),
residual = ~units,
na.action = na.method(x = "include"),
data = nin89,
G.param = iv

38

Chapter 3. Fitting the mixed model

3.6.3 Editing an external text file

An alternative is to specify a filename as the value of the start.values argument. This creates
a comma-separated text file version of vparameters.table, with a header line and columns con-
taining the component name and its initial state. After editing this file, the revised initial values or
constraints can be used similarly to the above by specifying the text file name as the value of the
G.param argument. For example, the following call creates a comma-separated text file (filename)
for editing

nin89.start <- asreml(
fixed = yield ~ Variety,
random = ~idv(Rep),
residual = ~units,
na.action = na.method(x = "include"),
data = nin89,
start.values = "filename"

with the revised values included in the analysis by:

nin89.asr <- asreml(
fixed = yield ~ Variety,
random = ~idv(Rep),

residual = ~units,

na.action = na.method(x = "include"),
data = nin89,

G.param = "filename"

)

Note that in the above sequence, a list with components G. param, R.param and vparameters.table
is still returned in nin89.start.

3.6.4 Specifying variance structures

As stated above, the default variance model for a term in the random model is a scaled identity
(vI,, or o*I,), that is, independent and identically distributed (IID). This is a special case of a
more general scaled parameterized matrix. An extensive range of variance models can be fitted to
terms in the random formula and error (residual) component of the model. These are specified
using special functions in the model formulae and are described in Chapter 4. For example, the
experimental units of nin89 are indexed by Column and Row, respectively. If we first augment the
data frame to complete the 22 row by 11 column array of plots, we could then specify a separable
first order autoregressive process (Gilmour et al. 1997) in two dimensions by including

39

Chapter 3. Fitting the mixed model

residual = ~arilv(Column) :aril(Row)

(assuming the data are correctly ordered as Row within Column) in the call, where ariv() and ar1 ()
are part of a special function specifying a first order autoregressive variance model for both Column
and Row (see Section 4.1). The complete range of possible variance models is presented in Table
C.1.

The behaviour of these special functions can be different from the expected behaviour of standard
R functions; they generally return existing or altered attributes of objects and/or set up internal
structures for the model fitting algorithm. There are some restrictions on usage, notably nesting.
However, there are few instances where it is sensible to nest these functions, one exception being
models with random coefficients.

3.7 Conditional factors: the at() and dsum() functions

The conditional factor at(f, 1) is a factor that is present only when another factor has a partic-
ular level. For example, in a multi-environment trial analysis over two sites where each site is a
randomized complete block design, we could estimate separate Block variance components for each
Site by including the random term at(Site) :Block. If no levels of the conditioning factor (Site
in this case) are specified in the at () function, a complete set of conditioning terms is generated. In
this example at (Site) :Block expands to at(Site, 1):Block + at(Site, 2):Block. Note that
this is also equivalent to fitting a diagonal variance model using diag(Site) :Block. If the levels
vector (1) of the conditioning factor (f) is specified as a numeric vector then it refers to the levels
of £ in the order returned by levels(f).

A similar function dsum() is available only for the residual formula and specifies a variance model
for e as a direct sum of 1 variance matrices, one for each level of the conditioning factor. An
example was presented earlier in Section 2.1.5.

The data observations are often partitioned into sections to which separate variance structures are
applied. For example, separate spatial structures and residual error variances would typically be
specified for each site in a multi-environment trial (MET) analysis.

It is conventional to use a variable in the data file to identify sections within the data. The data will
be sorted internally by ASReml-R (i.e., the data file does not need to be ordered in any particular
way) and the variance structures for sections can then be specified using the dsum() function, for
example:

residual = ~dsum(~units | section)

for a simple analysis in which section is a column in the data file that codes the individual sections.
The dsum() function (shorthand for direct sum) performs several different tasks:

o It tells ASReml-R that the variance structure for the residual error term is a direct sum
structure where different variance structures apply to the different levels of the sectioning
variable in the data.

40

Chapter 3. Fitting the mixed model

o If a model structure specified defines a residual matrix then a variance factor associated with
the appropriate sectioning level is added to the specified model to generate a variance matrix.

e It prunes the levels for a section so that only the levels of factors defining the residual variance
structure for that section are used in forming that variance structure.

3.7.1 Specifying the model using dsum

Often sections relate to sites (or trials or experiments) in the case where several related trials are
analysed together. For example, consider a MET data set comprising data for three sites, each laid
out in a row by column array coded by factors Row and Column in the data set. To model the
residuals at each site by a separate scaled AR1xAR1 variance structure, we could write:

residual = ~dsum(~ari1v(Column):ari(Row) | Site)

In the above case, the error variance would be fixed at 1.0 as we are specifying ariv for the first
term, but for the case below, the error variance will not be fixed and this will be estimated.

residual = ~dsum(~arl1(Column):arl(Row) | Site)

For the MET data with three sites, we could specify a scaled AR1xAR1 variance structure for sites
1 and 3, but a scaled IDxARL1 structure for site 2, using the code:

residual = ~dsum(~arl(Column):arl(Row) +
id(Column) :ari(Row) | Site,
levels = 1list(c(1, 3), c(2)))

or
residual = ~dsum(~arl1(Column):arl(Row) +

id(Column) :ari(Row) | Site,
levels = 1list(c("Sitel", "Site3"), c("Site2")))

where Sitel, Site2 and Site3 are the three site labels. An alternative is to provide separate dsum
statements for the AR1xAR1 and IDxAR1 sections:

residual = ~dsum(~ar1(Column):ari(Row) | Site, levels = c(1, 3)) +
dsum(~id(Column) :arl1 (Row) | Site, levels = c(2))

Making use of variance model functions in dsum, other variants of this code are:
residual = ~dsum(~arilv(Column):aril(Row) +

idv(Column) :ar1(Row) | Site,
levels = list(c(1, 3), c(2)))

41

Chapter 3. Fitting the mixed model

An error would be returned for

residual = ~dsum(~ariv(Column):ariv(Row) +
idv(Column) :ariv(Row) | Site,
levels = list(c(1, 3), c(2)))

Error: Residual model overparameterized - structure has 2 variance models

The above message is appearing because now we have two variance models, and the variance com-
ponent associated with idv() is redundant with the variance component from ariv.

For each of these definitions, ASReml-R will determine the particular levels in Row and Column for
each site and hence the appropriate sizes of the AR1 and ID matrices, and variances associated with
the levels of Site will be added to correlation structures.

Important A correlation/variance structure needs to be specified for every level of the sectioning
factor, in which case

residual = ~dsum(~ari1v(Column):ari1(Row) | Site,
levels = c(1, 3))

would fail as there is no variance structure specified for site 2.

3.7.2 Specifying variance structures using dimensions

Although less conventional, variance structures can also be specified using dimensions rather than
factor names. For example, consider a simple MET comprising three trials arranged in rectangular
arrays of dimension 12, 10 and 9 rows by 6, 8 and 18 columns for trials 1, 2 and 3, respectively.
For data ordered rows within columns within trials (trials coded as Site in the data frame), an
AR1xAR1 variance structure for trials 1 and 3 and an IDxAR1 structure for trial 2, could be coded
as:

residual = ~dsum(~ariv(6):ar1(12) | Site, levels = 1) +
dsum(~idv(8) :ar1(10) | Site, levels = 2) +
dsum(~ariv(18) :ar1(9) | Site, levels = 3)

3.7.3 Providing starting values for dsum

The majority of the variance models accept some starting values. Within dsum, the starting values
have to be provided for each of the sections, and within the specified variance model. In the following
example, we assign the starting values for the spatial correlations of 0.9 and 0.5 to two different
groups of sites, and in all cases we specify a residual variance of 12.0. Note the use of init to assign
a single value or a vector of values.

42

Chapter 3. Fitting the mixed model

residual = ~dsum(~ariv(Column, init = c(0.9, 12)):ari(Row, init = 0.9) +
idv(Column, init = 12):ar1(Row, init = 0.5) | Site,
levels = list(c(1l, 3), c(2)))

The order of the starting values needs to match what is expected for that given structure.

3.8 Two rules for defining the residual error term
The following two rules are critical to remember when running models with ASReml-R:

e Rule 1 The number of effects in the residual term must be equal to the number of data units
included in the analysis.

e Rule 2 Where a separable variance structure is specified, each combination of levels of the
single model terms specifying this structure must uniquely identify one unit of the data. For
example, in the spatial analysis of a trial comprising 4 replicates of 24 varieties arranged as a
rectangular array of dimension 4 rows by 24 columns (rows are replicates), a, AR1 x AR1 vari-
ance structure for the residuals can be specified by the model term ari1(column) :arl(row),
where column and row are the appropriate columns in the data file. However, the number of
data units must be the product of the number of levels for row by the number of levels for
column; 96 in this case. If this is not the case, or if more than one unit is associated with some
row-column combination, ASRem|-R will return an error message and it will not be possible
to use arl(column) :ari(row) for residual error. If there are fewer than 96 units, and each
row-column combination present is associated with one unit, then the data would need to be
augmented by completing (padding out) the full rectangular array to allow for an appropriate
analysis.

These rules will always be satisfied for a single section of data defined either by default (i.e. with
no residual variance structure specified) or in terms of the units factor. However, a mismatch in
both size and ordering is possible when either multiple sections are present (as in MET analysis) or
when non-identity variance model functions are used.

3.9 Diagnostic plots

Several diagnostic statistics and plots can be used for assessing the quality of the fit, and to verify
the validity of the assumptions made on the analysis fit. Of particular importance are the residual
plots. The method plot() used with an asreml object will produce the following four plots:

e histogram of residuals: given that residuals are often assumed to be Normally distributed,
this histogram should look approximately like a Normal distribution; this plots also helps to
identify potential outliers as they will be on the tails of the histogram,

43

Chapter 3. Fitting the mixed model

Normal Q-Q plot: it can also be used to assess the assumption of Normality, where the
residuals, under a perfect Normal distribution, will align exactly on the diagonal line; this
plots helps to identify potential outliers that deviate considerably from this diagonal line,

residuals against fitted values: this plots assists on verifying homogeneity of variances, if the
variance is constant then residuals should lie within an uniform horizontal band; this plot
helps to identify potential outliers as they will be outside this band, and

residuals against unit number: this plot is useful to determine the approximate location of a
given observation, but it can be useful to identify some structure on the data if observations
are sorted by some relevant criteria.

To illustrate this, we will be using the NIN yield data arranged as an RCB. The asreml code is

nin89.asr <- asreml(
fixed = yield ~ Variety,

random
residual

na

Sample

.action
data

~idv(Rep),
~units,

na.method(x = "include"),

nin89

25 =

15 =

10 =

I I‘

| ol ...
: o

1
-20

Residuals

1
-10

Residuals Fitted
20 - =
o
5 0= ® P° °) e
o o <)
7 ° ° %o ‘ao 09 % S800 o8 gw S ?6
o 00 %o 9
25 0 8 B ° S, % 3 o0
e % %0, & -0 o
= -_o_%sw_z&w%ﬁ_nﬁ_v_u_a_%a_
o o)
0- = k= °§° ®, 8 o, & "60‘9 o So o
§ ° " S @ 0® , o, 0O o © %oo
? o o o ,°
10 -10- <) (<]
10 =) o
&@ © o
] o
ooood’ . ° e
-20= 4 B o
1 1 1 1 1 1 1 1 1 1 1 1
-3 -2 -1 0 1 2 3 50 100 150 200 250
Theoretical Units

44

Chapter 3. Fitting the mixed model

An a composite plot of the diagnostic output described above can obtained with plot (nin89.asr).
Here, can see a few observations to the left that appear to be outside of the distribution. Further
exploration is required to determine the reason. To explore the individual residual values it is
possible to use residuals() with an asreml object.

The method plot() presents, by default, the raw or working residuals, but there are other op-
tions within asreml, further details can be found in the R help. If the residual structure of the
model contains multiple sections, the default plots are conditioned on the factor whose levels define
the sections. The library asreml has additional diagnostics that help to assess the distributional
assumptions for the residuals and other random terms (see Section 2.5.2).

3.10 Weights

Weighted analyses are achieved by using the weights = wt argument to asreml (), where wt is a
variate in the data frame. If these are relative weights (to be scaled by the units variance) then
this is all that is required; for example, the number of sampling units: wt = ¢(3, 1, 3,...). If
they are absolute weights, that is, the reciprocal of known variances, the units variance should be
constrained to 1. This can be done by one of two ways:

1. One of the methods described in Section 3.6.1, that is, editing a default R parameter list object
with asreml.gammas.ed() (start.values = TRUE) or create and edit an external text file
with start.values = "filename", and changing the constraint of the units variance to F.

2. Set the units variance with the family argument

asreml (
weights = wt,
family = asr_gaussian(dispersion = 1.0),

3.11 Missing values

Missing values in the response variable, and covariates or factors are allowed in ASReml|-R, and these
are treated as described below.

Missing values in the response

Records with missing values in the response (y) are included by default, na.action = na.method(y
= "include"), and are estimated as a consequence of fitting the model. A factor labelled mv is cre-
ated and included in the sparse equations, and the solutions are returned in coef (object) $sparse.
An alternative action is na.action = na.method(y = "omit") which excludes units with missing
values in the response. Missing values must be estimated in a multivariate analysis, so this option
will produce some errors.

45

Chapter 3. Fitting the mixed model

Missing values in the explanatory variables

Covariates Records with missing values in covariates x are only discarded if na.action =
na.method(x = "omit"). If included, they are treated as zeros which may only be reasonable if
the covariate values are centred.

Design factors Missing values are allowed in design factors and handled as for covariates. Where
this occurs, no formal level is assigned to the factor for that record, however, the missing value is
replaced by a zero for the corresponding design matrix in the fitting process.

3.12 Generalized linear (mixed) models

3.12.1 GLMs

The main function asreml () includes family functions for fitting Generalized Linear Models (GLM)
(McCullagh and Nelder 1994). These differ from the standard family functions through the addition
of a dispersion argument which determines whether the dispersion parameter is fixed or estimated
(using dispersion = NA). Table 3.1 lists the link functions that can be used to connect the linear
predictor) to the mean (p) on the data scale.

Table 3.1: Families and link functions

Link Function gaussian binomial poisson Gamma
identity n=pup D * *
sqrt n= K *

log n = log(u) * D *
inverse n=1/u * D
Logit n=p/(1—p D

probit n=&"1u) *

cloglog n = log(—log(1 — u)) ¥

where p is the mean on the data scale, n = X7 is the linear predictor
on the underlying scale and D is the default.

3.12.2 GLMMs

There is the capacity to fit a wider class of models which include additional random effects for
non-Normal error distributions. The inclusion of random terms in a GLM is usually referred to as a
Generalized Linear Mixed Model (GLMM). For GLMMs, asreml () uses what is commonly referred
to as penalized quasi-likelihood or PQL (Breslow and Clayton 1993). The argument family is used

46

Chapter 3. Fitting the mixed model

to define the distribution considered for the GLM or GLMM models. For example, the data frame
binnor has a binary response named score4 that corresponds to the incidence of footshape class
1. The corresponding GLMM model for this data are:

binnor.asr <- asreml(
fixed = score4 ~ Sex + Grp,
random = ~Sire,
family = asr_binomial(link = "logit", dispersion = 1, total = NULL),
data = binnor

The library asreml () has implemented the techniques penalized quasi-likelihood or PQL (Breslow
and Clayton 1993). This technique can give somehow misleading results in certain situations,
therefore we recommend to use GLMMs for advanced users and with care.

3.13 Multivariate analyses

Multivariate analyses are used when we are interested in estimating the correlations between distinct
traits (for example, fleece weight and fibre diameter in sheep) and for repeated measures of a single
trait. The term multivariate analysis is used here in the narrow sense of a multivariate mixed model.

3.13.1 Model specification

If the response term specified in the fixed formula of a asreml () call is a matrix then a multivariate
analysis is automatically performed. That is, for response variates y,,...,y, in the data frame, a
multivariate analysis would be specified with the call

asreml (
fixed = cbind(yl,..., yk) ~ trait,

In this case, asreml () creates an internal factor trait (the multivariate equivalent to the univariate
general mean) with the names of the response variables as levels.

A multivariate analysis in asreml () can be specified in one of two ways:

e Specifying a matrix as the response in the fixed formula, as noted above. For the Orange
wether trial data, the term trait is a factor generated by asreml () with ¢ = 2 levels gfw and
fdiam. Internally, asreml () expands the data frame by repeating each row ¢ times such that
traits are nested within experimental units.

47

Chapter 3. Fitting the mixed model

e Specifying the asmv = trait argument in asreml(); this assumes that the data frame has
been expanded into a univariate form outside this function. In this case the order need not
necessarily be traits within units but the order of terms in the residual formula must reflect
the data order. Note that in this case trait refers to the factor in the data frame that defines
the traits but is not necessarily named trait.

The following code examples illustrate the specification of multivariate models in asreml ().

3.13.2 A bivariate example
The asreml () function call for a basic bivariate analysis of the Orange wether trial data are:

wether.asr <- asreml(
fixed = cbind(gfw, fdiam) ~ trait + trait:Year,
random = ~us(trait, init = c(0.4, 0.3, 1.3)):Team +
us(trait, init = ¢(0.2, 0.2, 2.0)):Tag,
residual = ~id(units):us(trait, init = ¢(0.2, 0.2, 0.4)),
data = owt

Final estimates of the variance components are given by summary (wether.asr)$varcomp.

3.13.3 A repeated measures example

Wolfinger (1996) summarizes a range of variance structures that can be fitted to repeated measures
data, demonstrating the models using the rat data set. The asreml () function call for an analysis
of the five repeated measures is:

wolfinger.asr <- asreml(
fixed = cbind(wtO, wtil, wt2, wt3, wtd4) ~ trait + Treatment + trait:Treatment,

residual = ~id(units):us(trait, init = rep(0, 15)),
maxit = 20,
data = wolfinger

Note that the use of rep(0, 15) as initial values in the above call signals that in a multivariate
analysis reasonable starting values are to be calculated internally from the phenotypic variance-
covariance matrix. The fitted variance components are given by summary (wolfinger.asr)$varcomp.

3.13.4 Specifying multivariate variance structures

A more sophisticated default error structure is required for multivariate analysis in ASReml-R. Using
the notation of Chapter 4. Consider a multivariate analysis with ¢ traits and n units in which the

48

Chapter 3. Fitting the mixed model

data are ordered traits within units. An algebraic expression for the variance matrix in this case is
I,%

where 3 %% is an unstructured variance matrix.

For a standard multivariate analysis we have the following important elements:

e The error structure must be specified as two-dimensional, with independent units and often
an unstructured variance matrix across traits.

— The residual for this model is therefore residual = ~id(units):us(trait).

— Missing values are allowed and must be fitted; asreml() automatically includes the
special factor mv in the sparse formula in such cases.

e For the default analysis where the response is specified as a matrix, the R structure must
reflect the data order of traits within units which means that the term units must appear
before trait in the residual formula.

o Variance parameters are variances, not variance ratios.

e The error structure is often specified as an unstructured variance matrix but correlation models
may also be used. asreml() attempts to detect such cases and fix or estimate the residual
scale parameter accordingly.

For example, with the Wolfinger data the time points are equally-spaced so we could fit a first
order autoregressive model using:

wolfinger.asr <- asreml(
fixed = cbind(wt0, wtl, wt2, wt3, wt4) ~ trait +
Treatment + trait:Treatment,
residual = ~id(units):ariv(trait),
data = wolfinger

o Initial values for the variance matrices are given as the lower triangle of the (symmetric)
matrix specified row-wise.

« Nominating reasonable initial values can be a problem. By default, asreml () uses half of the
phenotypic variance-covariance matrix in forming initial values.

3.14 Testing of terms: the wald() method

The type of object returned by the wald () method depends on the option specified for the denDF
and ssType arguments.

49

Chapter 3. Fitting the mixed model

Incremental F'-statistics

If denDF = "none" and ssType = "incremental" (the defaults), an object of class anova contain-
ing a table of Wald statistics for fixed effect terms is returned. These are tested sequentially, which
means that factors are adjusted for terms higher in the table (or not in the table), but ignoring
terms that occur below.

No denominator degrees of freedom is supplied as the reference distribution for each Wald statistic
is a X% where k is the number of non-singular effects in the term.

Conditional F'-statistics

If at least one of denDF or ssType is set to anything other than the default, a data frame object is
returned that includes columns for the approximate denominator degrees of freedom or conditional
F-statistics depending on the combination of options chosen.

The data frame has three styles:

Source df F_inc F_con M
Source df ddf_inc F_inc P_inc
Source df ddf_con F_inc F_con M P_con

depending on whether conditional F-statistics are reported or whether the denominator degrees of
freedom are calculated. See Section 2.4 for more background on the contents of this table.

The numerator degrees of freedom for each term is easily determined as the number of non-singular
effects involved in the term. However, in general calculation of the denominator degrees of freedom
is not trivial. ASReml-R will only attempt the calculation if specifically requested as it requires
further iterations of the model (using internally update()).

As an example, for the Orange wether trial data we obtain the pseudo analysis of variance calculating
the approximate denominator degrees of freedom and using the conditional F-tests by

wald(wether.asr, denDF = "default", ssType = "conditional")

20

Chapter 4

Specifying variance structures

This chapter introduces variance model specification in ASReml-R, a complex aspect of the modelling
process. To summarize the key concepts:

¢ The mixed linear model
y=X7+Zu+e

has a residual term
e~ N(0, R,(o,))

and random effects
u~ N(0, G(ay))

where, in the most complex forms
Rv = ®ZR’U1
G = @jGj

and each
Rvi = Rvi (UTi)

G; =Gjloy)
where o, and o, parameterize the respective variance models for each section.

o We use the terms R structure and G structure to refer to the matrices R,, and G; above in
a syntactic manner, respectively.

e R and G structures are typically formed as a direct product of particular variance models.

e The order of terms in a direct product must agree with the order of factors in the corresponding
model term.

e Variance models may be correlation matrices, or variance matrices with equal or unequal
variances on the diagonal. A model for a correlation matrix (eg. ar1()) can be converted to
an equal (homogeneous) variance form (e.g. ariv()) and to a heterogeneous variance form
(e.g. ar1h()).

o1

Chapter 4. Specifying variance structures

e Variance components are estimated as gammas (relative to the overall scale parameter, o2)
when the gamma parameterization is used.

Previously, in Chapter 2 some theoretical details were presented. Here, we begin this chapter by
considering an ordered sequence of variance structures for the NIN variety trial (Section 4.1) as
an introduction to variance modelling in practice. Following, we consider these topics in detail in
Section 4.2.

Variance models are specified with special model functions in the random and residual formulae.
Scaled identity defaults are used if no variance model is explicitly specified (i.e. idv()). Table
C.1 presents the complete range of variance models available in ASReml|-R and details of individual
(variance model) function calls are given in Section 4.3. Most of the models listed in Table C.1 are
correlation models but these are easily generalised to:

e homogeneous variance models by appending a v to the function name, for example, converting
id() to idv() to specify IID errors,

e heterogeneous variance models by appending h to the function name, for example, converting
id() to idh () to specify independent but heterogeneous errors.

Finally, rules for combining variance models and methods for setting initial values, together with
constrains and functions of variance components are given in the last few sections.

4.1 A sequence of structures for the NIN field trial data

By way of introduction, six variance structures of increasing complexity are considered for the NIN
field trial data. This is to give a general feel for variance modelling in ASRemlI-R from a practical
perspective and some idea of the types of models that are possible (for a list see Table C.1). The
sequence of variance structures considered for the NIN field trial data are summarized in Table 4.1).

This section illustrates:

e changes to u and e and the assumptions regarding the variance of these terms,

e the impact this has on the random formula for specifying the G structures for w and the
residual formulae for specifying the R structure(s) for the residuals in e.

For ease of exposition we first describe the models fitted and reported when the variance models
are explicitly specified.

For the models in this section an alternative fitting algorithm based on a gamma parameterization
has advantages. In Section 4.7 we give one of the RCB data model examples in this gamma pa-
rameterization, provide some alternative specifications and comment on the summaries. In Section
4.1.2 we also show how some specifications can be reduced.

52

Chapter 4. Specifying variance structures

Model 1a: randomized complete block (RCB) analysis - blocks fixed

rcb.asr <- asreml(
fixed = yield ~ Variety + Rep,

residual = ~idv(units),
na.action = na.method(x = "include"),
data = nin89

The above call uses an IDV variance structure for the residual error term assuming that e ~
N(0,021,,,). The model is therefore a fixed effect model and involves just one R structure and no
G terms.

Model 1b: RCB analysis with G and R structures

rcb.asr <- asreml(
fixed = yield ~ Variety,
random = ~idv(Rep),

residual = ~idv(units),
na.action = na.method(x = "include"),
data = nin89

The residual is specified as a variance matrix with var(e) = ¢2I,,, and u is a vector of replicate
effects where var(u) = o2I,. This model introduces the use of variance model functions in both
random and residual formulae to explicitly specify the G and R structures.

Note that when specifying G structures ASReml-R automatically adds a scale parameter if a corre-
lation model is specified (see Section 4.1.2 for more details). Only one of the models specified in a
G structure can be a variance model. If the variance matrix of a term contains several component
matrices then the problem of identifiability arises.

For example, a random term

idv(A) :idv(B)

with residual idv(units) produces a variance matrix of the form U?LagI b for A:B where the o2,
ag parameters are not identifiable.

93

Chapter 4. Specifying variance structures

Model 2a: two-dimensional spatial model with correlation in one direction

sp.asr <- asreml(
fixed = yield ~ Variety,
residual = ~idv(Column) :arl(Row),
data = nin89

This call specifies a two-dimensional spatial structure for error but with spatial correlation in the
row direction only. In this case var(e) = (02I11) ® X,. The R structure is the direct product of two
matrices; a scaled identity matrix of order 11 and a first order autoregressive correlation matrix of
order 22 with elements {o;;} = pl"=7! for plots (in the same column) in rows i and j. Also, note the
following:

7))

e The direct product structure is implied by the “:” operator. The order in which factors appear
in the residual formula also specifies the order in which the data must be sorted. Because
Column is specified before Row, the implication is that the data are in the order rows within
columns. ASReml-R does not reorder the observations; if the data frame is not in the order
specified by residual then an error is generated and it must be reordered outside asreml ().

o Using a separable model for the R structure implies that the data can be regarded as a matrix
or array whose data are indexed by the levels of the factors that represent the rows and columns
of this array. In this field trial example these factors are Row and Column, respectively. For
this structure to be applicable, the data in this case must be augmented with 18 additional
missing values. Variety is arbitrarily coded as LANCER for all of the extra missing plots.

e ASReml-R automatically includes missing values in the sparse component with a factor named
mv (see Section 3.11).

Model 2b: two-dimensional spatial model

sp.asr <- asreml(
fixed = yield ~ Variety,
residual = ~ariv(Column) :arl(Row),
data = nin89

This extends model 2a by specifying a first order autoregressive variance model of order 11 for
columns (ariv()). The R structure in this case is therefore the direct product of two autoregressive
matrices, one a variance matrix and one a correlation matrix, that is, var(e) = (62%.) ® X,.

o4

Chapter 4. Specifying variance structures

Model 2c: two-dimensional spatial model with measurement error

sp.asr <- asreml(
fixed = yield ~ Variety,

random = ~idv(units),
residual = ~arlv(Column) :aril(Row),
data = nin89

This model includes a factor with n = 224 levels in u. Since Z = I, var(y) = 02, I224+ (023.) @ X%,
The quantity Uin is the so-called measurement error variance or nugget variance in geostatistics.
The word units is a reserved name that ASReml-R constructs internally as: seq(1, nrow(data)).

Model 3: two-dimensional spatial model defined as a G structure

sp.asr <- asreml(
fixed = yield ~ Variety,

random = ~arlv(Column) :arl(Row),
residual = ~idv(units),
data = nin89

This model is equivalent to 2c but with the spatial model defined as a G structure rather than an
R structure. As we discussed in 1b, when the G structure term involves more than one model, all
but one of the models must be a correlation model (Section 4.4). In this example ariv() is the
variance model.

Important Modelling Column:Row as a G structure is a useful approach for handling incomplete
arrays because not all combinations of the levels of Row and the levels of Column need to be present
in the data.

4.1.1 An alternative fitting algorithm based on the gamma parameterization

In all of the data models above, the residual specifies a variance model with a single variance
parameter and an alternative fitting algorithm, based on the gamma parameterization, can avoid
specification of an initial residual variance and lead to speedier convergence. This can easily be
actioned before the call to asreml () by setting:

asreml.options(gammaPar = TRUE)

Note that this call will set the gammaPar to TRUE for the duration of the session unless it is reset to
FALSE. Section 4.1.2 discusses various more succinct default options. Section 4.7 provides a series
of simple RCB data examples in this gamma parameterization with some alternative more implicit
default specifications, and comments on the summaries.

95

Chapter 4. Specifying variance structures

Table 4.1: Sequence of variance structures for the NIN field trial

asreml() call random term (G) residual error term (R)
model model

1 2 1 2

la fixed = yield ~ Rep + Variety - - - units idv() -
1b fixed = yield ~ Variety, Replicate idv() - units idv() -

random = ~idv(Rep),
residual = ~idv(units)

2a fixed = yield ~ Variety, - - - Column:Row idv() arl()
residual = ~idv(Column) :arl(Row)

2b fixed = yield ~ Variety, - - - Column:Row arlv()arl()
residual = ~arlv(Column) :arl(Row)

2c fixed = yield ~ Variety, units idv() - Column:Row arlv()arl()
random = ~idv(units),
residual = ~arlv(Column) :arl(Row)

3 fixed = yield ~ Variety, Column:Row arlv()arl() units idv() -
random = ~arlv(Column) :aril(Row)
residual = ~idv(units)

4.1.2 Reducing the specification using defaults

Some of the specification can be reduced by using defaults. In asreml() the scaled independent
variance structure (idv(units), R = 021,,, for an RCB model for the NIN data) is the default for
error. This simple error term is implicit in all the models and it is not necessary to formally specify
it with the residual argument. If a term in a random variance model structure is specified without
a variance model function, the effects are assumed to be independent and identity functions and a
residual variance parameter are added to ensure the full term is a variance structure. The resulting
variance term is labelled in the output using the components of the linear model. For example, A
and idv(A) become 02id(A) and the variance term is labelled A. The functions A:B, A:id(B) and
id(A) :B all become 02id (A) : id(B) and the function A:ar1(B) becomes c2id (A) :ar1(B). In these
four cases the variance is labelled A:B.

Note that in cases when the residual variance model is not specified or is not completely specified
and implies a scaled identity matrix, the gamma parameterization is used. So

rcb.asr <- asreml(
fixed = yield ~ Variety,
random = ~Rep,
na.action = na.method(x = "include"),
data = nin89

and

o6

Chapter 4. Specifying variance structures

rcb.asr <- asreml(
fixed = yield ~ Variety,
random = ~Rep,
residual = ~units,
na.action = na.method(x = "include"),
data = nin89

are equivalent to

rcb.asr <- asreml(
fixed = yield ~ Variety,
random = ~idv(Rep),

residual = ~id(units),
na.action = na.method(x = "include"),
data = nin89

)

and

asreml.options(gammaPar = TRUE)
rcb.asr <- asreml(
fixed = yield ~ Variety,
random = ~idv(Rep),

residual = ~units,
na.action = na.method(x = "include"),
data = nin89

4.2 Types of variance models

Three types of variance model are used in fitting R and G structures in ASRemI-R, namely, correlation
models, homogeneous variance models and heterogeneous variance models. These determine the form
for each component of G and R. In the following, we denote the variance matrix of any component
relating to a term in random or residual by X.

4.2.1 Correlation models

In correlation models all diagonal elements are identically equal to 1. Algebraically, if
3 = [pij], 1,7 =1...w, denotes the correlation matrix for a particular model, then

p“' = 1, VZ
¥ =lpy] : { o }
pij = Pjis |pigl <1, 0 F]

o7

Chapter 4. Specifying variance structures

The simplest correlation model in ASReml-R is the id () model, where ¥ = I,

4.2.2 Homogeneous variance models

If the variance model is specified as a homogeneous variance model, the diagonal elements all have
the same positive value, o2 say.

That is,

> [] 04 — 0'2, Vi
= [oyi]
Y 0ij = Oji, i

Note that if ¥ is a correlation model, a homogeneous variance model (with one extra parameter) is
formed as (02I)X. For example, the homogeneous variance model corresponding to id() is idv ()
where ¥ = 021, (or ¥ = ~I,).

4.2.3 Heterogeneous variance models

The third variance model is the heterogeneous variance model in which the diagonal elements are
positive but differ. That is,

EZ[UU] : {01120'12, Z"Zl....w}
Oij = Oji, L7

For the models defined in terms of correlation matrices, allowance for unequal variances can be

made by applying a diagonal matrix D of standard errors to the correlation matrix to generate a

heterogeneous variance model. That is D22 D'V? In this case, w extra parameters are added to

the vector of initial values.

For example, the heterogeneous variance model corresponding to id() is idh() or diag() where
Y = diag(o1,...,04).

4.2.4 Positive definite matrices

Formation of the mixed model equations (MME) requires the inversion of the variance matrix in
the R and G structures. Therefore normally this requires these matrices to be non-singular. The
two exceptions are 1) the fa model which has been specifically designed to fit singular matrices
(Thompson et al. 2003) and, 2) when singular known relationship matrices are used when ASReml-
R takes account of the implied constraints in the singular relationship matrices.

o8

Chapter 4. Specifying variance structures

4.3 Variance model functions

ASReml-R has a wide range of variance models that can be used to specify the variance matrix of
terms in the random and residual formulae. The following considers the various models in terms
of functional groups and describes their syntax and application. In general, the correlation models
described in the following sections have corresponding variance models whose names are simply
derived by appending "v" or "h" to the correlation function name. In the former case this yields a
homogeneous variance model while the latter gives the corresponding heterogeneous model.

4.3.1 Default identity

id(obj)
idv(obj, init = NA)
idh(obj, init = NA)

Required arguments

obj a factor in the data frame.

Optional arguments

init a vector of initial parameter values. This vector can have an optional names attribute to set
the boundary constraint for each parameter. In this case, the name of each element may be one of
"P" "U" or "F" for positive, unconstrained or fixed, respectively.

model number of parameters

f form: f() fv() fh()

id 0 1 n
Details

ASReml-R uses the id() correlation model or the idv () simple variance component model, depend-
ing on context (see the rules for combining variance models in Section 4.4) for terms in the random
or residual formulae that have no variance model explicitly specified.

4.3.2 Time series type models

arl(obj, init = NA)
ar2(obj, init = NA)
ar3(obj, init = NA)
sar(obj, init = NA)

sar2(obj, init = NA)
mal(obj, init = NA)

99

Chapter 4. Specifying variance structures

ma2(obj, init = NA)
arma(obj, init = NA)
Description

Includes autoregressive models of order 1, 2 and 3 (arl, ar2 and ar3), the symmetric autoregressive
(sar), the constrained autoregressive order 3 (sar2), moving average models of order 1 and 2 (matl,
ma2) and the autoregressive-moving average model (arma).

Required arguments
obj a factor in the data frame.
Optional arguments

init a vector of initial parameter values. This vector can have an optional names attribute to set
the boundary constraint for each parameter. In this case, the name of each element may be one of
"P" "U" or "F" for positive, unconstrained or fixed, respectively.

model number of parameters
(f) form: f() fv() fh()

arl 1 2 1+n
ar2 2 3 2+n
ar3 3 4 3+n
sar 1 2 1+n
sar2 2 3 2+n
mal 1 2 1+n
ma2 2 3 24n
arma 2 3 2+n

4.3.3 Metric-based models in R or R?

exp(x, init = NA, dist = NA)
gau(x, init = NA, dist = NA)
lvr(x, init = NA, dist = NA)

iexp(x, y, init = NA)
igau(x, y, init = NA)
ieuc(x, y, init = NA)
sph(x, y, init = NA)

cir(x, y, init = NA)

aexp(x, y, init = NA)

agau(x, y, init = NA)

mtrn(x, y, phi = NA, nu = 0.5, delta = 1.0, alpha = 0.0, lambda = 2)

60

Chapter 4. Specifying variance structures

Description

Includes one-dimensional exponential and gaussian power models (exp, gau), two-dimensional
isotropic exponential, gaussian, euclidean, spherical and circular power models (iexp, igau, ieuc,
sph, cir), anisotropic exponential and gaussian models (aexp, agau) and the Matérn class (mtrn).

Required arguments

x a field (continuous variate) in the data frame containing the z coordinates. For one-dimensional
models, coordinates are obtained as unique (x) or, if specified, from the component named x in the
pwr.points argument to asreml ().

y a field (continuous variate) in the data frame containing the y coordinates.
Optional arguments

init a vector of initial parameter values. This vector can have an optional names attribute to set
the boundary constraint for each parameter. In this case, the name of each element may be one of
"P" "U" or "F" for positive, unconstrained or fixed, respectively.

model number of parameters
(f) form: f() fv() fh()
exp 1 2 1+n
gau 1 2 14+n
[vr 1 2 14+n
iexp 1 2 14+n
igau 1 2 1+n
ieuc 1 2 1+n
sph 1 2 1+n
cir 1 2 14+n
aexp 2 3 2+n
agau 2 3 24n

dist for one-dimensional models, a vector of coordinates; an alternative way to specify distance
information for x.

phi the range parameter. Default: ¢ = N A.

nu the smoothness parameter. Default: v = 0.5.

delta governs geometric anisotropy. Default: § = 1.0.

alpha governs geometric anisotropy. Default: o = 0.0.

lambda specifies the choice of metric. Default: A = 2 for Euclidean distance.

For the Matérn function, if an argument is numeric, it is treated as a starting value for estimation
and given the constraint code P (positive). This behaviour can be altered by concatenating the
numeric value followed by the constraint code (P, U or F) into a character string (for example, v =
0.5U). If an argument is absent from the call, the corresponding parameter is held fixed at its default
value. Further details and description of the Matérn class is provided in Appendix C.2.1.

61

Chapter 4. Specifying variance structures

Detalils
Kriging models apply to points in an irregular (or regular) spatial grid. They require the specification
of the data coordinates to calculate pairwise distances. For example,

o the distance between time points in a one-dimensional longitudinal analysis, or

o the spatial distance between plot coordinates in a two-dimensional field trial analysis.

Distance information for power models is obtained from the object(s) or arguments passed to the
relevant special function.

For one-dimensional models, the distances are obtained from one of:
e unique(x) where x is the required argument to the model function identifying the field in the
data frame containing the points,
e the dist argument to the model function, or
e the pwr.points list argument to asreml ().
For two-dimensional models, the special functions require two arguments nominating fields in the
data frame specifying the (z,y) coordinates of each observation. For example, in the analysis of

spatial data, if the x coordinate was in a variate Row and the y coordinate was in a variate labelled
Column, an anisotropic exponential model could be fitted by aexp(Row, Column).

Note that for an R structure the data order is assumed correct, for example, the data must be
ordered rows within columns for a separable autoregressive spatial model of order 1 specified as
arl(Column) :arl(Row), otherwise an error is generated.

4.3.4 General structure models

cor(obj, init = NA)

corb(obj, k = 1, init NA)
corg(obj, init = NA)
diag(obj, init = NA)

us(obj, init = NA)

chol(obj, k = 1, init = NA)
cholc(obj, k = 1, init = NA)
ante(obj, k = 1, init = NA)
sfa(obj, k = 1, init = NA)
fa(obj, k = 1, init = NA)
facv(obj, k = 1, init = NA)

rr(obj, k 1, init = NA)

62

Chapter 4. Specifying variance structures

Description

The class of general variance models includes the simple, banded and general correlation models
(cor, corb, corg), the diagonal, unstructured, Cholesky and antedependence variance models (diag,
us, chol, cholc, ante) and the factor analytic structure (fa) and its variants (sfa, facv, rr).

Required arguments
obj a factor in the data frame.
Optional arguments

init a vector of initial parameter values. This vector can have an optional names attribute to set
the boundary constraint for each parameter. In this case, the name of each element may be one of
"p" "U" or "F" for positive, unconstrained or fixed, respectively.

model number of parameters

(f) form: f() fv() fh()
cor 1 2 1+n
corb k k+1 k+n
corg nn—1)/2 1+nn—-1)/2 n+nn-1)/2
diag n

us n(n+1)/2

chol! n(n+1)/2

cholc! nin+1)/2

ante! n(n+1)/2

sfa kn +n

fa kn+n

facv kn +n

rr kn

! chol, cholc and ante models have (k 4 1)(n — k/2) parameters but n(n + 1)/2 initial values. These are given

row-wise in the lower triangle of an unstructured matrix and converted to the appropriate parameterization.

k the number of subdiagonal bands for corb; the order of the Cholesky decomposition for chol and
cholc; the order of antedependence (ante); and the order of factor analytic models (fa).

Details
The k-factor Cholesky structure models X% as

S =LDL

where L“*“ is a unit lower triangular matrix and D = diag(dy, ..., d).

In the chol(, k) factorization L has k non-zero (unequal) bands below the diagonal, that is, the
elements {l;;} of L are

63

Chapter 4. Specifying variance structures

ly = 1
lij = vj,1<i—37<k

0, otherwise

In the cholc(, k) factorization L has columns l; = (l1;,. .., ly;) where
lii = 1
lij = 0fori<yj, k<j<i

For example, if a factor Site has four levels then cholc(Site, 1) generates ¥ = LDL’ where

1 d 0 0 0
IR |0 d 0 0
L= Is; 0 1 D‘o 0 d3 O
lsgs 0 0 1 0 0 0 dy

This form is similar to a Factor Analytic model. In ASReml-R the initial parameters for both
Cholesky factorizations are given as the lower triangle row-wise of an unstructured matrix and
converted internally to the appropriate factorization.

The k-factor antedependence ante(, k) structure models X“*“ as

>~ =UuDU’

where U“** is a unit upper triangular matrix with elements {u;;} where

uig = 1
Uij = 0,2 >3
uij = uy,1<i—j<k

and D = diag(dy,...,d,).

Considering the above example for a factor Site with four levels, here ante(Site, 1) generates
! = UDU’ where

1 w2 O 0 d 0 0 0

. 0 1 u23 0 . 0 d2 0 0
U=1lo 0 1 wyl™P=|0 0 4 o
00 0 1 0 0 0 dy

In ASReml-R the parameters for ante are given as for us, chol and cholc as the lower triangle
row-wise of an unstructured matrix.

64

Chapter 4. Specifying variance structures

The functions facv(), fa() and sfa() are different parameterizations of the factor analytic model.
In the first two for models of order k (facv(, k) and fa(k)) the variance matrix 3“*“ is modelled
as

S=TI"'+W¥

where T “*¥) is a matrix of loadings and ¥*** is a diagonal matrix whose elements are referred to
as specific variances. As the covariances are modelled by the loadings, the letters cv are included

in the function name.

For example, if Site is a factor with four levels, the component matrices for facv(Site, 1) are

ly Pv1r 0 0 0
|l 10 2 0 0
r= I3 v = 0 0 93 0
la 0 0 0 <2y

where the parameters are given in the order c(vec(I'), diagv(¥)), where diagv() is the operator
that puts the diagonal terms of a square matrix into a vector.

Alternatively the variance-covariance matrix X“*% can be defined in sfa(, k) using a correlation
scale with

¥ =DCD

where D“*“ is a diagonal matrix such that DD = diag (X) i.e. a diagonal matrix with the diagonal
elements of ¥, and C**¥ is a correlation matrix of the form F F'+ E, where F is a matrix of loadings
on the correlation scale and FE is a diagonal matrix and is defined by difference. Comparison of 3
under the two parameterization show that DF =T and DED = .

The parameters for the sfa(, k) model are specified in the order of the loadings for each factor
(F) followed by the variances (the diagonal elements of 3 or DD). Note that the parameters for
the facv(, k) model are also ordered in this way.

The third form of the factor analytic model is fa(, k) and it has the same parameterization as
for facv(, k). The difference is that this model introduces the k factor effects directly into an
extended linear model and in the estimation procedure. This formulation is computationally faster
than the facv(, k) and sfa(, k) formulations for large problems when k is much smaller than w,
and permits some elements of W to be fixed as zero. It also allows easier specification for prediction
of factor effects. Slightly confusingly, but in the interests of upward compatibility, with fa(, k)
the parameters are ordered in the reverse order, .i.e. c(diagv(¥®), vec(T)).

Limitations

The functions fa(, k) and sfa(, k), unlike facv(, k), do not allow singular ¥ matrices to
be estimated. In addition, constraints are required in I' for k > 1 for identifiability. These are
automatically set unless the user ensures identifiability by constraining one parameter in the second
column, two in the third column, etc. With rotate.fa = FALSE (the default), ASReml-R fixes the

65

Chapter 4. Specifying variance structures

j =1,...,i — 1 loadings for the i-th factor (2 < i < k) to zero and their corresponding boundary
constraints to F. The total number of constraints is k(k — 1)/2.

An alternative set of constraints can be set if identifiability constraints have not been imposed,
using rotate.fa = TRUE. The factors are rotated to orthogonality in each iteration, and k(k—1)/2
constraints are imposed on the loadings depending on the values in this orthogonalized I'. This
option is hypothesized to have better convergence properties but we do not have sufficient evidence
yet to make a definite recommendation on its use. We note that extra constraints might be needed to
ensure identifiability if the number of parameters in a k factor analytic model, w(1+k) —k(k—1)/2,
is greater than the w(w + 1)/2 parameters that can be estimated in 3.

Unfortunately because the fa(, k) formulation allows singular variance matrices it is not available
in residual (R) structures.

Updating loadings in factor analytic models

The algorithm for updating loadings in factor analytic models has been improved in the starting with
ASReml-R Version 4. The motivation for change was that the original update procedure sometimes
produced unreasonable updates, or otherwise came near to convergence and then drifted away.
The present procedure modifies the average information matrix by increasing the diagonal elements
pertaining to loadings by a percentage, p. The default is to start with p = 10% and reduce it by
1 or 2% each iteration down to 1%. If the starting values are poor, 10% may not be a sufficient
initial retardation. If it appears the updates are unreasonable, ASReml|-R will increase the value of
p by 10% and then continue. The user can set the initial value of p with the option ai.penalty =
p. After the penalty has reduced to 1%, it is further reduced to 0.2%. The qualifier can be used to
set p to 0 if desired.

Another option, ai.loadings, allows further control of the Al updates of loadings in extended factor
analytic, fa(, k), models. After ASReml-R calculates updates for variance parameters, it checks
whether the updates are reasonable and sometimes reduces them over and above any step.size
shrinkage. The extra shrinkage has two levels. Loadings that change sign are restricted to doubling
in magnitude, and if the average change in magnitude of loadings is greater than 10-fold, they are
all shrunk. Further, when ai.loadings = n is specified (default n = -1 specifies no action) and
the user has not imposed identifiability constraints, then ASReml-R imposes them using ai.rotate
= TRUE and it also prevents Al updates of some loadings during the first n iterations. For k£ > 1
factors, only the last factor is estimated (conditional on the earlier ones) in the first k — 1 iterations.
Then pairs, including the last, are estimated until iteration n.

4.3.5 Special case of factor analytic: rr()

A special case of fa(, k) is the reduced rank factor analytic model of rr(, k). Here, the variance
matrix X is modelled as

Y =Tr’

where T' “*¥) is a matrix of loadings.

For example, if Site is a factor with four levels, the component matrix for rr(Site, 1) is simply

66

Chapter 4. Specifying variance structures

Note that for computational reasons there can only be one rr() term in a compound model term,
and it is recommended that the rr() term is the first term. In a three-way structure with an rr ()
term, if a relationship structure (specified using vm()) is used then it should be the third term and
only an identity term can be used for the second term.

Also, note that the summary () function currently returns zeros for the set of specific variances and
they also appear in the table of variance parameters using start.values = TRUE. The user needs
to be aware of this and to manipulate them as necessary when post-processing.

4.3.6 Known relationship structures

vm(obj, source, singG = NULL)
ide(obj, source)

Required arguments

obj a factor in the data frame.

source The known inverse or relationship matrix. This can be:

e A sparse inverse variance matrix held in three-column coordinate form in row-major order.
This triplet matrix must have class ginv from a call to ainverse (), or have attribute INVERSE
set to TRUE. For backwards compatibility, a three-column data frame is also accepted. In either
case, the source must have a rowNames attribute.

o A sparse relationship matrix held in three-column coordinate form (as a matrix) in row-major
order. If the attribute INVERSE is not set then FALSE is assumed and an inverse will be
obtained internally; a rowNames attribute must be set.

o A matrix (or Matrix object) with a dimnames attribute giving the levels of the model term
being defined. This may be a relationship matrix or its inverse; if an inverse, it must have an
attribute INVERSE set to TRUE.

o A numeric vector of the lower triangular elements in row-major order. The vector must have
a rowNames attribute, and if an inverse structure, it must also have an INVERSE attribute set
to TRUE.

67

Chapter 4. Specifying variance structures

singG This argument is ignored if source has class ginv or its INVERSE attribute is TRUE. This
happens when source is one of the following cases:

e A sparse matrix in coordinate form with class ginv, or INVERSE attribute set to TRUE.
e An object of class matrix or Matrix with INVERSE attribute set to TRUE.

e A vector assumed to be the lower triangle in row-major order with INVERSE attribute set to
TRUE.

If source does not have class ginv, or the attribute INVERSE is FALSE or is not set, and singG is
NULL (the default), then source is assumed to be a positive definite relationship matrix and singG
is set to “PD”. Otherwise, a character string giving the state of the (to be inverted) source object
is required, such as:

o PD source is positive definite (default).

o ND source is non-singular indefinite (positive and negative roots). In this case, ASReml-R
ignores the indefinite condition and proceeds.

e PSD source is positive semi-definite. In this case, ASReml-R proceeds using Lagrangian mul-
tipliers to process the matrix. Two cases arise: whether the singularity arises because of an
effect has zero variance or whether it arises as a linear dependence. An example of the first is
when the GRM represents a dominance matrix, and the list of genotypes includes fully inbred
individuals which by definition have no dominance. An example of the second is when the list
of genotypes includes clones.

» NSD source is singular indefinite (positive, zero and negative roots). The indefinite condition
is ignored and ASReml-R proceeds using Lagrange multipliers as for PSD matrices.

Details

If source inherits from class Matrix, ASReml-R will convert source internally to either sparse
triplet form (class dsparseMatrix), or dense vector form (class ddenseMatrix) for processing. The
names of the levels of vm() are given by the rowNames attribute associated with source. The
number of levels of vm(obj, source) might be greater than the levels of obj in the data frame.

The ide(obj, source) structure creates a term with the levels associated with source, and mod-
elled by the homogeneous form of the identity variance structure. If an ide() term succeeds its
partner vim() term then source can be omitted from ide () and ASReml-R uses the source from the
partner vm().

Important If a model term is specified only in terms of vm() then a variance component is associated
to it. But, if the model term if composed by two elements and one is a vm() term, then at least one
of the other model terms must then specify a variance explicitly, as opposed to a correlation matrix
(for example, vm(genotype) :idv(Site) instead of vm(genotype) :Site).

68

Chapter 4. Specifying variance structures

Linking a relationship matrix to regressor variables

One use of a relationship matrix is to allow more computationally efficient fitting of random regres-
sion models associating a vector u of p factor effects with a vector v of m regression effects through
the model u = Mwv, where the p X m matrix M contains m regressor variables for each of the p
levels of the factor. If m > p, it is more computationally efficient to fit the model with Zu (Z
is the design matrix linking observations to factor levels) and a variance structure for u based on
K = M M’, than a model fitting the regressor effects directly. A common case of such a situation
is in genomic studies when u represents genotype effects and M is the p X m matrix of genetic
marker scores.

The matrix K is constructed externally to ASRreml-R and used in the analysis with the vm() model
function. K must have a dimnames attribute giving the levels of the model term defined in vm().
The marker (or regressor) effects can be obtained from the meff () method.

For example, the code below fits such a model and estimates the marker effects given that the
matrix K is in the R object K and the original p X m matrix of marker scores is in the R object M.

K <- asreml::nassau.grm
M <- as.matrix(asreml::nassau.snp)
attr(K, "INVERSE") <- FALSE

nassau.asr <- asreml(
fixed = ht6 ~ CulturelD/Rep,
random = ~vm(clonefv, K) + ide(clonefv) + Rep:IncBlock,
residual = ~idv(units),
data = nassau

nassau.mef <- meff(
object = nassau.asr,
mef = list(K = "M"),
effects = ~vm(clonefv, K)

The reason for quoting the name "M" is so that when R is passing the arguments through to the
meff function it will not evaluate the object (which is typically large), as this will cause issues with
memory and speed.

Important The meff () method is not to be confused with the mef argument to asreml() that
accepts the return value of the meff method.

69

Chapter 4. Specifying variance structures

4.3.7 Variance structures spanning several model terms

str(form, vmodel)
Required arguments

form a model formula specifying a set of terms to be included in the random argument that collec-
tively will have an associated variance model.

vmodel a formula object containing asreml variance functions separated by ":" operators specifying
the direct product structure that applies to the set of terms in form. The size of the variance
structures can be given as an integer value argument to the variance functions in place of the usual
factor object.

Details

Typically a variance structure applies to an individual term in the linear model, with no covariance
between random model terms. Sometimes it is appropriate, for example in random regression
models, to include a covariance parameter. The model terms in form are kept together and identified
by the first term in the sequence. The variance structure defined in vmodel begins at the first term
and covers the subsequent terms in the sequence. The overall size of the variance model is checked
against the total number of levels of the terms in form, however, the sequence of effects matching
the variance structure definition is not checked.

For example, in the first order random coefficient regression model it is required to specify a co-
variance between the intercept and slope for each subject to ensure translation invariance, that is,
equivalent variance parameter estimates for addition of any constant to the independent variable.
For example, in a random coeflicient regression where a set of random intercepts is specified by the
model term Subject (with 10 levels) and a set of random slopes is specified by the model term
time:Subject (time is a variate). Here, translation invariance is achieved using str() as

str(~Subject + time:Subject, ~us(2):1d(10))

The algorithm places the model terms specified using the argument form together in the processed
random model, here Subject followed by time:Subject. The variance structure(s) begins at the
start of the first term specified in str() and is expected to exactly span the whole set of terms given
within the brackets. The overall size of the variance model is checked against the total number of
levels of these terms, but the user must verify that the ordering is appropriate for (matches) the
variance model specified.

In our example, this random model generates a combined set of random effects from the individual
subject intercepts, ur = (u1 ...u10) and subject slopes, ug = (ug1 ...us10), as urs = (ujuy)".
This term then has a variance structure of the form

I I
var(urg) = var w — | 7 9IS o, = | P10 915810
us ors 0ss orslio osslio
Here, the set of subject intercepts has a common variance (o77), and the set of subject slopes has

a (different) common variance (osg). Intercepts and/or slopes from two different subjects are in-
dependent, but the intercept and slope from any given subject have covariance org (or correlation

70

Chapter 4. Specifying variance structures

o15/v/011055)- In this context, we use integers as input to emphasize that the arguments are spec-
ifying the size of the variance structure. For this example, id(10) can be replaced by id (Animal).

This random regression example has been developed to describe the form of the str() function,
but note that this model is equivalent to

us (pol(time)) :id(Subject)

Note that model terms with variance functions such as fa(), rr(), vm() and ide() that generate
new model factors with a modified set of levels must be given explicitly in the form argument. This
ensures that the overall sizes (in terms of the total numbers of levels) of form and vmodel conform
and ensures the correct identification of terms in the model, especially in predict statements.

Below we present an example for the Reduced Animal Model with the need to form a composite
design matrix as the sum of half a sire and half a dam matrix. We first create in our data frame a
variate with all values equal to 0.5.

data.df$half <- rep(0.5, nrow(data.df))

and then form a design matrix from the sires (P.Male) and dams (P.Female) factors scaled by a
factor 0.5 using the variate half:

str(~fa(Loc, 1):vm(P.Male, ainv):half +
and(fa(Loc, 1):vm(P.Female, ainv):half),
~fa(Loc, 1):vm(P.Male, ainv))

Note that internally the Loc effects are extended by 1 to include the one extra factor in fa(, 1),
and the levels associated with P.Male and P.Female are extended to include all levels within Ainv.

We note that the functionality of and() allows the term and(fa(Loc, 1):vm(P.Female,
ainv) :half) to be written in the alternative form and(fa(Loc, 1):vm(P.Female, ainv), 0.5).

4.4 Rules for combining variance models

Variance structures are sometimes formed by combining variance models. For example, a two-factor
interaction may involve two variance models, one for each of the two factors in the interaction. Some
of the rules for combining variance models differ for R structures and G structures. The following
rules apply:

e When combining variance models in both R and G structures, the resulting direct product
structure must match the ordered effects with the outer factor first. For example, the NIN
data are ordered rows within columns. This is why in Model 3 (page 55) the ariv() variance
model for Column is specified first in the interaction term.

e ASReml-R automatically includes and estimates an error variance parameter for each section
of the R structure that is a correlation matrix.

71

Chapter 4. Specifying variance structures

e When the G structure involves more than one variance model, one must be either a homoge-
neous or a heterogeneous variance model and the rest should be correlation models; if more
than one are non-correlation models then constraints should be used to avoid identifiability
problems, that is, to prevent attempts to estimate confounded parameters.

4.5 Default initial values and constraints for variance parameters

The default initial values are 0.1 for both variance ratios and correlations, and 0.1 % v for variance
components, where v is half the variance of the response. The corresponding default parameter
constraints are P (positive) for variance ratios, U (unconstrained) for correlations and P for variance
components. These defaults can be altered using the methods described in Section 3.6.1 and par-
ticularly for complex or unbalanced analyses it is recommended that starting values are provided
to facilitate convergency.

4.5.1 Providing initial values for variance structures

In ASReml-R, the majority of the variance models accept some starting values. Providing good
starting values facilitate the convergency of the mixed model, and for large and complex models,
the model fit might finish quicker. Therefore, we recommend its use in most cases, particularly with
unbalanced data. Starting values can be difficult to determine, but one strategy is to fit simpler
models and use these.

For asreml, a single value or a vector of values can be provided, and these are assigned to the
argument init. For more than one value it is important to match exactly the order on which the
parameters are defined. To facilitate this, the option start.values = TRUE can be used. Starting
values can also be specified using the vparameters.table (more details can be found in the following
sections).

Next we present some examples for a simple and complex model where we specify starting values.

rcb.asr <- asreml(
fixed = yield ~ Variety,
random = ~idv(Rep, init = 10),
residual = ~idv(units, init = 50),
na.action = na.method(x = "include"),
data = nin89

initR <- c(60, 0.90, 60, 73, 308, 434, 380)
grass3.asr <- asreml(
fixed = y ~ Tmt + Time + Tmt:Time,
residual = ~id(Plant):exph(Time, init = initR),
data = grassUV

72

Chapter 4. Specifying variance structures

4.5.2 The vcc argument to asreml ()

The vcc argument to asreml() allows users to define equality, multiplicative and linear relation-
ships among variance parameters. This is done by supplying a two-column numeric matrix with
a dimnames attribute to vcc. The first column defines the grouping of variance parameters by
assigning the same number to each parameter within a group, and the second column contains
the scaling coefficients. The dimnames () [[1]] attribute must match the component names in the
asreml parameter vector (see start.values). The parameters in a group are scaled relative to the
first parameter in that group so that the scaling of the first parameter in each group is 1.

For example, consider a MET with two tests (under factor Trial with levels 1 and 2) with separate
error variances (0 and o3) and the spatial row (p,, and p;,) and column (p., and p.,) parameters
for a separable autoregressive spatial model of order 1 for each trial. Say we wish to constrain these
error models to be equal so that 03 = 03, pr, = pr, and pe, = pe,- Then the appropriate vcc matrix
with row attributes is

Trial 1'R

Trial 1!'Row!cor
Trial 1!Column!cor
Trial 2'R

Trial 2!'Rowl!cor
Trial 2!Column!cor

W N W=
e e

Alternatively, if we require o5 = 20%, the vcc matrix is

Trial 1'R

Trial 1!'Row!cor
Trial 1!Column!cor
Trial 2!R

Trial 2!'Rowl!cor
Trial 2!Column!cor

— = DN = =

T
W N W=

4.5.3 The vcm argument to asreml ()

The vem () argument to asreml () allows the user to define equality and multiplicative relationships
among variance parameters. The default NULL means no relationship is fitted.

To illustrate, consider an experiment in which two or more separate trials are sown adjacent to one
another at the same location, with trials sharing a common plot boundary. In this case it might be
sensible to fit the same spatial parameters and error variances for each trial. In other situations it
can be sensible to define the same variance structure over several model terms. With the argument
vem () linear relationships among variance structure parameters can be defined through a simple
linear model and by supplying a design matrix for a set of parameters.

Let k be the r-vector of original variance parameters (for either the sigma or gamma parameteri-
zation) from which we wish to specify linear relationships of the form

73

Chapter 4. Specifying variance structures

K=Mkg,

where K, is the c-vector of parameters in the new set. In the simple case where the r parameters
are constrained to be equal, ¢ = 1, the r original parameters are all equal to the one new parameter
and M will contain a column of ones.

Consider again the MET with two trials in which we wish to constrain the trial error variances and
the spatial row and column parameters for a separable autoregressive spatial model of order 1 for
each trial, to be equal. In this case the relationship between the original and new parameter sets is:
k = Mk, where K is the 6 x 1 vector [02, pr,, pe;, 02, Pra, Pes)s K, is a 3 x 1 vector [02, pr, pc)
and M, with row attributes, is the 6 x 3 matrix:

Trial 1'R

Trial 1!'Row!cor
Trial 1!Column!cor
Trial 2!R

Trial 2!'Row!cor
Trial 2!Column!cor

SO RO OO
_ o O = OO

T
SO = OO -

Generating M

A default data frame vparameters.table is generated by setting the start.values argument to
TRUE in the call to asreml (). This data frame contains elements Component which contains the
names of the variance parameters, Value which contains the default initial values and Constraint
which contains the default constraint code. The Component element can be used to generate M.

By way of example, consider a model containing a first order interaction term (A : B, say) where
the outer factor (A) is of order 7 and we wish to model it with an unstructured variance matrix
with some parameters constrained. If the constraints are:

Ur.c = V3¢ ('r' =4,5,06,7;, c=1, 2)
Upyr = V3,3 (7’ =4,5,6, 7)
Ure=v43=0 (r=25,6,7, c=3,4,5,6; r>c)

this gives rise to a vector of 7 parameters x,, = (v11,v2,1,v2,2,03,1,032,033,042)" and a variance
matrix:

V1,1

V2,1 V22

V3,1 V32 V33

U3,1 V32 V43 U33

V3,1 V32 V43 V43 V33

V31 V32 V43 V43 V43 V33

V3,1 V32 V43 V43 Vg3 V43 V33

That is, there are only 7 distinct parameters from the original 28 and one of these is to be fixed at
0. Furthermore, suppose that none of the remaining variance parameters from other terms in the
model are to be subject to any constraints.

74

Chapter 4. Specifying variance structures

The following call

model.gam <- asreml(

random = ~us(A):id(B),
start.values = TRUE,

generates a data frame component of model.gam named vparameters.table, as described above.

If the 28 components of interest are the 47" to the 74", the following code subsets the data frame
model . gam$vparameters.table and creates a factor in the reduced table that can be used to
construct M:

gam <- model.gam$vparameters.table[47:74,]
gam$fac <- factor(c(

M <- model.matrix(~ -1 + fac, data = gam)

dimnames (M) [[1]] <- row.names(model.gam$vparameters.table) [47:74]
attr(M, "assign") <- NULL

attr(M, "contrasts") <- NULL

Important M must have a dimnames attribute with the names of the original set of parameters as

its row names (shown above).

In this example, M would look like

75

Chapter 4. Specifying variance structures

parameter
47
48
49
50
o1
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

The final step before fitting the model is to fix the parameters corresponding to level 7 of gam$fac
to 0. This is achieved by by setting the appropriate values in the Value field of gam to zero and
the corresponding boundary constraint codes in the Constraint field to F. During the estimation
procedure the new parameters, x,, use the numbering system of the original parameters, k, hence
the 7 k, parameters are numbered from 47-53. So to fix v, 3, parameter 53 is fixed.

The modified values and the matrix M are used through the G.param and vem() arguments to

asreml (), that is

model.asr <- asreml(

*

random = ~us(A):id(B),

vem (M),
G.param = gam,

attribute
A:B'B 11
A:B!'B_2!1
A:B!'B_ 212
A:B!B 31
A:B!B_ 312
A:B!B_3!3
A:B!'B_ 41
A:BIB 412
A:B!'B 413
A:B!B 44
A:B!B_5!'1
A:B!B 512
A:B!'B_5!3
A:B!B 54
A:B!B 515
A:B!B 61
A:B!B_6!2
A:B!'B_6!3
A:B!'B 64
A:B!B 6!5
A:B!B_6!6
A:B!B 71
A:B!B 712
A:B'B 713
A:B'B 74
A:B!B 75
A:B!B_ 76
A:B!B 77

V1,1
V2,1
V2,2
V31
V3,2
V3.3
V4,3

76

[N elealeolNeBeolaleoleoBolaoNeoBeololeoNeoBReoloNeloBoEeoBeoBeoNoNeNel

[eNeBeoleoNeoBeolBeoNeoleoBoloNeoBeolsoNeoNeoBReoloNeoloBoBeoReoNeoN e Nell =N ¥

SO DD DD ODODODDODODDODDODDODDODODODODODODOODDODODODODOO0OO0OO OO W

O OO OO OHOODODOOHOODODOHOOOH OO HOOO

OO O OO OO OO OHROOOOHROOOHRHOOH,ROOOO W

_H OO OO OO OO OO OoOrRrRoOoOoOoOoDoo oD
OR PP FPFOOOFR PR MFHPOOOHFHRRFRFOOORrROOODODOoODOoODOoOON

Chapter 4. Specifying variance structures

This example has been set up to show how vem() can be used. An equivalent method in this case
would be to fix the 10 parameters v, . (r = 4,5,6,7; ¢ = 3,4,5,6; numbers 55, 59, 60, 64, 65, 66, 70
71, 72, 73) and set up a 15 x 3 matrix based on parameters v, . (r = 3,4,5,6,7; ¢ = 1,2; numbers
50, 51, 53, 54, 57, 58, 62, 63, 68, 69) and v,, (r = 3,4,5,6,7; numbers 52, 56, 61, 67, 74) in terms
of V3,1, U3,2 and V3,3.

Important Testing has indicated that if the modelled parameters kK = Mk, need to be restrained,
the variance parameters are not always at their optimum values.

4.6 Estimates from functions of variance components

Functions of variance components and their approximated standard errors can be obtained from
the vpredict () function. As the variance parameter names can sometimes be long or unwieldy,
the variance parameters are represented in vpredict() by the strings "vVi","v2",... in the order
in which they appear in the vparameters component of the asreml object.

For example, in the data set coop we fit a bivariate model for the responses ywt and fat, and
estimate heritability, genetic correlation and phenotypic correlation, as shown below:

head(coop, 8)

tag sire dam grp sex brr litter age wwt ywt gfw fdm fat
1 500001 1 10001 18 Female Twin-Single 2737 31 37.0 48.0 3.2 NA NA
2 500002 1 10002 18 Female Twin-Twin 2738 40 28.5 42.5 2.7 NA NA
3 500003 1 10002 18 Male Twin-Twin 2738 40 30.0 49.0 2.5 NA NA
4 500004 1 10003 18 Male Twin-Single 2739 46 44.0 53.5 3.0 NA NA
5 500005 1 10004 18 Male Single 2740 54 43.0 59.5 2.5 NA NA
6 500006 1 10005 18 Male Single 2741 34 39.5 52.5 3.5 NA NA
7 500007 1 10006 18 Female Single 2742 30 43.5 53.5 3.3 NA NA
8 500008 2 10007 19 Female Twin-Single 2743 54 36.5 NA NA NA NA

ywt0.sv <- asreml(
fixed = cbind(ywt, fat) ~ trait + trait:age +
trait:con(brr) + trait:sex + trait:sex:age,

random = ~us(trait):id(sire),
sparse = ~trait:grp,
residual = ~id(units):us(trait),

data = coop,
start.values = TRUE
)
ywt0.sv <- ywt0.sv$vparameters.table
ywt0.sv[, "Value"] <- c(1.4, 0.13, 0.03, 1, 23, 2.5, 1.6)

7

Chapter 4. Specifying variance structures

ywt0.sv

Component Value Constraint
1 trait:sire!trait_ywt:ywt 1.40 P
2 trait:sire!trait_fat:ywt 0.13 P
3 trait:sireltrait_fat:fat 0.03 P
4 units:trait!R 1.00 F
5 units:trait!trait_ywt:ywt 23.00 P
6 units:trait!trait_fat:ywt 2.50 P
7 units:trait!trait_fat:fat 1.60 P

ywt.asr <- asreml(
fixed = cbind(ywt, fat) ~ trait + trait:age +
trait:con(brr) + trait:sex + trait:sex:age,

random = ~us(trait):id(sire),
sparse = ~trait:grp,

residual = ~id(units):us(trait),
data = coop,

G.param = ywtO.sv,

R.param = ywtO.sv

Variance parameters and their indexr (number).
cbind.data.frame(

summary (ywt .asr) $varcomp,

number = seq_along(ywt.asr$vparameters))

component std.error
.45821148 0.39814260
.13027963 0.06792169

trait:sire!trait_ywt:ywt
trait:sire!trait_fat:ywt
trait:sire!trait_fat:fat .03443794 0.01694845
units:trait!R .00000000 NA
units:trait!trait_ywt:ywt 23.20554057 0.52214640
units:trait!trait_fat:ywt .50401740 0.13491632
units:trait!trait_fat:fat 1.66291555 0.05066818

= O O

N

heritd = 4*xV1/(V1 + V5)
vpredict (ywt.asr, heritA ~ 4*V1/(V1i + V5))

Estimate SE
heritA 0.2364947 0.06117935

78

z.ratio bound %ch number

3.662536

1.918086

2.031923

NA

44 .442594
18.559781
32.819725

P

' 9 v M ©u 9

0

O O O O O O

~N O O WN

Chapter 4. Specifying variance structures

heritB = 4*V3/(V3 + V7)
vpredict(ywt.asr, heritB ~ 4*V3/(V3 + V7))

Estimate SE
heritB 0.08115678 0.03936332

Genetic correlation.
vpredict(ywt.asr, gc ~ V2/sqrt((V1%V3)))

Estimate SE
gc 0.5813634 0.2038863

Phenotypic correlation.
vpredict(ywt.asr, pc ~ (V2+V6)/sqrt(((V1 + V5)*(V3 + V7))))

Estimate SE
pc 0.4071449 0.01832069

4.7 Switching between the gamma and sigma parameterization

For single-section models where the residual model can be expressed as a scaled residual matrix,
ASReml-R offers the option of fitting parameters using either the sigma parameterization (with
sigma parameters, see Section 2.1.1), or the gamma parameterization (with gamma parameters, see
Section 2.1.6). Specifying the residual model as a variance structure (or with dsum() for multi-
section models, Section 3.7) forces ASReml-R to use the sigma parameterization. For example:

residual = ~idv(units)
residual = ~arilv(Column) :aril(Row)
residual = ~us(Trait):units

would all use the sigma parameterization for model fitting. The following is the likelihood con-
vergence and table of variance parameter estimates for the met example when an IDV variance
structure is specified for the residual model:

met.asr <- asreml(
fixed = yield ~ at(check, "1"):gen,
random = ~idv(ibk) + at(check, "0"):gen,
residual = ~idv(units),
data = met

79

Chapter 4. Specifying variance structures

summary (met .asr) $varcomp

component std.error z.ratio bound %ch

ibk!ibk 2.116722 1.450487 1.459318 P 0
at(check, 0):gen 29.047878 4.930539 5.891421 P 0
units!units 245.046791 7.059791 34.710203 P 0
units!R 1.000000 NA NA F 0

Note that in this case var(e) = 02Is700. The overall scale parameter units!R is fixed at 1.0
and there is an estimated units!units variance. For both correlation (gamma parameterization)
and variance (sigma parameterization) models for the residual, ASReml-R automatically includes an
overall scale parameter. When a variance model (with associated variance parameter) is specified,
the overall scale parameter is fixed at 1.0 to avoid overparameterization. This is reflected by the
constraint on units!R in the above summary table.

Using gammaPar = TRUE in asreml.options()

For single-section models where the residual formula specifies a variance model with a single pa-
rameter, the default action to use the sigma parameterization can be switched to the gamma pa-
rameterization by setting: asreml.options(gammaPar = TRUE). For example, by running the same
example, we have:

asreml.options(gammaPar = TRUE)

met.asr <- asreml(
fixed = yield ~ at(check, "1"):gen,
random = ~idv(ibk) + at(check, "0"):gen,
residual = ~units,
data = met

Note the message indicating that the gamma parameterization has been used. By default, the sigma
parameterization is used for reporting parameters:

summary (met .asr) $varcomp

component std.error z.ratio bound Y%ch

ibk!ibk 2.116721 1.450357 1.459448 P 0
at(check, 0):gen 29.047873 4.930575 5.891376 P 0
units!R 245.046732 7.059801 34.710149 P 0

But, variance ratios estimated using the gamma parameterization can be reported by setting the
param argument to "gamma" as shown below:

gamma component std.error z.ratio bound Ych

ibk!ibk 0.008638031 2.116721 1.450357 1.459448 P 0
at(check, 0):gen 0.118540135 29.047873 4.930575 5.891376 P 0
units!R 1.000000000 245.046732 7.059801 34.710149 P 0

80

Chapter 4. Specifying variance structures

It can sometimes be advantageous to switch to the gamma parameterization in terms of providing
more appropriate initial (starting) values, as can be seen by comparison of the log-likelihoods in
the first iteration, where this parameterization seems to require fewer iterations. We can see that
for this simple MET example the REML log-likelihood is the same for the two fits and their REML
estimates of the two variance parameters are also identical.

The gamma parameterization by default

To ensure upward compatibility with previous releases, asreml () also uses the gamma parameter-
ization for model fitting by default if either no residual formula is specified or the residual formula
specifies a correlation structure. For example, in the following cases:

residual = ~id(units)
residual = ~ar1(Column) :ari(Row)
residual = ~id(units):cor(trait)

These will all use the gamma parameterization. The following is the code and default table of
variance parameter estimates when an ID variance structure is specified for the residual model:

met.asr <- asreml(
fixed = yield ~ at(check, "1"):gen,
random = ~idv(ibk) + at(check, "0"):gen,
residual = ~units,
data = met

summary (met .asr) $varcomp

component std.error z.ratio bound Ych

ibk!ibk 2.116721 1.450357 1.459448 P 0
at(check, 0):gen 29.047873 4.930575 5.891376 P 0
units!R 245.046732 7.059801 34.710149 P 0

Note that a single units terms is presented as part of the R structure.

4.8 Comparing models with different variance structures

For comparing nested models we recommend the REML likelihood ratio test implemented with the
function 1rt (). The Akaike Information Criterion (AIC) and the Bayesian Information Criterion
(BIC) are also defined in Section 2.4.1 of the reference manual. The AIC and BIC are provided
for the convenience of users but without any formal recommendation for their use. The number of
parameters includes the number of linear parameters estimated and the number of variance structure
parameters estimated, excluding variance parameters fixed at a boundary during the estimation
procedure. The value used in calculating AIC and BIC is reported, giving the opportunity for the
user to verify /modify this number.

81

Chapter 4. Specifying variance structures

All of these statistics are based on the REML log-likelihood statistics and are only valid if the fixed
effects model is unchanged between runs and is fitted in the same order (ie. the same effects are
aliased in the case where the model is over-parameterized).

82

Chapter 5

Specifying variance structures using
genetic and other relationships

5.1 Introduction

In many situations there are relationships between individuals or experimental units, and we expect
the variance matrix of the individual effects to be proportional to their relationship matrix. The
relationship matrix may arise from spatial, temporal, genetic or other relationships. The previ-
ous chapter has discussed models motivated by spatial and temporal relationships. This chapter
describes how to specify models with general relationship or inverse relationship matrices, and in
addition describes methods to efficiently analyse some common genetic additive relationship ma-
trices that depend on pedigree relationships. ASReml-R includes a variance model function vm()
which allows the use of either a relationship or inverse relationship matrix, input as either a matrix,
a vector or as a sparse matrix; or generated from a pedigree (using ainverse()). The relationship
matrix is usually positive definite but ASReml-R copes with semi-positive definite and singular and
non-singular indefinite matrices.

In a genetic analysis we have phenotypic data on a set of individuals (or genotypes) that are
genetically linked via a pedigree. The genetic effects are therefore correlated and, assuming normal
modes of inheritance, the correlation expected from additive genetic effects can be derived from
the pedigree provided all the genetic links are present. The additive genetic relationship matrix
(sometimes called the numerator relationship matrix, or A matrix) can be calculated from the
pedigree. It is actually the inverse relationship matrix that is required by asreml () for analyses.
Fortunately the inverse matrix is easier to calculate than the relationship matrix and ASReml-R
takes account of this.

The inclusion of an A~! matrix in an analysis is essentially a two step process:

1. The function ainverse() takes a pedigree data frame and returns the A~! matrix in sparse
form.

2. The matrix from step 1 is included in an asreml () analysis using the vm() function.

83

Chapter 5. Specifying variance structures using genetic and other relationships

For the more general situation, where the pedigree-based inverse relationship matrix generated by
ainverse() is not appropriate, the user can include a general inverse variance matrix provided its
structure adheres to one of the allowable forms given in Section 5.3.

5.2 Pedigree and the numerator relationship matrix

5.2.1 Pedigree objects

The pedigree defines the additive genetic relationships among individuals when fitting a genetic
model. The pedigree object is simply a data frame with the following properties:

e It is formed by three columns: the identity of the individual, its male parent and its female
parent (or maternal grand sire if the MGS option to ainverse() is to be specified).

o It is sorted so that the row giving the pedigree of an individual appears before any row where
that individual appears as a parent.

e It uses identity 0 or NA for unknown parents.

We illustrate the use of the pedigree using the data in Harvey (1977). For example, the first 20
lines of asreml: :harvey.ped are:

Calf Sire Dam
1 Sire_1 0 0
2 Sire_2 0 0
3 Sire_3 0 0
4 Sire_4 0 0
5 Sire_b 0 0
6 Sire_6 0 0
7 Sire_7 0 0
8 Sire_8 0 0
9 Sire_9 0 0
10 101 Sire_1 0
11 102 Sire_1 0
12 103 Sire_1 0
13 104 Sire_1 0
14 105 Sire_1 0
15 106 Sire_1 0
16 107 Sire_1 0
17 108 Sire_1 0
18 109 Sire_2 0
19 110 Sire_2 0
20 111 Sire_ 2 0

84

Chapter 5. Specifying variance structures using genetic and other relationships

5.2.2 Genetic groups

If all individuals belong to one genetic group then, as above, use 0 as the identity of the parents
of base individuals. However, if base individuals belong to various genetic groups, this can be
specified using the groups argument to ainverse(). The pedigree data frame must then identify
these groups. All base individuals should have group identifiers as parents. In this case the identity
0 will only appear in the group identity rows, as in the following example where three sire lines (G1,
G2, an G3) are fitted as genetic groups.

Calf Sire Dam

1 G1 0o o0
2 G2 0o O
3 G3 0o o0
4 Sire_1 Gl G1
5 Sire_2 Gl G1
6 Sire_3 Gl Gi1
7 Sire_4 G2 G2
8 Sire_ b G2 G2
9 Sire_6 G3 G3
10 Sire 7 G3 G3
11 Sire_8 G3 G3
12 Sire_ 9 G3 G3
13 101 Sire_1 G1
14 102 Sire_ 1 G1
15 103 Sire_1 G1
16 104 Sire_ 1 G1
17 105 Sire_1 G1
18 106 Sire_1 G1
19 107 Sire_1 G1
20 108 Sire_1 G1

It is usually appropriate to allocate a genetic group identifier where the parent is unknown.

5.2.3 Additional qualifiers for numerator relationships

ASReml-R has a number of optional modifications on the calculation of the numerator relationship
matrix. All of these can be specified within the function ainverse(). Some of these include,
elements such as:

o Specifying the level of selfing or inbreeding of an individual.

e Incorporating a column with the gender of an individual. This is relevant to form a relationship
matrix for the X chromosome.

o Indicating genetic groups in the pedigree (as shown before).

85

Chapter 5. Specifying variance structures using genetic and other relationships

5.3

Incorporating partial selfing (as a probability).
Allows for the specification of the inbreeding coefficient for base individuals.

It can consider the male parent of the female parent (maternal grand-sire) rather than the
female parent.

Specifying relationship and inverse relationship matrices

A symmetric matrix or symmetric inverse matrix from an external source can be included in the
analysis as:

A sparse inverse variance matrix held in three-column coordinate form in row-major order.
This triplet matrix must have class ginv from a call to ainverse, or have attribute INVERSE
set to TRUE. For backwards compatibility, a three-column data frame is assumed to be a sparse
inverse in coordinate form. In either case, the source must have a rowNames attribute.

A sparse relationship matrix held in three-column coordinate form in row-major order. If the
attribute INVERSE is not set then FALSE is assumed; a rowNames attribute must be set.

A matrix (or Matrix object) with a dimnames attribute giving the levels of the model term
being defined. This may be a relationship matrix or its inverse; if an inverse, it must have an
attribute INVERSE set to TRUE.

A numeric vector of the lower triangular elements in row-major order. The vector must have
a rowNames attribute, and if an inverse structure, it must also have an INVERSE attribute set
to TRUE.

In all cases the matrix object must have an attribute rowNames, a character vector that uniquely
identifies each row of the matrix. This vector of identifiers may be a subset of the vector of levels
of the corresponding factor in the data, but must at least contain all the individuals in the data.

An inverse relationship matrix can be obtained from the harvey pedigree using:

harvey.ainv <- ainverse(harvey.ped)
attr (harvey.ainv, "rowNames")

[1]

(9]
[17]
[25]
[33]
[41]
[49]
[57]
[65]
[73]

"Sire 1" "Sire 2" "Sire_3" "Sire 4" "Sire 5" "Sire_6" "Sire_7" "Sire_8"

"Sire_gll ||101II l|102" ll103|| II104I| II105II ||106II ll107||
11108" II109II “110" ll111|| ll112l| ||113ll ||114Il ll115||
"116" ||117Il l|118" ll119|| "120" ||121ll ||122" ll123||
11124" II125II I|126H ll127|| ll128ll II129II ||130Il ll131||
n 132" n 133" n 134" n 135" n 136" n 137" n 138" n 139"
II14OII ||141ll ll142|l ll143|| ll144ll II145II ||146Il ll147||
"148" II149" "150" ll151|| "152" ||153ll I|154" ll155||
II156|I ||157ll ll158|l ll159|| ll160|| ||161ll ||162Il ll163||
"164" II165"

86

Chapter 5. Specifying variance structures using genetic and other relationships

head (harvey.ainv)

Row Column Ainverse

[1,] 1 1 3.666667
[2,1] 2 2 3.666667
[3,] 3 3 2.666667
[4,] 4 4 3.666667
[5,] 5 5 3.333333
[6,1] 6 6 3.000000

5.4 Generating an A-inverse matrix using ainverse()

The function ainverse() uses the method of Meuwissen and Luo (1992) to compute the inverse
relationship matrix directly from the pedigree. A complete description of the arguments and return
value of a call to ainverse() is given in the ASReml-R help, available by typing help(ainverse).

Putting it all together, an analysis of average daily gain (y3 in harvey.dat) using the pedigree
harvey.ped can be obtained from:

harvey.ai <- ainverse(harvey.ped)
adg0.asr <- asreml(
fixed = y3 ~ Line,
random = ~vm(Calf, harvey.ai),
residual = ~units,
data = harvey

And the variance components are given by:

summary (adg0.asr) $varcomp

component std.error z.ratio bound %ch
vm(Calf, harvey.ai) 500.3245 498.1786 1.004307 P 0.3
units!R 273.5984 409.7263 0.667759 P 0.0

and the first five E-BLUP estimates are accessed using:

head (adg0.asr$coef$random)

effect
vm(Calf, harvey.ai)_Sire_1 11.020726
vm(Calf, harvey.ai)_Sire_2 -17.630441

87

Chapter 5. Specifying variance structures using genetic and other relationships

vm(Calf, harvey.ai)_Sire_3 6.609715
vm(Calf, harvey.ai)_Sire_4 -8.014842
vm(Calf, harvey.ai)_Sire_5 8.014842
vm(Calf, harvey.ai)_Sire_6 8.477982

or

head (summary (adg0.asr, coef = TRUE)$coef.random)

solution std.error z.ratio
vm(Calf, harvey.ai)_Sire_1 11.020726 17.43958 0.6319377
vm(Calf, harvey.ai)_Sire_2 -17.630441 17.43958 -1.0109443
vm(Calf, harvey.ai)_Sire_3 6.609715 18.01996 0.3667996
vm(Calf, harvey.ai)_Sire_4 -8.014842 18.75756 -0.4272860
vm(Calf, harvey.ai)_Sire_5 8.014842 18.75756 0.4272860
vm(Calf, harvey.ai)_Sire_6 8.477982 17.12428 0.4950855

This is an example of an individual animal model (I) estimating additive variance, 0%, and an
animal model residual, 02;. In this example we see the estimate of 0% is 500.32 and the estimate
of 031 is 273.60. The resulting variance matrix has terms 0'124 + agl, the phenotypic variance, in the
diagonal elements. The only non-diagonal terms (1/4) in the relationship matrix occur between
calves with the same sire (half-sibs) and so their covariance is (1/4)0%.

Because of this relatively simple covariance structure an equivalent sire model can be fitted estimat-
ing a sire variance, a?g and a sire model residual, 035. In this model the phenotypic variance is given
by 0% + O'gs and the covariance between half-sibs is U%. We therefore expect 0124 + O'gl = O’% + ag A
and 0% = 40% so that 02, = 02y — 30%. An alternative and instructive way of deriving the sire
model is to consider a reduced animal (RA) model. The RA model was first introduced by Quaas
and Pollak (1980) to obtain predicted additive genetic effects without the need to set up equations
for all individuals. In this case, the additive genetic effects for animals without offspring wa.qf are
written in terms of their parental effects, ©4qm, and a Mendelian sampling © Amendcar term. In our
case the calves have no offspring so:

UAcalf = 0.5 X uAsire + 0.5 X Uadam + U Amendcal f

The terms u amendcarf have additive variance 0.5 x 0124 so that ugcq f has variance U%. In this case a
further simplification occurs because the dams are unknown and we combine the last two terms to
give Upcalf = 0.5 X UAgire +UArescalf With ©rescqrf having a variance 0.75 x 0124. The sire model takes
this a stage further and has a sire model sire effect ugsire = 0.5 X Uasire and hence o?g = 0.25 x 0124.
Further, the two residuals are combined to give:

€Srescalf = A Arescal f + € Arescal f

and Ugs = ng —0.75 x 0124. This model is now fitted:

88

Chapter 5. Specifying variance structures using genetic and other relationships

adgl.asr <- asreml(
fixed = y3 ~ Line,
random = ~Sire,
residual = ~units,
data = harvey

summary (adgl.asr) $varcomp

component std.error z.ratio bound %ch
Sire 124.8934 124.9705 0.9993829 P 0.2
units!R 647.8634 122.3426 5.2954833 P 0.0

and the E-BLUP estimates from the first nine sires are:

head (summary (adgl.asr, coef=TRUE)$coef.random, 9)

solution std.error z.ratio
Sire_Sire_1 5.5094593 8.718470 0.63192960
Sire_Sire_2 -8.8136173 .718470 -1.01091330
Sire_Sire_3 3.3041580 .008603 0.36677806
Sire_Sire_4 -4.0066901 .377169 -0.42728140
Sire_Sire_5 4.0066901 .377169 0.42728140
Sire_Sire_6 4.2381029 .560945 0.49505085
Sire_Sire_7 0.2220591 .296533 0.02676529
Sire_Sire_8 -13.4731042 .415011 -1.60107980
Sire_Sire_9 9.0129422 .296533 1.08635041

O 0 00 0 O ©W O

Finally, the log-likelihood value of the two models are given by:

adg0.asr$loglik

[1] -238.8305

adgl.asr$loglik

[1] -238.8305

We see the final LogLik is the same in the two models (-238.831) and the E-BLUPs for sires in the
individual animal model are twice those in the sire model. The estimate of a% is 124.89 and the
estimate of o2y is 647.86. These convert to give estimates of 04 = 4 x 0% = 4 x 124.89 = 499.57

89

Chapter 5. Specifying variance structures using genetic and other relationships

and Ug[= O'SS -3 X 0'% = 647.86 — 3 x 124.89 = 273.16 which agree well with the estimates derived
from the animal model of 0% = 500.32 and ¢2; = 273.60.

We note that if the sire variance is over-estimated, perhaps by not fitting all the appropriate
fixed effects, the estimate of the animal residual variance found from conversion of the sire model
estimates might be negative. If an animal model is fitted, ASReml-R does not allow negative
residual variances and the estimate will tend to zero. Estimates of the additive variance can be
found by constraining the residual variance to a small positive variance. User-specified general
inverse matrices are included in an analysis in the same way. Consider an easily verified example
where we define a general inverse matrix for Sire in the Harvey data as 0.5 x Ig and estimate a
scaled sire variance o2,. We expect 02Ig = 02y x (0.5)7! x Ig =2 X 04,19 s0 02y = 0%/2.

sire.giv <- data.frame(row = seq(l, 9), column = seq(1l, 9), value = rep(0.5, 9))
attr(sire.giv, "INVERSE") <- TRUE
attr(sire.giv, "rowNames") <- paste("Sire_", seq(1l, 9), sep = "")

adg2.asr <- asreml(
fixed = y3 ~ Line,
random = ~vm(Sire, sire.giv),
residual = ~units,
data = harvey

summary (adg2.asr) $varcomp

component std.error z.ratio bound Ych
vm(Sire, sire.giv) 62.44299 62.52914 0.9986223 P 0.1
units!R 647.83182 122.33371 5.2956116 P 0.0

In this case U%Q = 62.44, which is in good agreement with the converted value 0.5 x ag =124.89/2 =
62.45 from the previous analysis.

Alternatively, we can fit the equivalent model by including a matrix 2 x Ig leading to the same
log-likelihood and estimates of variances as the previous analysis:

sire.mat <- data.frame(row = seq(l, 9), column = seq(1l, 9), value = rep(2.0, 9))
sire.mat <- as.matrix(sire.mat)

attr(sire.mat, "rowNames") <- paste("Sire_", seq(1l, 9), sep = "")
attr(sire.mat, "INVERSE") <- FALSE

adg3.asr <- asreml(
fixed = y3 ~ Line,
random = ~vm(Sire, sire.mat),
residual = ~units,
data = harvey

)

summary (adg3.asr) $varcomp

90

Chapter 5. Specifying variance structures using genetic and other relationships

component std.error z.ratio bound Ych
vm(Sire, sire.mat) 62.44299 62.52914 0.9986223 P 0.1
units!R 647.83182 122.33371 5.2956116 P 0.0

Most variance matrices are positive definite so every linear combination of effects has a positive
variance. However, there are situations in which a variance might be zero, for example, with a
dominance model and fully inbred individuals. To illustrate this, we assume we have an extra
individual unrelated to the first 9 with zero variance so that the variance matrix has 10 rows and
columns with nine diagonal elements being 2.0 and the last being 0. This matrix is positive semi-
definite and to allow ASReml-R to continue using Lagrange multipliers, we indicate this by adding
as a singularity code PSD. If the relationship matrix is read in as a vector, then we have:

ped.vec <- c(
2,

-
-

-
-

b

-
-

b

b

-

-
-
-

b

-
-

b b b

-
-

b b b 3

2
s , 0, 2,
o, 0, 0, 0, 0, O, 0, 0, 0)
attr(ped.vec, "rowNames") <- paste("Sire_ ", seq(l, 10), sep = "")
attr(ped.vec, "INVERSE") <- FALSE

b

O O O O O O O O
O O O O O O oN

-

2
0, 2
0, O
0, 0O,
0, O
0, O
0, O
0

O O ON
S O N

-

b b

O O O O ON

o

adg4.asr <- asreml(
fixed = y3 ~ Line,

random = ~vm(Sire, ped.vec, "PSD"),
residual = ~units,
data = harvey

summary (adg4.asr) $varcomp

component std.error z.ratio bound %ch
vm(Sire, ped.vec, "PSD") 62.44299 62.52914 0.9986223 P 0.1
units!R 647.83182 122.33371 5.2956116 P 0.0

Again, if we have clones then the variance matrix can be positive semi-definite, so if individual 10
was a clone of individual 9, then reading in the relationship matrix as a sparse matrix we have:

91

Chapter 5. Specifying variance structures using genetic and other relationships

spped.mat <- data.frame(

Row = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10),
Column = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 9),
Value = c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1))

spped.mat <- as.matrix(spped.mat)
attr(spped.mat, "rowNames") <- paste("Sire_ ", seq(1, 10), sep = "")
attr(spped.mat,"INVERSE") <- FALSE

adgb.asr <- asreml(
fixed = y3 ~ Line,
random = ~vm(Sire, spped.mat, "NSD"),
data = harvey

summary (adgb . asr) $varcomp

component std.error z.ratio bound Ych
vm(Sire, spped.mat, "NSD") 124.8934 124.9705 0.9993829 P 0.2
units!R 647.8634 122.3426 5.2954833 P 0.0

If the relationship matrix is estimated then it might be non-singular indefinite (positive and negative
roots). ND indicates to ASReml-R to ignore the indefinite condition and proceed. If the matrix is
singular indefinite (positive, zero and negative roots) NSD indicates to ASReml-R to proceed ignoring
the indefinite condition and using Lagrange multipliers to process the matrix.

92

Chapter 6

Prediction from the linear model

6.1 Introduction

Prediction is the process of forming a linear function of the vector of fixed and/or random effects in
the linear model to obtain an estimated or predicted value for a quantity of interest. It is primarily
used for predicting tables of adjusted means (or predicted margins). If the table is based on a subset
of the explanatory variables then the other variables need to be accounted for. It is usual to form
a predicted value either at specified values of the remaining variables, or averaging over them in
some way.

Some prediction methods require as input a data frame of the factor levels and variate values used
to fit the model, augmented by new points for which predictions are required. This approach has
limitations; for example, it does not lend itself easily to the notion of averaging over particular
factors in the model to form predictions.

The approach to prediction described here is a generalization of that of Lane and Nelder (1982) who
consider fixed effects models only. They form fitted values for all combinations of the explanatory
variables in the model, then take marginal means across the explanatory variables not relevant to
the current prediction. Our case is more general in that random effects can be fitted in mixed
models. A full description can be found in Gilmour et al. (2004) and Welham et al. (2004).

Random factor terms may contribute to predictions in several ways. They may be: 1) evaluated
at a given value(s) specified by the user, 2) averaged over, or 3) omitted from the fitted values
used to form the prediction. Averaging over the set of random effects gives a prediction specific
to the random effects observed. We describe this as a conditional prediction. Omitting the term
from the model produces a prediction at the population average (zero), that is, substituting the
assumed population mean for an unknown random effect. We call this a marginal prediction. Note
that in any prediction, some terms may be evaluated as conditional and others at marginal values,
depending on the aim of prediction.

For fixed factors there is no pre-defined population average, so there is no natural interpretation
for a prediction derived by omitting a fixed term from the fitted values. Averages must therefore
be taken over all the levels present to give a sample specific average, or value(s) must be specified
by the user.

93

Chapter 6. Prediction from the linear model

For covariate terms (fixed or random) the associated effect represents the coefficient of a linear trend
in the data with respect to the covariate values. These terms should be evaluated at a given value
of the covariate, or averaged over several given values. Omission of a covariate from the predictive
model is equivalent to predicting at a zero covariate value, which is often inappropriate.

Interaction terms constructed from factors generate an effect for each combination of the factor
levels, and behave like single factor terms in prediction. Interactions constructed from covariates
fit a linear trend for the product of the covariate values and behave like a single covariate term.
An interaction of a factor and a covariate fits a linear trend for the covariate for each level of the
factor. For both fixed and random terms, a value for the covariate must be given, but the factor
levels may be evaluated at a given level, averaged over or (for random terms only) omitted.

Before considering some examples in detail, it is useful to consider the conceptual steps involved
in the prediction process. Given the explanatory variables used to define the linear (mixed) model,
the four main steps are:

1. Choose the explanatory variable(s) and their respective value(s) for which predictions are
required; the variables involved will be referred to as the classify set and together define the
multiway table to be predicted.

2. Determine which variables should be averaged over to form predictions. The values to be
averaged over must also be defined for each variable; the variables involved will be referred
to as the averaging set. The combination of the classify set with these averaging variables
defines a multiway hyper-table. Note that variables evaluated at only one value, for example,
a covariate at its mean value, can be formally introduced as part of the classifying or averaging
set.

3. Determine which terms from the linear mixed model are to be used in forming predictions
for each cell in the multiway hyper-table in order to give appropriate conditional or marginal
predictions.

4. Choose the weights to be used when averaging cells in the hyper-table to produce the multiway
table to be reported.

Note that after steps 1 and 2 there may be some explanatory variables in the fitted model that
do not classify the hyper-table. These variables occur in terms that are ignored when forming
the predicted values. It was concluded above that fixed terms could not sensibly be ignored when
forming predictions, so that variables should only be omitted from the hyper-table when they only
appear in random terms. Whether terms derived from these variables should be used when forming
predictions depends on the application and aim of the prediction.

The main difference in this prediction process compared to that described by Lane and Nelder
(1982) is the choice of whether to include or exclude model terms when forming predictions. In
linear models, since all terms are fixed, terms not in the classify set must be in the averaging set.

94

Chapter 6. Prediction from the linear model

6.2 Estimating means: the predict() method

The predict method is detailed in the help by typing ?predict. A simple example is the prediction
of variety means from fitting model 2a (Section 4.1) to the NIN field trial data. Recall that a
randomized block model with random replicate effects is fitted to this data by:

rcb.asr <- asreml(
fixed = yield ~ Variety,
random = ~idv(Rep),
residual = ~idv(units),
na.action = na.method(x = "include"),
data = nin89

A table of means classified by Variety can be obtained from:

rcb.pv <- predict(object = rcb.asr, classify = "Variety")

A component named pvals is included in the rcb.pv object, and the first few lines of predictions
are:

head(rcb.pvépvals)

Variety predicted.value std.error status
1 ARAPAHOE 29.4375 3.855687 Estimable
2 BRULE 26.0750 3.855687 Estimable
3 BUCKSKIN 25.5625 3.855687 Estimable
4 CENTURA 21.6500 3.855687 Estimable
5 CENTURK78 30.3000 3.855687 Estimable
6 CHEYENNE 28.0625 3.855687 Estimable

The average standard error of difference between the predicted means is:

rcb.pv$avsed

overall
4.979075

The options vcov = TRUE will provide the full variance-covariance matrix of the predicted values.

95

Chapter 6. Prediction from the linear model

6.2.1 The prediction process

Predictions are formed as an extra process in the final iteration of ASReml-R, and the method
predict () parses the argument list and calls update () using the final parameter estimates in the
provided asreml object. Additional options for predict() can be set in asreml.options(), such
as requesting extra memory (using pworkspace), adding spline predict points or controlling the
number of additional iterations, bound by the rules of update().

By default, factors are predicted at each level, simple covariates are predicted at their overall
mean and covariates used as a basis for splines or orthogonal polynomials are predicted at their
design points. Covariates grouped into a single term using the grp () model function are treated as
covariates. In addition, special model terms mv and units are always ignored.

Prediction at particular values of a covariate, or particular levels of a factor, is achieved by:

1. Including the variables in the classify set and specifying any non-default values at which
predictions are to be made by using the levels argument.

2. Specifying the averaging set. The default averaging set is those explanatory variables involved
in fixed effect model terms that are not in the classifying set. By default, variables that only
define random model terms are ignored. The average argument allows these variables to be
added to the default averaging set.

3. Determining the linear model terms to use in prediction. The default rule is that all model
terms based entirely on the classifying and averaging set are used. The use and ignore
arguments allow this default set of model terms to be modified by adding or removing terms,
respectively. The onlyuse argument explicitly specifies the model terms to use, ignoring
all others. The argument except explicitly specifies the model terms not to use, including
all others. These arguments may implicitly modify the averaging set by including variables
defining terms in the predicted model not in the classify set. It is sometimes easier to specify
the classify set and the prediction linear model and allow ASReml-R to construct the averaging
set.

4. Choosing the weights for forming means over dimensions in the hyper-table. The default is
to average over the specified levels but the average argument can be used to specify weights
to be used in averaging over a factor.

For example, using the wheat data set, we can fit the model:

obj.asr <- asreml(
fixed = yield ~ location + at(check, "1"):gen,
random = ~at(location):ibk + at(check, "0"):gen,
residual = ~idv(units),
data = met

And the following predict method puts at (check, "0"):gen in the classify set, location in the
averaging set and ibk in the ignore set. Consequently, the hyper-table is formed from from model

96

Chapter 6. Prediction from the linear model

terms location and at(check, "0"):gen but ignoring all terms in at(location) :ibk, and then
averaging across sites to produce overall test genotype predictions. See the following code and notes.

predict(

object = obj.asr,

classify = "check:gen", levels = list(check = "0"))$pvals
)

Notes:

- The predictions are obtained by averaging across the hypertable
calculated from model terms constructed solely from factors in
the averaging and classify sets.

- Use ’average’ to move ignored factors into the averaging set.

- at(check, 1) is evaluated at 1.00000

- The simple averaging set: location

- The ignored set: ibk

check gen predicted.value std.error status
1 0 Camelot 61.62569 6.774021 Estimable
2 0 Freeman 61.62569 6.774021 Estimable
3 0 GOODSTREAK 61.62569 6.774021 Estimable
4 0 NE16401 56.80434 2.810215 Estimable
5 0 NE16402 75.94455 2.807791 Estimable
6 0 NE16403 58.40314 2.807875 Estimable

6.3 Aliasing

There are often situations in which the fixed effects design matrix X is not of full column rank.
This aliasing can be classified according to its cause:

1. Linear dependencies among model terms due to over-parameterization of the model.

2. No data present for some factor combinations so that the corresponding effects cannot be
estimated.

3. Linear dependencies due to other, usually unexpected, structure in the data.

The first type of aliasing is imposed by the parameterization chosen and can be determined from
the model. The second type of aliasing can be detected when setting up the design matrix for
parameter estimation (which may require revision of imposed constraints). The third type can then
be detected during the absorption of the mixed model equations. Dependencies (aliasing) can be
dealt with in several ways and predict () checks that predictions are of estimable functions in the
sense defined by Searle (1971) (p. 160) and are invariant to the constraint method used.

97

Chapter 6. Prediction from the linear model

Normally ASReml-R does not return predictions of non-estimable functions but the aliased ar-
gument can be used to control this for each predict table. However, using aliased is rarely a
satisfactory solution. Failure to report predicted values normally means that the prediction is aver-
aging over some cells of the hyper-table that have no information and therefore cannot be averaged
in a meaningful way. Appropriate use of the average or present arguments will usually resolve the
problem. The present argument enables the construction of means by averaging only the estimable
cells of the hyper-table. It is regularly used for nested factors, for example locations nested in
regions.

6.4 Complicated weighting

Generally, when forming a prediction table, it is necessary to average over (or ignore) some potential
dimensions of the prediction table. By default, ASReml-R uses equal weights (1/f for a factor with
f levels). More complicated weighting is achieved by using the average argument to set specific
(unequal) weights for each level of a factor. However, sometimes the weights to be used need to be
defined with respect to two or more factors. The simplest case is when there are missing cells and
weighting is equal for those cells that are present in a multiway table; this is achieved by using the
present argument. This is further generalized by allowing weights for use by the present averaging
process via a named component prwts of the present list.

The factors in the table of weights are specified with the present argument and the table of weights
with the prwts component of the present list. There may be a maximum of two independent lists
of factors in the present list, and, if specified prwts applies to the first list only. The order of
factors in the tables of weights must correspond to the order in the present list with later factors
nested within preceding factors. Check the output to ensure that the values in the tables of weights
are applied in the correct order.

To illustrate this, we will consider a rather complicated example from a rotation experiment con-
ducted over several years. This particular evaluation followed the analysis of the daily live weight
gain per hectare of the sheep grazing the plots. There were periods when no sheep grazed. Different
flocks grazed in different years. Daily live weight gain was assessed between five and eight times in
the various years. To obtain a measure of total productivity in terms of sheep live weight, we need
to weight the daily per sheep figures by the number of sheep grazing days per month. Treatment
effects for each year can be obtained from:

predict(
object = asr.model, classify = "year:crop:pasture:lime",
levels = list(year = 1, crop = 1),

average = list(month = c(56, 55, 56, 53, 57, 63, 0, 0, 0, 0, O, 0))
)

predict (

object = asr.model, classify = "year:crop:pasture:lime",

levels = list(year = 2, crop = 1),

average = list(month = c(36, 0, 0, 53, 23, 24, 54, 54, 43, 35, 0, 0))
)

98

Chapter 6. Prediction from the linear model

predict(
object = asr.model, classify = "year:crop:pasture:lime",
levels = list(year = 3, crop = 1),

average = list(month = c(70, 0, 21, 17, 0, 0, O, 70, O, 0, 53, 0))
)

predict(

object = asr.model, classify = "year:crop:pasture:lime",

levels = list(year = 4, crop = 1),

average = list(month = c(53, 56, 22, 92, 19, 44, 0, 0, 36, 0, 0, 49))
)
predict(

object = asr.model, classify = "year:crop:pasture:lime",

levels = list(year = 5, crop = 1),

average = list(month = c(0, 22, 0, 53, 70, 22, 0, 51, 16, 51, 0, 0))
)

and averages over years from:

predict(
object = asr.model, classify = "crop:pasture:lime",
levels = list(crop = 1),
present = list(
c("year", "month"),
prwts = c(
56, 55, 56, 63, 57, 63, 0, 0, 0, 0, O, O,
36, 0, 0, 53, 23, 24, 54, 54, 43, 35, 0, O,
ro0, o0, 21, 17, o, 0, O, 70, O, O, 53, O,
53, 56, 22, 92, 19, 44, 0, 0, 36, 0, O, 49,
0, 22, 0, 53, 70, 22, 0, 51, 16, 51, 0, 0)/5)

Both sets of predict () calls are given to show how the weights were derived and used. Notice that
the order in c("year", "month") implies that the weight coefficients are presented in standard
order with the levels for months cycling within levels for years.

6.5 Further examples

We can predict variety means from an RCB analysis of the NIN field trial data using:

99

Chapter 6. Prediction from the linear model

nin89.asr <- asreml(
fixed = yield ~ Variety,

random = ~Rep,
residual = ~idv(units),
na.action = na.method(x = "include"),
data = nin89
)
nin89.pv <- predict(object = nin89.asr, classify = "Variety")

Also, we can predict variety means from the NIN field trial data in the presence of the covariate
seed weight sweight (note this variable was simulated for illustration):

nin89%sweight <- with(set.seed(1208), expr = rnorm(n = nrow(nin89), mean = 2, sd = 1))
nin89.asr <- asreml(
fixed = yield ~ Variety + sweight,

random = ~Rep,
residual = ~idv(units),
na.action = na.method(x = "include"),
data = nin89
)
nin89.pv <- predict(object = nin89.asr, classify = "Variety")

will predict variety means at the average of sweight ignoring random replicate effects.

Also, variety means from the NIN field trial data at a specified value of the covariate sweight:

nin89.asr <- asreml(
fixed = yield ~ Variety + sweight + Rep,
na.action = na.method(x = "include"),
data = nin89

)

nin89.pv <- predict(
object = nin89.asr,
classify = "Variety:sweight",
levels = list(sweight = 2)

predicts variety means at sweight = 2, averaged over fixed replicate effects.

The following code will predict genotype effects across sites (locations) based on a simple MET
analysis:

100

Chapter 6. Prediction from the linear model

checks <- met[met$check == 1,]
obj.asr <- asreml(
fixed = yield ~ gen,

random = ~location:gen,
residual = ~dsum(~units|location),
data = checks

)
pbj.pv <- predict(object = obj.asr, classify = "gen")

The above predicts variety means ignoring the location:gen term while

obj.pv <- predict(

object = obj.asr,

classify = "gen",

average = list(location = c(1/3, 1/3, 1/3, 0, 0, 0, 0, 0))
)

This is similar to before, but in this case only the predictions from the first three locations from
the hyper-table are averaged and the rest are ignored.

Using the Orange wether trial, we can predict means for each team and trait using:

wether.asr <- asreml(
fixed = cbind(gfw, fdiam) ~ trait + trait:Year,

random = ~us(trait) :Team,
residual = ~id(units) :us(trait),
data = owt
)
orange.pv <- predict(object = wether.asr, classify = "trait:Team")

This code forms the hyper-table for each trait based on Year and Team with each linear combination
in each cell of the hyper-table for each trait using Team and Year effects. Team predictions are
produced by averaging over years.

101

Chapter 7

Examples

7.1 Introduction

This section considers the analysis of several examples to illustrate the capabilities of ASReml-R in
the context of analysing real data sets. We discuss some of the components returned from ASReml|-R
and indicate when potential problems may occur. Statistical concepts and issues are discussed as
necessary but we stress that the analyses are only illustrative.

7.2 Split-plot design

The first example is the analysis of a split-plot design originally presented by Yates (1935). The
experiment was conducted to assess the effects on yield of three oat varieties (Golden Rain, Marvel-
lous and Victory) with four levels of nitrogen application (0, 0.2, 0.4 and 0.6 cwt/acre). The field
layout consisted of six blocks (labelled I, IT, III, IV, V and VI) with three whole-plots per block
each split into four sub-plots. The three varieties were randomly allocated to the three whole-plots
while the four levels of nitrogen application were randomly assigned to the four sub-plots within
each whole-plot. The data are presented in Table 7.1.

A standard analysis of these data recognizes the two basic elements inherent in the experiment:

1. the stratification of the experiment units, that is the blocks, whole-plots, and sub-plots, and

2. the treatment structure that is superimposed on the experimental material.

The latter is of prime interest in the presence of stratification. The aim of the analysis is to
examine the importance of the treatment effects while accounting for the stratification and restricted
randomisation of the treatments to the experimental units.

102

Chapter 7. Examples

Table 7.1: A split-plot field trial of oat varieties and nitrogen application

Nitrogen
Block Variety 0.0cwt 0.2cwt 0.4cwt 0.6cwt
GR 111 130 157 174
I M 117 114 161 141
\Y 105 140 118 156
GR 61 91 97 100
II M 70 108 126 149
\Y 96 124 121 144
GR 68 64 112 86
III M 60 102 89 96
\Y 89 129 132 124
GR 74 89 81 122
IV M 64 103 132 133
\Y% 70 89 104 117
GR 62 90 100 116
v M 80 82 94 126
\Y 63 70 109 99
GR 53 74 118 113
VI M 89 82 86 104
\Y% 97 99 119 121

The data can be accessed directly from the object oats, and the fields in this data frame are:

head(oats)

Blocks Nitrogen Subplots Variety Wplots yield Column Row nrate

1 1 0.6_cwt 1 Marvellous 1 156 1 1 0.6
2 1 0.4_cwt 2 Marvellous 1 118 2 1 0.4
3 1 0.2_cwt 3 Marvellous 1 140 1 2 0.2
4 1 O_cwt 4 Marvellous 1 105 2 2 0.0
5 1 O_cwt 1 Victory 2 111 1 3 0.0
6 1 0.2_cwt 2 Victory 2 130 2 3 0.2

The first five are factors describing the stratification, or experiment design, and applied treatments.
The standard split-plot analysis is achieved by fitting terms Block and Blocks:Wplots as random
effects. It is not necessary to specify Blocks:Wplot:Subplots as these three factors uniquely define
the experimental units. The fixed effects include the main effects of both Variety and Nitrogen
and their interaction.

oats.asr <- asreml(
fixed = yield ~ Variety + Nitrogen + Variety:Nitrogen,
random = ~Blocks + Blocks:Wplots,
residual = ~units,
data = oats

103

Chapter 7. Examples

The variance components are:

summary (oats.asr) $varcomp

component std.error z.ratio bound %ch

Blocks 214.4906 168.66037 1.271731 PO.1
Blocks:Wplots 106.0686 67.88201 1.562543 P 0.0
units!R 177.0946 37.33601 4.743266 P 0.0

The default synopsis for testing fixed effects in ASReml-R is a table of incremental Wald tests (see
Section 3.14):

wald(oats.asr)

Df Sum of Sq Wald statistic Pr(Chisq)

(Intercept) 1 43443.5179 245.312491 0.0000000
Variety 2 526.05681 2.970492 0.2264466
Nitrogen 3 20020.5000 113.049748 0.0000000
Variety:Nitrogen 6 321.7500 1.816826 0.9357507
residual (MS) NA 177.0946 NA NA

In this example there are four terms included in the summary. The overall mean (Intercept) is
included though it is of no interest for these data. The tests are sequential, that is the effect of
each term is assessed by the change in sums of squares achieved by adding the term to the current
model, given those terms appearing above the current term are already included. For example,
the effect of Nitrogen is assessed by calculating the change in sums of squares for the two models
(Intercept) + Variety + Nitrogen and (Intercept) + Variety. No refitting occurs in this
process, that is the variance parameters are held constant at the REML estimates obtained from
the currently specified fixed model.

The usual ANOVA divides into three strata, with treatment effects separating into different strata
as a consequence of the balanced design and the confounding of main effects of Variety with whole-
plots. It is straightforward to derive the ANOVA estimates of the stratum variances from the above
REML estimates. That is,

blocks = 1267 +462 + 6% =3175.1
blocks.wplots = 462 + &2 601 3
residual = 62=177.1

The incremental Wald tests have an asymptotic x? distribution, with degrees of freedom (df) given
by the number of estimable effects (the number in the Df column). The denominator degrees of
freedom for testing fixed effects and approximate stratum variances are returned by:

104

Chapter 7. Examples

oats.wld <- wald(oats.asr, denDF = "default")

oats.wld$Wald
oats.wld$stratumVariances

Df denDF F.inc Pr
(Intercept) 1 5 245.1000 1.931825e-05
Variety 2 10 1.4850 2.723869e-01
Nitrogen 3 45 37.6900 2.457701e-12
Variety:Nitrogen 6 45 0.3028 9.321988e-01

df Variance Blocks Blocks:Wplots units!R

Blocks 5 3175.0556 12 4 1
Blocks:Wplots 10 601.3306 0 4 1
units!R 45 177.0833 0 0 1

Determining the denominator degrees of freedom is straightforward for balanced designs, such as
this split-plot design, but it is not always so straightforward for unbalanced designs (such as the
rats data set described in the next section).

Predicted means for the Variety, Nitrogen and Variety:Nitrogen effects can be obtained from
the predict method in the three separate statements shown below:

oatsV.pv <- predict(oats.asr, classify = "Variety", sed = TRUE)
oatsN.pv <- predict(oats.asr, classify = "Nitrogen", sed = TRUE)
oatsVN.pv <- predict(oats.asr, classify = "Variety:Nitrogen", sed = TRUE)

The latter returns an object oatsVN.pv with components pvals, sed and avsed. Here, pvals
contains the predicted means for the term defined in the classify argument and sed contains the
full matrix of SEDs for this set of predictions (Variety:Nitrogen here):

oatsVN.pv$pvals

Variety Nitrogen predicted.value std.error status
1 Golden_rain O_cwt 80.00000 9.106977 Estimable
2 Golden_rain 0.2_cwt 98.50000 9.106977 Estimable
3 Golden_rain 0.4_cwt 114.66667 9.106977 Estimable
4 Golden_rain 0.6_cwt 124.83333 9.106977 Estimable
5 Marvellous O_cwt 86.66667 9.106977 Estimable
6 Marvellous 0.2 _cwt 108.50000 9.106977 Estimable
7 Marvellous 0.4_cwt 117.16667 9.106977 Estimable
8 Marvellous 0.6_cwt 126.83333 9.106977 Estimable
9 Victory O_cwt 71.50000 9.106977 Estimable
10 Victory 0.2_cwt 89.66667 9.106977 Estimable
11 Victory 0.4_cwt 110.83333 9.106977 Estimable
12 Victory 0.6_cwt 118.50000 9.106977 Estimable

105

Chapter 7. Examples

Below we only show the first six rows and columns of the SED matrix.

oatsVN.pv$sed[1:6, 1:6]

6 x 6 Matrix of class "dspMatrix"

[,1] (,2] [,3] (,4] (,5] (,6]

[1,] NA 7.682954 7.682954 7.682954 9.715025 9.715025
[2,] 7.682954 NA 7.682954 7.682954 9.715025 9.715025
[3,] 7.682954 7.682954 NA 7.682954 9.715025 9.715025
[4,] 7.682954 7.682954 7.682954 NA 9.715025 9.715025
[5,] 9.715025 9.715025 9.715025 9.715025 NA 7.682954
[6,] 9.715025 9.715025 9.715025 9.715025 7.682954 NA

The avsed component gives the minimum, mean and maximum SED:

oatsVN.pv$avsed

min mean max
7.682954 9.160824 9.715025

Note that the average SED is calculated from the average variance of differences.

7.3 Unbalanced nested design

This example illustrates some further aspects of testing fixed effects in linear mixed models. It
differs from the previous split-plot example in that it is unbalanced, so more care is required in
assessing the significance of fixed effects.

The experiment was reported by Dempster et al. (1984) and was designed to compare the effect
of three doses of an experimental compound (control, low and high) on the maternal performance
of rats. Thirty female rats (Dams) were randomly split into three groups of 10, and each group
randomly assigned to the three different doses. All pups in each litter were weighed. The litters
differed both in total size and composition of males and females. Thus, the additional covariate
littersize was included in the analysis. The differential effect of the compound on male and
female pups was also of interest. Three litters had to be dropped from the experiment, which meant
that one dose had only 7 dams.

The analysis must account for the presence of between-dam variation, and must also recognise the
stratification of the experimental units (pups within litters) and the restricted randomisation of the
doses to the dams. An indicative ANOVA decomposition for this experiment is given in Table 7.2.

The Dose and littersize effects are implicitly tested against the residual dam variation, while the
remaining effects are tested against the residual within litter variation. The asreml () call is:

106

Chapter 7. Examples

Table 7.2: Rat data: ANOVA decomposition

stratum decomposition type df or ne
(Intercept) fixed 1
Dams
Dose fixed
littersize fixed 1
Dam random 27
Dams:Pups
Sex fixed 1
Dose:Sex fixed
error random

rats.asr <- asreml(
fixed = weight ~ littersize + Dose + Sex + Dose:Sex,
random = ~idv(Dam),
residual = ~units,
data = rats

An abbreviated output from the asreml convergence trace removing iterations 2 to 5 is:

rats.asr$tracel, (-2:-5)]

1 6 7 8

Loglik 74.2174175 87.2396114 87.2397915 87.2397915
Sigma2 0.1967003 0.1653687 0.1652991 0.1652991
DF 315.0000000 315.0000000 315.0000000 315.0000000
stepsz 0.5621388 1.0000000 1.0000000 1.0000000
Dam!Dam 0.1000000 0.5827630 0.5867030 0.5866740
1.

units!R 0000000 1.0000000 1.0000000 1.0000000

The tables of estimated variance parameters and Wald tests are:

summary (rats.asr) $varcomp

component std.error z.ratio bound Y%ch
Dam!Dam 0.09697668 0.03318630 2.92219 P 0
units!R 0.16529909 0.01367002 12.09209 P 0

107

Chapter 7. Examples

ww <- wald(rats.asr, denDF = "default", ssType = "conditional")
Df denDF F.inc F.con Margin Pr
(Intercept) 1 32.0 9049.0000 1099.0000 0.000000e+00
littersize 1 31.5 27.9900 46.2500 B 1.190723e-07
Dose 2 23.9 12.1500 11.5100 A 3.147535e-04
Sex 1 299.8 57.9600 57.9600 A 3.512746e-13
Dose:Sex 2 302.1 0.3984 0.3984 B 6.717519e-01

The incremental Wald tests indicate that the interaction between Dose and Sex is not significant.
Since these tests are sequential then the test for the Dose:Sex term is appropriate as it respects
marginality with both the main effects of dose and sex fitted before the inclusion of the interaction.

The conditional F-tests help assess the significance of the other terms in the model. It con-
firms littersize is significant after the other terms, that Dose is significant when adjusted
for littersize and Sex but ignoring Dose:Sex, and that Sex is significant when adjusted for
littersize and Dose but ignoring Dose:Sex. These tests respect marginality to the Dose:Sex
interaction.

A plot of residuals vs fitted values is shown in Figure 7.1, and can be obtained with plot (rats.asr).

Before proceeding we note the possibility of several outliers, in particular unit 66. The weight of this
female rat, within litter 9 is only 3.68, compared to weights of 7.26 and 6.58 for two other female
sibling pups. This weight appears erroneous, but without knowledge of the actual experiment we
retain the observation.

9
o ©
1 o
o ° o
o ° g
2 oo
008 °°°oo° : &geaﬁogg o o 8
9 °o g ° ° °
° ° o 13
o 8 @ ooggo ° %ggoooogooo §°
0 ° o g 888° %0 o7g88 898° 00, | 2 o
)
Qg 0 ,% o ° ® §° QE o Og o o o
800 8 000,90 ° 8o o
8 890 g oo o oo0 o o o
0% 0 o 68°°° °
w ° g o o
o o
S ° o
24 ° °° o
Q
o °
°
_2.
-3 o
5 6 7
Fitted

Figure 7.1: Residual plot for the rat data
We refit the model without the Dose:Sex term.

108

Chapter 7. Examples

rats2.asr <- asreml(
fixed = weight ~ littersize + Sex + Dose,
random = ~idv(Dam),
residual = ~units,
data = rats

summary (rats2.asr)$varcomp

component std.error z.ratio bound Y%ch

Dam!Dam 0.09791765 0.03341525 2.930328 P 0

units!R 0.16452411 0.01356055 12.132553 P 0

ww2 <- wald(rats2.asr, denDF = "default", ssType = "conditional")
Df denDF F.inc F.con Margin Pr

(Intercept) 1 32.0 8981.00 1093.00 0.000000e+00

littersize 1 31.4 27.85 46.43 A 1.162738e-07

Sex 1 301.7 59.54 58.27 A 3.032019e-13

Dose 2 24.0 11.42 11.42 A 3.283315e-04

Note that the variance parameters are re-estimated, though there is little change from the previous
analysis.

The impact of (wrongly) dropping Dam from this model is shown below:

rats3.asr <- asreml(
fixed = weight ~ littersize + Dose + Sex,

residual = ~units,

data = rats
)
ww3 <- wald(rats3.asr, denDF = "default", ssType = "conditional")

Df denDF F.inc F.con Margin Pr

(Intercept) 1 317 47080.00 3309.00 0.000000e+00
littersize 1 317 68.48 146.50 A 0.000000e+00
Dose 2 317 60.99 58.43 A 0.000000e+00
Sex 1 317 24.52 24.52 A 1.199158e-06

Even if a random term is not significant, it should not be dropped from the model if it represents a
strata of the design as in this case. The impact of deleting Dam on the significance tests for the fixed
effects is substantial and not surprising. This reinforces the importance of preserving the strata of
the design when assessing the significance of fixed effects. The role of Dam in this case is similar to
the situation were we need a random effect of units to control for pseudo-replication.

109

Chapter 7. Examples

7.4 Sources of variability in unbalanced data

This example illustrates an approach to the analysis of unbalanced data where the main aim is to
determine the sources of variation rather than assess the significance of imposed treatments. The
data are taken from Cox and Snell (1981) and involve an experiment to examine the variability
in the production of car voltage regulators. Standard production of regulators involves two steps:
1) regulators are taken from the production line and passed to a setting station which adjusts
the regulator to operate within a specified range of voltages, and, 2) from the setting station the
regulator is then passed to a testing station where it is tested and returned if outside the required
range.

A total of 64 regulators were tested at four testing stations (Teststat). The voltage for individual
regulators was set at a total of 10 setting stations (Setstat). A variable number of regulators
(between 4 to 8) were set at each station. However, each regulator was tested at every testing
station. The first few lines of the data set voltage are shown below, followed by the asreml ()
function call.

Teststat Setstat Regulatr voltage

1 1 A 1 16.5
2 2 A 1 16.5
3 3 A 1 16.6
4 4 A 1 16.6
5 1 A 2 15.8
6 2 A 2 16.7

The factor Regulatr numbers the regulators within each setting station. Thus the term
Setstat:Regulatr allows for differential effects of each regulator, while the other terms examine
the effects of the setting and testing stations and possible interaction.

voltage.asr <- asreml(
fixed = voltage ~ 1,
random = ~Setstat + Setstat:Regulatr + Teststat + Setstat:Teststat,

residual = ~units,
data = voltage

The estimated components of variance are:

summary (voltage.asr) $varcomp

component std.error z.ratio bound Y%ch

Teststat 3.287141e-03 0.003337459 0.9849231 P 0
Setstat 1.193738e-02 0.008811857 1.3546953 P 0
Setstat:Teststat 5.175173e-09 NA NA B NA
Setstat:Regulatr 3.077791e-02 0.008452247 3.6413883 P 0
units!R 5.114166e-02 0.005260970 9.7209570 P 0

110

Chapter 7. Examples

The convergence criterion was satisfied, however, the variance component estimate for the
Setstat:Teststat term has been fixed at the boundary. The default constraint for variance
components is to ensure that the REML estimate remains positive. If an update for any variance
component results in a negative value then ASReml-R sets that variance component to a small
positive value. If this occurs in subsequent iterations the parameter is fixed at the boundary. The
default parameter constraints (Positive for variance components) can be altered (to Unconstrained,
for example) by changing the constraint code in the initial value list object(s) for random
parameters, that is, the R.param and G.param arguments to asreml (). This is presented in more
detail in Section 3.6.1, though it would not generally be recommended for standard analyses.

Below, we produce a residual plot which indicates two unusual data values (Figure 7.2). These
values are successive observations, 210 and 211, respectively, being testing stations 2 and 3 for
setting station J, regulator 2. These observations will be retained for consistency with other analyses
conducted by Cox and Snell (1981).

o
o ©
1 o
o o
9 ° ° ° e
° oo
° 8 °°°oo° ° 88 &° ogg ° .8
° o
o 8 @ °°°o°°: g°30900°°§ooo 133
ol S @ 888° %o ool 8585 ., | § .
5o
ag ° % ° o B & go 35- o 0@ o o °
80 8 >80 % P o "8, °
8 ggoog Fo & o 0o 00° ° ° °
° o o@)
K%} ° g o °
(5 o o o
> o
o 0O
» -1 ° o
(0]
@ °
°
_2.
-3 o
5 6 7
Fitted

Figure 7.2: Residual vs fitted values for the voltage data

Because the estimated variance component for Setstat:Teststat is bound at zero, the model
omitting this term returns a REML log-likelihood of 203.242 - the same as the REML log-likelihood
for the previous model:

voltage2.asr <- asreml(
fixed = voltage ~ 1,
random = ~Setstat + Setstat:Regulatr + Teststat,
residual = ~units,
data = voltage

111

Chapter 7. Examples

A summary of the variance components for the above model is:

component std.error z.ratio bound %ch

Teststat 0.003287145 0.003337467 0.9849221 P 0
Setstat 0.011937344 0.008812595 1.3545776 P 0
Setstat:Regulatr 0.030777971 0.008452070 3.6414712 P 0
units!R 0.051141732 0.005260980 9.7209508 P 0

The column labelled z.ratio is calculated to give a guide as to the significance of the variance
components. This statistic is simply the REML estimate of the variance component divided by its
estimated standard error (the square root of the diagonal element of the inverse of the average
information matrix). The diagonal elements of the expected information matrix are the asymptotic
variances of the REML estimates of the variance parameters. These statistics cannot be used to
test the null hypothesis that the variance component is zero, given its asymptotic nature. The
conclusions using this crude measure are inconsistent with the conclusions obtained from the REML
log-likelihood ratio. Further technical details on the REML likelihood ratio test can be found in the
Section 2.5.1. For illustration we will be perform a REML likelihood ratio test to compare models
voltage.asr against voltage2.asr.

lrt(voltage.asr, voltage2.asr, boundary = TRUE)

Likelihood ratio test(s) assuming nested random models.
(See Self & Liang, 1987)

df LR-statistic Pr(Chisq)
voltage.asr/voltage2.asr 1 -7.2562e-06 0.5

Note that the model objects are presented in an increasing order of number of variance components
and they have to be nested. Also, the option boundary = TRUE specifies that the parameter of
interest (in this case the variance component associated with Setstat:Teststat) is tested on its
parameter space boundary, that is, a positive number.

Further testing for each of the components in the base model is presented in Table 7.3.

Table 7.3: REML log-likelihood ratio test for each variance component in the voltage data

term log-likelihood —2x difference p-value
Setstat 200.31 5.864 0.0077
Setstat:Regulatr 184.15 38.19 0.0000
Ststat:Teststat 203.24 0.000 0.5000
Teststat 199.71 7.064 0.0039

112

Chapter 7. Examples

7.5 Balanced repeated measures

The data for this example comes from an experiment conducted at Rothamstead Experimental
Station, UK, by J. Lamptey. It consists of a total of five measurements of height (cm) taken on
14 plants. These plants were either diseased or healthy and were arranged in a glasshouse with a
completely random design. Plant heights were measured 1, 3, 5, 7 and 10 weeks after the plants
were placed in the glasshouse. Therefore, these correspond to repeated measures as each plant was
measured five times. There were seven plants in each treatment. The data are illustrated in Figure

7.3.

100 1

501 /

Time

Figure 7.3: Trellis plot of plant height for each of the 14 plants

10

Plant

© 0 N o o~ W N PP

N =
A W N B O

The following section presents several repeated measures analyses. For some of these it is conve-
nient to arrange the data in a multivariate form, with seven columns containing the plant number,
treatment identification and the five height measurements, respectively; while for other analyses,
in particular power models, it is necessary to expand the data frame so that the response and a

variate for the time of measurement occupy one column each.

The data frame grass is in multivariate form:

Tmt Plant
1 MAV 1
2 MAV 2
3 MAV 3
4 MAV 4
5 MAV 5

yl y3 yb y7 yi10
21.0 39.7 47.0 53.0 55.0
32.0 59.5 63.5 65.0 67.6
35.5 54.6 58.0 61.5 61.5
33.5 41.0 48.0 57.0 58.0
31.5 45.3 62.0 104.0 104.0

113

Chapter 7. Examples

while grassUV is in univariate form:

Tmt Plant Time HeightID y
1 MAV 1 1 yl 21.0
2 MAV 1 3 y3 39.7
3 MAV 1 5 y5 47.0
4 MAV 1 7 y7 53.0
5 MAV 1 10 y10 55.0
6 MAV 2 1 yl 32.0

The focus is on modelling the error variance for this data. Specifically, we fit the multivariate
regression model given by

Y =DT +E (7.1)

where Y'*%° is the matrix of heights, D**2 is the trait design matrix, T2*° is the matrix of fixed
effects and E'*5 is the matrix of errors. The heights taken on the same plants will be correlated
and so we assume that

var(vec(E)) =TI @ X (7.2)

where 3°%% is a symmetric positive definite matrix.

The variance models used in this example for 3 are summarized in Table 7.4. They represent some
commonly used models for the analysis of repeated measures data (presented by Wolfinger (1996)).
Further descriptions of these models can be found in Appendix C. The variance models are fitted
by specifying the appropriate special function in the asreml () call.

Table 7.4: Summary of variance models fitted to the plant data

number of REML
model parameters log-likelihood BIC
uniform 2 -196.88 401.95
power 2 -182.98 374.15
heterogeneous power 6 -171.50 367.57
antedependence (order 1) 9 -160.37 357.51
unstructured 15 -158.04 377.50

The sequence of models given below illustrate some important issues regarding the sort order of
the data. In a standard multivariate analysis (data frame grass) the response is specified as a
matrix and ASReml-R automatically expands the data frame internally to a univariate form in the
order trait nested within units. The internal factor units is created before this expansion. The
data frame grassUV has been expanded outside ASReml-R in the same order, that is trait nested

114

Chapter 7. Examples

within experimental units. In this case ASReml-R cannot sensibly create a correct units factor
so a factor defining the experimental units must already exist - in this case the factor Plant can be
used.

Note that the sort order of the data must correspond to the order of appearance of the factors in
the residual formula that defines the experimental units. In the case of the one-dimensional power
model, the data must be sorted in the order returned by unique(x) where x is the column in the
data frame containing the distances. In this case ASReml-R checks the sort order and reports an
error if incorrect.

Split-plot in time

The split-plot in time model fitting approach can be implemented four ways:

1. By fitting a random units term plus an independent residual using the multivariate data
frame. This model is also known as Uniform.

grass.asr <- asreml(
fixed = cbind(yl, y3, y5, y7, y10) ~ trait + Tmt + trait:Tmt,

random = ~idv(units),
residual = ~id(units):idv(trait),
data = grass

2. By specifying a corv() variance model for the R structure, again using the multivariate data
frame.

grassl.asr <- asreml(
fixed = cbind(yl, y3, y5, y7, y10) ~ trait + Tmt + trait:Tmt,
residual = ~id(units):corv(trait),
data = grass

)

As this residual is specified as a correlation matrix the model is fitted on the gamma param-
eterization. The residual variance is denoted as S2 in the convergence trace.

3. By fitting Plant as a random term plus an independent residual (Time:Plant) using the
univariate data frame.

grassla.asr <- asreml(
fixed = y ~ Tmt + Time + Tmt:Time,
random = ~idv(Plant),
residual = ~id(Plant):idv(Time),
data = grassUV

4. By specifying a corv() variance model for the Time:Plant residual term using the univariate
data.

115

Chapter 7. Examples

grassib.asr <- asreml(
fixed = y ~ Tmt + Time + Tmt:Time,
residual = ~id(Plant):corv(Time),
data = grassUV

The options 1 and 3 are equivalent as are 2 and 4. The two forms for ¥ are given by

Y = oiJ+oil idv(units) (7.3)
Y = oI +o2p(J 1) corv() (7.4)
It follows that
Jg = G%—i-o%

2

91
= 7.5
P G%%—U% (7.5)

Summaries of the outputs from options 1 and 2 (the asreml() calls labelled Uniform and Cor-
relation, respectively) follow. The REML log-likelihood is the same for both models and it is easy
to verify that the REML estimates of the variance parameters satisfy (7.5).

summary (grass.asr)$loglik

[1] -196.8768

summary (grass.asr) $varcomp

component std.error z.ratio bound %ch

units!units 159.8161 75.74758 2.109851 P 0
units:trait!trait 126.4946 NA NA F 0
units:trait!R 126.4946 25.82064 4.898972 P 0

summary (grassl.asr)$loglik

[1] -196.8768

summary (grassl.asr) $varcomp

116

Chapter 7. Examples

component std.error z.ratio bound Y%ch

units:trait!R 286.3088841 78.3441796 3.654501 P 0
units:trait!trait!cor 0.5581911 0.1303821 4.281196 U 0
units:trait!trait!var 286.3088841 NA NA F 0

Decaying correlation structure

A more plausible model for repeated measures data would allow the correlations to decrease as the
lag increases. The simplest model that accommodates this is the first order autoregressive model.
However, since the heights are not measured at equally-spaced time points we use the exponential
or power model exp(). The correlation function is given by:

p(u) = ¢l

where wu is the time lag (in this case weeks). The code for this model (also known as Power) is
presented below.

grass2.asr <- asreml(
fixed = y ~ Tmt + Time + Tmt:Time,

residual = ~id(Plant) :expv(Time),
data = grassUV

The variance parameters from this model are:

summary (grass2.asr) $varcomp

component std.error z.ratio bound Y%ch

Plant:Time!R 300.9211889 96.38923337 3.121938 P 0
Plant:Time!Time!pow 0.9190407 0.03120443 29.452250 U o0
Plant:Time!Time!var 300.9211889 NA NA F 0

When fitting such models, for stability, be careful to ensure the scale of the defining variate, Time
here, does not result in an estimate of ¢ too close to 1. For example, use of days in this example
would result in an estimate for ¢ of about 0.993.

The code below creates a trend plot (Figure 7.4) of residuals against the factors that index the
experimental units.

tmp.data <- cbind.data.frame(grassUV, e = grass2.asr$residuals)
ggplot2: :ggplot(data = tmp.data, ggplot2::aes(x = Plant, y = e)) +
ggplot2::facet_wrap(~Time, nrow = 3) +
ggplot2: :geom_point(shape = 1) +
ggplot2: :theme_classic()

117

Chapter 7. Examples

1 [3
20 o
)
{ o ©°o0o0 ° o o ° o ° o o
00 o o o o ° ° o O o ° o o o
_20.
,40.
5 [7
o o o
204) ° o © (]
04 Oo ooo o o ° 4 o ©
] o o 00
-20 °
° o
o
0 ———
o 1 2 3 4 5 6 7 8 9 1011 12 13 14
© o
20 ° °
o o ©
0 o
00 (o)
o
,20.
o
-401 °
12 3 45 6 7 8 9 10111213 14
Plant

Figure 7.4: Residuals by Plant | Time for the exp () variance model of the plant data

The residual plot suggests increasing variance over time. This can be modelled via the exph()
variance function, which models 3 by

¥ = D" CD%

where D is a diagonal matrix of variances and C' is a correlation matrix with elements given by
cij = ¢|t¢*tj|_

The code and parameter estimates for this Heterogeneous power model are:
grass3.asr <- asreml(
fixed =y ~ Tmt + Time + Tmt:Time,

residual = ~id(Plant) :exph(Time),
data = grassUV

summary (grass3.asr) $varcomp

component std.error z.ratio bound Ych
Plant:Time!R 60.5014787 28.31639025 2.136624 P 0.0
Plant:Time!Time'!pow 0.9066574 0.04160873 21.790076 U 0.0
Plant:Time!Time_1 60.5014787 NA NA F 0.0
Plant:Time!Time_3 73.1552801 36.95125591 1.979778 P 0.4
Plant:Time!Time_5 307.5585703 137.94251947 2.229614 P 0.1
Plant:Time!Time_7 433.7236072 171.57165789 2.527944 P 0.0
Plant:Time!Time_10 380.2673128 138.70029583 2.741647 P 0.2

118

Chapter 7. Examples

Note that ASReml-R fixes the scale parameter to 1.0 to ensure that the elements of D are identifiable.

Unstructured correlation structure

The final two models considered are the antedependence model of order 1 and the unstructured
model. They consider by default as starting values the gammas of 0.15 for variances and 0.10 for
covariances and scales these by 1/2 of the simple variance of the response. This is adequate in
many cases (including this example) but we would generally recommend using the REML estimate
of 3 from a previous model. For example, suitable starting values could be generated from the
heterogeneous power model (grass3.asr) by:

r <- matrix(resid(grass3.asr), nrow =

veov <- (t(xr) %*% r)/

12

where 12 is the degrees of freedom in this case.

The antedependence form models 3 by the inverse Cholesky decomposition

where D is a diagonal matrix, and U is a unit upper triangular matrix. For an antedependence
model of order ¢, then [;; = 0 for j > i + ¢ — 1. The antedependence model of order 1 has nine
parameters for these data, five in D and four in U. The call using the default starting values was

shown before.

The code and antedependence parameter estimates follow and appear successively for each time
that is, the element of D and then the row of U:

grassd.asr <- asreml(

fixed = cbind(yl, y3, y5, y7, y1l0) ~ trait + Tmt + trait:Tmt,
~id(units) :ante(trait, 1),

residual =
data = grass

)

summary (grass4.asr) $varcomp

units:trait!R

units:trait!trait_yl:
units:trait!trait_y3:
units:trait!trait_y3:
units:trait!trait_yb:
units:trait!trait_yb:
units:trait!trait_y7:
units:trait!trait_y7:

units:trait!trait_y10:y7
units:trait!trait_y10:y10 O.

y1
yi
y3
y3
y5
y5
y7

-0

14, byrow =

> =UDU’

component

.000000000
.026866609
-0.
.037282432
-1.

0.
-1.

0.
.967807268

628374025

491096654
005996185
280576604
007896552

039063461

std.error
NA

.011023605
.246035667
.015467375
.586492845
.002467878
.206798510
.003232983
.062828991
.015947580

119

TRUE)

z.ratio bound

NA
.437189
.553996
.410392
.542395
.429692
.192388
.442497
.403833
.449491

ccCcacagcgcaggcaamm™
O O O O O O O o o

O X
. O
(=g

O OO OO+ OO OoOOo

Chapter 7. Examples

In this particular case the residual specifies a variance matrix so the sigma parameterization is
used for estimation (see Section 2.1.1). The default for multivariate analyses is to use the sigma
parameterization.

Finally, the code and estimated components for the unstructured model using default starting values
is

asreml.options(gammaPar = FALSE, ai.sing = TRUE)

grassb.asr <- asreml(
fixed = cbind(yl, y3, y5, y7, yl0) ~ trait + Tmt + trait:Tmt,
residual = ~id(units):us(trait),
data = grass

)

summary (grassb.asr) $varcomp

component std.error z.ratio bound %ch

units:trait!R 1.00000 NA NA F 0
units:trait!trait_yl:yl 37.22619 15.19746 2.449501 P 0
units:trait!trait_y3:yl 23.39345 13.20622 1.771397 P 0
units:trait!trait_y3:y3 41.51952 16.95020 2.449500 P 0
units:trait!trait_yb:yl 51.65238 32.03385 1.612431 P 0
units:trait!trait_yb5:y3 61.91690 34.87146 1.775575 P 0
units:trait!trait_yb5:y5 259.12143 105.78573 2.449493 P O
units:trait!trait_y7:yl 70.81131 46.13796 1.534773 P 0
units:trait!trait_y7:y3 57.61452 46.74179 1.232613 P 0
units:trait!trait_y7:y5 331.80679 145.20148 2.285147 P 0
units:trait!trait_y7:y7 551.50690 225.15083 2.449500 P 0
units:trait!trait_y10:y1 73.78571 46.21260 1.596658 P 0
units:trait!trait_y10:y3 62.56905 46.92685 1.333331 P 0
units:trait!trait_yl10:y5 330.85060 144.32316 2.292429 P 0
units:trait!trait_yl10:y7 533.75583 220.58712 2.419705 P 0
units:trait!trait_y10:y10 542.17548 221.34133 2.449499 P 0

The antedependence model of order 1 is clearly the more parsimonious model (see Table 7.4). There
is a surprising level of discrepancy between models for the Wald tests (see Table 7.5 below). The
main effect of treatment is significant for the uniform and power models. In this case, we have used
wald(..., denDF = "numeric", ssType = "conditional").

7.6 Spatial analysis of a field experiment

This section illustrates spatial and incomplete block analyses of a field experiment using ASReml-R.
There has been a large amount of interest in developing techniques for the analysis of spatial data
both in the context of field experiments and geostatistical data (Cressie 1991; Cullis and Gleeson

120

Chapter 7. Examples

Table 7.5: Summary of Wald statistics for fixed effects for the models fitted to the plant data

model Tmt (df = 1) p-value trait:Tmt (df =4) p-value
uniform 9.41 0.0098 5.10 0.0017
power 6.87 0.0229 6.12 0.0004
heterogeneous power 0.00 0.9836 4.32 0.0105
antedependence (order 1) 4.14 0.0644 3.35 0.0384
unstructured 172 0.2149 3.34 0.0612

1991; Gilmour et al. 1997, to name a few). This example illustrates the analysis of so-called
regular spatial data, in which the data are observed on a lattice or regular grid. This is typical
of most small-plot designed field experiments. Spatial data are often irregularly spaced, either by
design or because of the observational nature of the study. The techniques we present here can be
extended for the analysis of irregularly spaced spatial data, though, larger spatial data sets may be
computationally challenging, depending on the degree of irregularity or models fitted.

The data used here appears in Gilmour et al. (1995) and is from a field experiment designed to
compare the performance of 25 varieties of barley. The experiment was conducted at Slate Hall
Farm, UK, in 1976 and was designed as a balanced lattice square with six replicates laid out in
a 10 x 15 rectangular grid. Table 7.6 shows the layout of the experiment and the coding of the
replicates and lattice blocks. The first few rows in the data frame shf are:

Rep RowBlk ColBlk Row Column Variety yield

1 1 1 1 1 1 1 1003
2 1 1 2 1 2 2 1356
3 1 1 3 1 3 4 1412
4 1 1 4 1 4 3 1239
5 1 1 5 1 5 5 1508
6 2 11 6 1 6 19 1967

Lattice block numbering is typically coded within replicates, however, in this example the lattice row
and column blocks were both numbered from 1 to 30. The terms in the linear model are therefore
simply RowBlk and ColBlk. The factors Row and Column help to identify the spatial layout of the
plots.

Three models are considered below: two spatial and the traditional incomplete block design (for
comparative purposes). In the first model, we fit a separable first order autoregressive process to
the variance structure of the plot errors. Gilmour et al. (1997) suggest this is often a useful model
to commence the spatial modelling process. The form of the variance matrix for the plot errors
(R-structure) is given by

=02, 2%, (7.6)

121

Chapter 7. Examples

Table 7.6: Field layout of Slate Hall Farm experiment

Column - Replicate levels

Row 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3
2 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3
3 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3
4 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3
5 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3
6 4 4 4 4 4 5 5 5 5 5 6 6 6 6 6
7 4 4 4 4 4 5 5 5 5 5 6 6 6 6 6
8 4 4 4 4 4 5 5 5 5 5 6 6 6 6 6
9 4 4 4 4 4 5 5 5 5 5 6 6 6 6 6
10 4 4 4 4 4 5 5 5 5 5 6 6 6 6 6
Column - Rowblk levels
Row 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 1 1 1 1 11 11 11 11 11 21 21 21 21 21
2 2 2 2 2 2 12 12 12 12 12 22 22 22 22 22
3 3 3 3 3 3 13 13 13 13 13 23 23 23 23 23
4 4 4 4 4 4 14 14 14 14 14 24 24 24 24 24
5 5 5 5 5 5 15 15 15 15 15 25 25 25 25 25
6 6 6 6 6 6 16 16 16 16 16 26 26 26 26 26
7 7 7 7 7 T 17 17 17 17 17 27 27 27T 27 27
8 8 8 8 8 8 18 18 18 18 18 28 28 28 28 28
9 9 9 9 9 9 19 19 19 19 19 29 29 29 29 29
10 10 10 10 10 10 20 20 20 20 20 30 30 30 30 30
Column - Colblk levels
Row 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
6 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
7 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
8 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
9 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
10 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

where the ¥, and ¥, are 15 x 15 and 10 x 10 correlation matrix functions of the column (¢.) and
row (¢,) autoregressive parameters respectively.

The separable autoregressive error model is fitted by:
barleyl.asr <- asreml(
fixed = yield ~ Variety,

residual = ~ariv(Row) :arl(Column),
data = shf

The REML log-likelihood, random components and Wald statistics from the fit are:

barleyl.asr$loglik

[1] -700.3226

122

Chapter 7. Examples

summary (barleyl.asr) $varcomp

component std.error z.ratio bound Ych
Row:Column!R 1.000000e+00 NA NA F 0.0
Row:Column!Row!cor 4.583760e-01 8.259721e-02 5.549534 U 0.3
Row:Column'!Row!var 3.874983e+04 7.728136e+03 5.014124 P 0.2
Row:Column!Column!cor 6.837836e-01 6.328472e-02 10.804878 U 0.0
ww <- wald(barleyl.asr, denDF = "numeric", ssType = "conditional")
Df denDF F.inc F.con Margin Pr
(Intercept) 1 12.8 851.00 851.00 4.420908e-13
Variety 24 80.0 13.04 13.04 A 0.000000e+00

Gilmour et al. (1997) recommend revision of the current spatial model based on the use of di-
agnostics such as the sample variogram of the residuals. This diagnostic plot is produced by the
varioGram() and plot() methods, and presented in Figure 7.5. Additional technical details are
presented in Section 2.5.3

plot(varioGram(barleyl.asr))

Figure 7.5: Sample variogram of the AR1 x AR1 model for the Slate Hall data

123

Chapter 7. Examples

The iterative sequence has converged to column and row correlation parameters of 0.6837 and
0.4584, respectively. The plot size and orientation is not known and so it is not possible to ascertain
whether these values are spatially sensible. It is generally found that the closer the plot centroids,
the higher the spatial correlation. This is not always the case, and if the highest between-plot
correlation relates to the larger spatial distance then this may suggest the presence of extraneous
variation (see Gilmour et al. (1997), for example). The plot of the sample variogram of the residuals
is not trimmed and, ignoring the unreliable contribution from extreme lags, it appears in reasonable
agreement with the model.

An extension to this model includes a measurement error or nugget effect term, which follows:

barley2.asr <- asreml(
fixed = yield ~ Variety,

random = ~units,
residual = ~ariv(Row) :arl1(Column),
data = shf

That is, the variance model for the plot errors is now given by

Y =08 ® %) + 1150 (7.7)

where 1 is the ratio of nugget variance to error variance (0?). The results show a significant
improvement in the REML log-likelihood with the inclusion of the nugget effect (see Table 7.7).

barley2.asr$loglik

[1] -696.8227

summary (barley2.asr) $varcomp

component std.error z.ratio bound Ych
units 4.861842e+03 1.787924e+03 2.719266 P 0.0
Row:Column!R 1.000000e+00 NA NA F 0.0
Row:Column!Row!cor 6.826484e-01 1.022922e-01 6.673516 U 0.0
Row:Column!Row!var 4.579813e+04 1.667622e+04 2.746315 PO.1
Row:Column!Column!cor 8.437782e-01 6.845720e-02 12.325632 U 0.0
ww <- wald(barley2.asr, denDF = "numeric", ssType = "conditional")
Df denDF F.inc F.con Margin Pr
(Intercept) 1 3.5 259.80 259.80 2.051365e-04
Variety 24 75.7 10.21 10.21 A 2.997602e-15

Finally, the incomplete block analysis (with recovery of inter-block information) is:

124

Chapter 7. Examples

barley3.asr <- asreml(
fixed = yield ~ Variety,
random = ~RowBlk + ColBlk,
residual = ~units,
data = shf

barley3.asr$loglik

[1] -708.1182

summary (barley3.asr) $varcomp

component std.error z.ratio bound %ch

RowBlk 16777.223 5359.352 3.130457 P 0.1

ColBlk 15884.135 5127.257 3.097979 P 0.0

units!R 8045.005 1336.074 6.021375 P 0.0

ww <- wald(barley3.asr, denDF = "numeric", ssType = "conditional")
Df denDF F.inc F.con Margin Pr

(Intercept) 1 47.3 1893.000 1893.000 0.000000e+00

Variety 24 79.0 8.847 8.847 A 5.950795e-14

In general, this variance model is not competitive with the preceding spatial models and this can
be noted from the log-likelihood values. The models can be formally compared using the AIC or
BIC values, for example. Note that to compare fits using these criteria, the models need to have
the same fixed effects (which in this case is only the overall mean), and the smaller the value the
better the model.

The Wald statistics for the spatial models (F-con) are greater than that for the incomplete block
analysis (Table 7.7). We note that the Wald statistic for the spatial model including the nugget
effect is smaller than that for the AR1xAR1 model.

Finally, we predict Variety means for each model using the predict () method. Only the first six
means are reproduced here. The overall SED is the square root of the average variance of difference
between the variety means. The two spatial analyses have a range of SEDs which may be obtained
in matrix form from the sed argument of predict(). Note that all variety comparisons have the
same SED for the balanced lattice square analysis.

barleyl.pv <- predict(barleyl.asr, classify = "Variety")
head(barleyl.pv$pvals)

125

Chapter 7. Examples

Table 7.7: Summary of models fitted to the Slate Hall data

model REML log-likelihood AIC BIC parameters F-con SED
AR1xAR1 -700.32 1406.65 1415.13 3 13.04 59.1
AR1XxAR1 + units -696.82 1401.65 1412.96 4 1021 60.5
incomplete block -707.79 1423.57 1434.89 4 8.85 62.0
Variety predicted.value std.error status
1 1 1257.980 64.61798 Estimable
2 2 1501.444 64.98182 Estimable
3 3 1404.987 64.62953 Estimable
4 4 1412.568 64.90618 Estimable
5 5 1514.480 65.59235 Estimable
6 6 1553.458 64.14967 Estimable

barleyl.pv$avsed

overall
59.05232

barley2.pv <- predict(barley2.
head(barley2.pvépvals)

Variety predicted.value std.
1 1 1245.582 97.
2 2 1516.234 97.
3 3 1403.984 98.
4 4 1404.918 98.
5 5 1471.612 98.
6 6 1521.937 97.

barley2.pv$avsed

overall
60.51089

asr, classify =

error
87574
86387
25652
00409
37730
98780

status
Estimable
Estimable
Estimable
Estimable
Estimable
Estimable

"Variety")

barley3.pv <- predict(barley3.asr, classify = "Variety")

head(barley3.pv$pvals)

126

Chapter 7. Examples

Variety predicted.value std.error status
1 1 1284.374 54.68156 Estimable
2 2 1549.437 54.68156 Estimable
3 3 1420.574 54.68156 Estimable
4 4 1452.114 54.68156 Estimable
5 5 1534.198 54.68156 Estimable
6 6 1527.895 54.68156 Estimable

barley3.pv$avsed

overall
62.0448

7.7 Unreplicated early generation variety trial

This example is a further illustration of the approach to the analysis of field trials presented in
the previous section. The data are from an unreplicated field experiment conducted at Tullibigeal
in south-western New South Wales, Australia. The trial was an S1 (early stage) wheat variety
evaluation trial and consisted of 525 test lines which were randomly assigned to plots in a 67 row x
10 column array. There was a check variety/line every six plots within each column. That is, the
check variety was sown on rows 1, 7, 13, ..., 67 of each column. This variety was numbered 526.
A further six replicated commercially available varieties (numbered 527 to 532) were also randomly
assigned to plots between three to five plots each. The aim of these trials is to identify and retain
the top, say 20%, lines for further testing.

Cullis et al. (1989) considered the analysis of early generation variety trials and presented a one-
dimensional spatial analysis which was an extension of the approach developed by Gleeson and Cullis
(1987). The test line effects are assumed random, while the check variety effects are considered fixed.
This may not be sensible or justifiable for most trials and can lead to inconsistent comparisons
between check varieties and test lines. Given the large amount of replication afforded to check
varieties there will be very little shrinkage irrespective of the realised heritability.

In the following we assume that the variety effect (including both check, replicated and unreplicated
lines) is random. In addition to a one-dimensional analysis, we consider three further spatial models
for comparison. The first few rows of the data set wheat are presented below:

yield weed Column Row Variety

1 2652 0 1 1 526
2 2691 0 2 1 526
3 2770 0 3 1 526
4 2896 0 4 1 526

where Variety, Row, and Column are factors, yield is the response variate and weed is a covariate.
Note that the data frame is sorted as Column nested within Row.

127

Chapter 7. Examples

We begin with a one-dimensional spatial model, which assumes the variance model for the plot
effects within columns is described by a first order autoregressive process

wheatl.asr <- asreml(
fixed = yield ~ weed,

random = ~idv(Variety),
residual = ~ariv(Row):id(Column),
data = wheat

The REML log-likelihood and variance components from the fit are:

wheatl.asr$loglik

[1] -4239.88

summary (wheatl.asr)$varcomp

component std.error
82785.334443 9.220097e+03
Row:Column!R 1.000000 NA
Row:Column!Row!cor 0.672194 4.186855e-02
Row:Column!Row!var 86295.009311 9.459264e+03

Variety!Variety

z.ratio bound Y%ch

8.978792 P 0.1

NA F 0.0
16.054867 U 0.1
9.122804 P 0.0

The REML estimate of the autoregressive parameter indicates substantial within-column spatial

correlation.

A two-dimensional spatial model is fitted with:

wheat2.asr <- asreml(
fixed = yield ~ weed,

random = ~idv(Variety),
residual = ~ariv(Row) :ari1(Column),
data = wheat

wheat2.asr$loglik

[1] -4233.647

summary (wheat2.asr) $varcomp

128

Chapter 7. Examples

component std.error z.ratio bound Ych
Variety!Variety 8.814084e+04 8.884922e+03 9.920271 P 0.0
Row:Column!R 1.000000e+00 NA NA F 0.0
Row:Column!Row!cor 6.854691e-01 4.113764e-02 16.662819 U 0.0
Row:Column!Row!var 8.311660e+04 9.343450e+03 8.895707 P 0.0
Row:Column!Column!cor 2.859709e-01 7.390816e-02 3.869274 UO0.1

The change in REML log-likelihood is significant (x? = 12.46, P < 0.001) with the inclusion of the
autoregressive parameter for Column. The sample variogram of the residuals for the AR1 x ARl
model (see Figure 7.6) indicates a linear drift from column 1 to column 10. We will include a linear
regression coefficient 1in(Column) in the model to account for this. But this will not make the
REML log-likelihood values comparable as we have different fixed effects.

(lag)

Figure 7.6: Sample variogram of the AR1 x AR1 model for the Tullibigeal data

wheat3.asr <- asreml(
fixed = yield ~ weed + lin(Column),

random = ~idv(Variety),
residual = ~arlv(Row):arl(Column),
data = wheat

wheat3.asr$loglik

[1] -4227.13

129

Chapter 7. Examples

summary (wheat3.asr) $varcomp

component std.error z.ratio bound Ych
Variety!Variety 8.897946e+04 8.978980e+03 9.909751
Row:Column!R 1.000000e+00 NA NA
Row:Column!Row!cor 6.713124e-01 4.290609e-02 15.646088
Row:Column!Row!var 7.780933e+04 8.850037e+03 8.791977
Row:Column!Column!cor 2.660008e-01 7.540594e-02 3.527585

v agomd

wald(wheat3.asr, denDF = "numeric", ssType = "conditional")

Df denDF F.inc F.con Margin Pr
(Intercept) 1 45.2 7076.000 2193.000 0.000000e+00
weed 1.537.7 91.920 69.980 A 5.551115e-16
1lin(Column) 1 50.8 8.732 8.732 A 4.730174e-03

wheat3.asr$coefficients$fixed

effect
(Intercept) 3043.43242
weed -182.75396

lin(Column) -31.16488

The linear regression of column number on yield is significant (p-value = 0.0047). The sample
variogram (Figure 7.7) seems more satisfactory, though interpretation of variograms is often difficult,
particularly for unreplicated trials.

The final model includes a nugget effect:

wheat4.asr <- asreml(
fixed = yield ~ 1lin(Column),

random = ~idv(Variety) + idv(units),
sparse = ~weed,

residual = ~arlv(Row):arl(Column),
data = wheat

wheat4.asr$loglik

[1] -4221.76

130

Chapter 7. Examples

(lag)

Figure 7.7: Sample variogram of the AR1 x AR1 + lin(column) model for the Tullibigeal data
summary (wheat4.asr) $varcomp

component std.error z.ratio bound Ych

Variety!Variety 7.376718e+04 1.041730e+04 7.081219 P
units!units 3.044589e+04 8.074721e+03 3.770519
Row:Column!R 1.000000e+00 NA NA
Row:Column!Row!cor 8.375155e-01 4.485845e-02 18.670186
5.471356e+04 1.062701e+04 5.148537

3.753856e-01 1.152838e-01 3.256187

Row:Column'!Row!var

v agomd
O O O O O O

Row:Column!Column!cor

The increase in REML log-likelihood from adding the units term is significant. Predicted variety
means can be obtained from this model using;:

wheatd.pv <- predict(
wheat4.asr,
classify = "Variety:Column",
levels = list("Column" = 5.5)

Note that the predictions are formed at the average value of the variate Column, that is, 5.5. Below
we only present the first five and last five rows

131

Chapter 7. Examples

head (wheat4.pv$pvals, 5)

tail (wheat4.pv$pvals, 5)

Variety Column predicted.value std.error status

1 1 5.5 2915.711 179.3119 Estimable

2 2 5.5 2956.275 178.7804 Estimable

3 3 5.5 2871.298 176.9945 Estimable

4 4 5.5 2985.007 178.7453 Estimable

5 5 5.5 2776.810 179.3485 Estimable
Variety Column predicted.value std.error status
528 528 5.5 2725.566 112.2616 Estimable
529 529 5.5 2698.358 103.9254 Estimable
530 530 5.5 3008.925 112.3070 Estimable
531 531 5.5 3018.606 112.2714 Estimable
532 532 5.5 3065.982 112.6677 Estimable

It is clear to see that the replicated check lines have lower SEs than the unreplicated test lines
There will also be large differences in SEDs. Rather than obtaining the large table of all SEDs, the
prediction could be done in parts if the interest was to examine the matrix of pairwise prediction
errors of check varieties. For example, we can use:

wheat5.pv <- predict(
wheat4.asr,

classify = "Variety:Column",

levels = list("Variety" = seq(l, 525), "Column" = 5.5)
)
and

wheat6.pv <- predict(
wheat4.asr,
classify = "Variety:Column",
levels = list("Variety" = seq(526, 532), "Column" = 5.5),
sed = TRUE

132

Chapter 7. Examples

wheat6.pv$pvals

Variety Column predicted.value std.error status
1 526 5.5 2384.515 44.21844 Estimable
2 527 5.5 2695.603 133.45777 Estimable
3 528 5.5 2725.566 112.26161 Estimable
4 529 5.5 2698.358 103.92536 Estimable
5 530 5.5 3008.925 112.30699 Estimable
6 531 5.5 3018.606 112.27138 Estimable
7 532 5.5 3065.982 112.66768 Estimable

wheat6.pvésed

7 x 7 Matrix of class "dspMatrix"

[,1] [,2] [,3] [,4] [,5] [,6] [,7]
[1,] NA 129.1900 107.2886 98.20994 107.4885 107.0354 107.4494
[2,] 129.19000 NA 165.5509 159.10108 165.5291 165.4921 165.9756
[3,] 107.28860 165.5509 NA 141.34778 148.5680 149.5353 148.2008
[4,] 98.20994 159.1011 141.3478 NA 143.0538 142.1026 143.3975
[5,]1 107.48855 165.5291 148.5680 143.05381 NA 144.3516 149.5804
[6,] 107.03544 165.4921 149.5353 142.10261 144.3516 NA 149.5492
[7,]1 107.44939 165.9756 148.2008 143.39751 149.5804 149.5492 NA

As a final step, and just for completeness, we will present the analyses where we separate the
contribution of the check varieties from the test lines by assigning the former to be a fixed effect,
and the latter as a random effect. This requires the use of the command at () within the model.
In the following code we first create the factor check with a value of 1 for check varieties and 0 for
test lines, and then we fit the corresponding model.

wheat$check <- 0
wheat$check[as.numeric(wheat$Variety) >= 526] <- 1
wheat$check <- as.factor(wheat$check)

wheatb5.asr <- asreml(
fixed = yield ~ lin(Column) + at(check, "1"):Variety,
random = ~at(check, "0"):idv(Variety) + idv(units),
sparse = ~weed,
residual = ~arlv(Row):arl1(Column),
data = wheat

Small differences are observed in the estimated variance components between this model and
wheat4.asr with a moderate increase on the Variety component.

133

Chapter 7. Examples

summary (wheat5.asr) $varcomp

component std.error z.ratio bound Ych
at(check, 0):Variety!Variety 7.438597e+04 1.064509e+04 6.987820 P 0
units!units 2.998101e+04 8.111833e+03 3.695960 P 0
Row:Column!R 1.000000e+00 NA NA F 0
Row:Column!Row!cor 8.359585e-01 4.500441e-02 18.575035 Uu o0
Row:Column!Row!var 5.529810e+04 1.070748e+04 5.164434 P 0
Row:Column!Column!cor 3.785235e-01 1.145978e-01 3.303059 Uu o0

7.8 Paired case-control study

These data are from an experiment conducted to investigate the tolerance of rice varieties to attack
by the larvae of bloodworms. The data have been kindly provided by Dr. Mark Stevens (Yanco
Agricultural Institute, Australia). A full description of the experiment is given by Stevens et al.
(1999). Bloodworms are a significant pest of rice in the Murray and Murrumbidgee irrigation areas
and damage can result in poor establishment and substantial yield loss.

The experiment commenced with the transplanting of rice seedlings into trays. Each tray contained
a total of 32 seedlings and the trays were paired so that a control tray (no bloodworms) and a
treated tray (bloodworms added) were grown in a controlled environment room for the duration of
the experiment. After this, rice plants were carefully extracted, the root system washed and root
area determined for the tray using an image analysis system described by Stevens et al. (1999).
Two pairs of trays, each pair corresponding to a different variety, were included in each run. A
new batch of bloodworm larvae was used for each run. A total of 44 varieties was investigated with
three replicates of each. Unfortunately the variety concurrence within runs was less than optimal.
Eight varieties occurred with only one other variety, 22 with two other varieties and the remaining
14 with three different varieties.

The following sections present an exhaustive analysis of these data using equivalent univariate and
multivariate techniques. It is convenient to use two data frames, one for each approach. The
univariate data frame has factors Pair, Run, Variety, Tmt and variates rootwt and sqrtroot. The
factor Pair labels pairs of trays (to which varieties are allocated) and Tmt is the two-level bloodworm
treatment factor (control/treated). The first few lines of the univariate data frame, called rice are:

Pair rootwt Run sqrtroot Tmt Variety
1 2 313.7220 1 17.71220 Control AliCombo
2 2 86.9457 1 9.32447 Exposed AliCombo
3 24 267.6110 1 16.35880 Control IR36
4 24 87.1914 1 9.33763 Exposed IR36
5 3 172.7230 2 13.14240 Control AliCombo
6 3 26.0771 2 5.10657 Exposed AliCombo

The multivariate data frame, called riceMV, contains factors Variety and Run and variates for root
weight and square-root of root weight for both the control and exposed treatments (yc, ye, syc,
sye respectively), and its first few lines are:

134

Chapter 7. Examples

Pair Run Variety
1 1 60 AliCombo
2 2 1 AliCombo
3 3 2 AliCombo
4 4 3 Bluebelle
5 5 4 Bluebelle
6 6 5 Bluebelle

A plot of the treated vs the control root area (on the square root scale) for each variety is shown in
Figure 7.8. There is a strong dependence between the treated and control root area, which is not
surprising. The aim of the experiment was to determine the tolerance of varieties to bloodworms
and identify the most tolerant varieties. The definition of tolerance should allow for the fact that
varieties differ in their inherent seedling vigour (as seen in Figure 7.8). The initial approach was
to regress the treated root area against the control root area and define the index of vigour as the
residual from this regression. This is clearly inefficient since there is error in both variables. We
seek to determine an index of tolerance from the joint analysis of treated and control root area.

185.
313.
172.
193.
193.
111.

yc
403
722
723
056
119
228

70.
86.
26.
41.
68.

ye
1814
9457
0771
9249
3390
.5935

13.
17.
13.
13.
13.
10.

syc
6163
7122
1424
8944
8967
5465

= 00 O 01 ©

sye
.37743
. 32447
.10657
.47494
.26674
.89565

15 1
o
o
o
@ OO
o o o
o
oo le) 8 @
[e] OO le)
< 10 o 3 o o) o o
o o) o 0% %
@ o o o o
o o o
o o o
= ° °o oo© o
Ei o oo ® 00 o
° o o o o~ ©°
)
(o) o o
°" oo o ©°
o o, § oo o
[e] o® @
o © o
54 0o oo o o
o [e] OO O o o
o O 4
o
o
o
o
8 12 16 20 24

Figure 7.8: Rice bloodworm data: Plot of square root of root weight for treated versus control

Standard analysis

Preliminary analyses indicated variance heterogeneity so that subsequent analyses were conducted
on the square-root scale. The allocation of bloodworm treatments within varieties and varieties

syc (Control)

within runs defines a nested blocking structure of the form:

135

Chapter 7. Examples

Run/Variety/Tmt

Run + Run:Variety + Run:Variety:Tmt
Run + Pair + Pair:Tmt

Run + Run:Variety + units

There is an additional blocking term, however, due to the fact that the bloodworms within a run are
derived from the same batch of larvae whereas between runs the bloodworms come from different
sources. This defines a blocking structure of the form:

Run/Tmt/Variety
= Run + Run:Tmt + Run:Tmt:Variety
= Run + Run:Tmt + Pair:Tmt

Combining the two provides the full blocking structure for the design:

Run + Run:Variety + Run:Tmt + Run:Tmt:Variety
= Run + Run:Variety + Run:Tmt + units
= Run + Pair + Run:Tmt + Pair:Tmt

In line with the aims of the experiment the treatment structure comprises variety and treatment
main effects and treatment by variety interactions.

In the traditional approach the terms in the block structure are regarded as random and the treat-
ment terms as fixed. The choice of treatment terms as fixed or random depends largely on the aims
of the experiment. The aim of this example is to select the best varieties. The definition of best
is somewhat more complex since it does not involve the single trait sqrt(rootwt) but rather two
traits, namely sqrt(rootwt) in the presence/absence of bloodworms. To minimize selection bias
the Variety main effects and Tmt:Variety interactions are taken as random. The main effect of
treatment is fitted as fixed to allow for the likely scenario that rather than a single population of
treatment by variety effects there are in fact two populations (control and treated) with a differ-
ent mean for each. There is evidence of this prior to analysis, with the large difference in mean
sqrt (rootwt) for the two groups (14.93 and 8.23 for control and treated, respectively). The inclu-
sion of Tmt as a fixed effect ensures that E-BLUPs of Tmt:Variety effects are shrunk to the correct
mean (treatment means rather than an overall mean).

The model for the data are given by

y=X17+Z1u1 + Zous + Zzus + Zyus + Zsus + e (7.8)

where y is a vector of length n = 264 containing the sqrtroot values, T corresponds to a constant
term and the fixed treatment contrast and w; ...wus correspond to random effects of: Variety,
Tmt:Variety, Run, Tmt:Run and Variety:Run. The random effects and error are assumed to be
independent Gaussian variables with zero means and variance structures: var(u;) = 021, (where
b; is the length of u;, i = 1...5) and var(e) = o*I,.

136

Chapter 7. Examples

Now, we can proceed to fit the model with the code below, and we request some output.

asreml.options(gammaPar = TRUE)
ricel.asr <- asreml(
fixed = sqrtroot ~ Tmt,
random = ~idv(Variety) + idv(Variety):id(Tmt) +
idv(Run) + idv(Pair) + idv(Run):id(Tmt),
residual = ~units,
data = rice

summary(ricel.asr)$loglik
summary (ricel.asr) $varcomp

[1] -345.2559

component std.error z.ratio bound Ych

Variety!Variety 2.3778037 0.7911195 3.0056189 P 0.2

Run!Run 0.3217226 0.5483794 0.5866789 P 0.9

Variety:Tmt!Variety 0.4923122 0.2764192 1.7810344 P 0.0

Pair!Pair 0.9758347 0.3882604 2.5133509 P 0.1

Run:Tmt !Run 1.7478110 0.4793497 3.6462126 P 0.0

units!R 1.3149769 0.2974428 4.4209405 P 0.0

ww <- wald(ricel.asr, denDF = "numeric", ssType = "conditional')
Df denDF F.inc F.con Margin Pr

(Intercept) 1 53.5 1485.0 1485.0 0

Tmt 1 60.4 469.3 469.3 A O

The estimated variance components from this analysis also appear in column (a) of Table 7.8. The
variance component for the Variety main effects is large. There is evidence of Variety:Tmt interac-
tions so we may expect some discrimination between varieties in terms of tolerance to bloodworms.

Given the large difference (p < 0.001) between Tmt means we may wish to allow for heterogeneity
of variance associated with Tmt. Thus we fit a separate Variety:Tmt variance for each level of Tmt
so that instead of assuming var(uz) = 03Igs, we assume

2.0
var<u2>=[(’§c a;t]mu

where 03, and o3, are the Variety:Tmt interaction variances for control and treated, respectively.
This model can be fitted using a diagonal variance structure for the treatment part of the interaction.
We also fit a separate Run: Tmt variance for each level of Tmt and heterogeneity at the residual level,

137

Chapter 7. Examples

by including an extra at(Tmt, 2):units term. We have chosen level 2 of Tmt as we expect more
variation for the exposed treatment and thus the extra variance component for this term should be
positive.

By default, ASReml-R sets the parameter constraint for variance components to Positive. To allow
for negative components, which may have meaning in this particular example, we must set the
parameter constraints to Unconstrained. The following sequence of calls

o creates default R and G parameter list objects using start.values = T in asreml (),

e opens the default text editor where the parameter constraints can be changed to U and the
result saved to temp.gam, and

o fits the model using the G level parameter settings in temp . gam through the G.param argument.

asreml.options(gammaPar = TRUE)
temp.gam <- asreml(
fixed = sqrtroot ~ Tmt,
random = ~idv(Variety) + id(Variety):diag(Tmt) + idv(Run) + idv(Pair) +
id(Run) :diag(Tmt) + at(Tmt,2):units,
residual = ~idv(units),
data = rice,
start.values = TRUE
) $vparameters.table

temp.gam[c(2, 3), "Constraint"] <- c("U", "U")
temp.gam[c(6, 7), "Constraint"] <- c("U", "U")

temp.gam

Component Value Constraint
1 Variety!Variety 0.1 P
2 Variety:Tmt!Tmt_Control 0.1 U
3 Variety:Tmt!Tmt_Exposed 0.1 U
4 Run!Run 0.1 P
5 Pair!Pair 0.1 P
6 Run:Tmt!Tmt_Control 0.1 U
7 Run:Tmt!Tmt_Exposed 0.1 U
8 at(Tmt, Exposed):units 0.1 P
9 units!R 1.0 P
10 units!units 1.0 F

138

Chapter 7. Examples

asreml .options(gammaPar = TRUE)
rice2.asr <- asreml(
fixed = sqrtroot ~ Tmt,
random = ~idv(Variety) + id(Variety):diag(Tmt) + idv(Run) +
idv(Pair) + id(Run):diag(Tmt) + at(Tmt,2):idv(units),
residual = ~idv(units),
G.param = temp.gam,
data = rice

summary (rice2.asr)$loglik
summary (rice2.asr) $varcomp

[1] -343.2199

component std.error z.ratio bound %ch
Variety!Variety 2.3341384 0.7761558 3.0073065 P 0.1
Run!Run 0.3193663 0.5435029 0.5876075 P 0.5
Variety:Tmt!Tmt_Control 1.5055897 0.6644957 2.2657628 U 0.2
Variety:Tmt!Tmt_Exposed -0.3721460 0.4563015 -0.8155702 U 0.5
Pair!Pair 0.9875966 0.3811214 2.5912913 PO.1
Run:Tmt!Tmt_Control 1.3891313 0.6359438 2.1843616 U 0.0
Run:Tmt!Tmt_Exposed 2.2242074 0.7237749 3.0730651 Uo.1
at(Tmt, Exposed):units!units 0.2039961 0.6317102 0.3229267 P 0.3
units!units 1.1565111 NA NA F 0.0
units!R 1.1565111 0.4173686 2.7709588 P 0.0
wald(rice2.asr, denDF = "numeric", ssType = "conditional")

Df denDF F.inc F.con Margin Pr
(Intercept) 1 56.4 1277.0 1277.0 0
Tmt 1 60.6 448.8 448.8 A O

The estimated variance components from this analysis are given in column (b) of Table 7.8. There
is no significant variance heterogeneity at the residual or Run:Tmt level. This indicates that the
square root transformation of the data has successfully stabilized the error variance. There is,
however, significant variance heterogeneity for Variety:Tmt interactions with the variance being
much greater for the control group. This reflects the fact that in the absence of bloodworms
the potential maximum root area is greater. Note that the Variety:Tmt interaction variance for
the treated group is negative. The negative component is meaningful (and in fact necessary and
obtained by changing the constraint codes for variance parameters to U as described previously) in
this context since it should be considered as part of the variance structure for the combined variety
main effects and treatment by variety interactions. That is,

139

Chapter 7. Examples

Table 7.8: Estimated variance components from univariate analyses of bloodworm data: (a) model
with homogeneous variance for all terms and (b) model with heterogeneous variance for interactions
involving Tmt

(a) (b)

homogeneous heterogeneous

source control treated
Variety 2.378 2.334
Variety:Tmt 0.492 1.505 -0.372
Run 0.321 0.319
Run:Tmt 1.748 1.389 2.224
Variety:Run (Pair) 0.976 0.988
Tmt :Pair 1.315 1.157 1.360
REML log-likelihood -345.256 -343.22

2 2 2
o] +o o
var(ls @ uy + ug) = 1 o7 2c o2 +1J%t ® Iy (7.9)

Using the estimates from Table 7.8 this structure is estimated as

3.84 2.33
2.33 1.96

]®I44

Thus the variance of the variety effects in the control group (also known as the genetic variance
for this group) is 3.84. The genetic variance for the treated group is much lower (1.96). The
genetic correlation is 2.33//3.84 x 1.96 = 0.85 which is strong, supporting earlier indications of the
dependence between the treated and control root area (Figure 7.8).

A multivariate approach

In this simple case in which the variance heterogeneity is associated with the two-level factor Tmt,
the analysis is equivalent to a bivariate analysis in which the two traits correspond to the two levels
of Tmt, namely sqrtroot for control and treated. The model for each trait is given by

y; = X7+ Zyuy, + Z,up, +€; (j =¢,t) (7.10)

where y; is a vector of length n = 132 containing the sqrtroot values for variate j (j = ¢ for control
and j =t for treated), T; corresponds to a constant term by trait and Uy, and u,; correspond to
random variety and run effects. The design matrices are the same for both traits. The random
effects and error are assumed to be independent Gaussian variables with zero means and variance
structures: var(u,;) = ang44, var(u,;) = aijGG and var(e;j) = 051132. The bivariate model can
be written as a direct extension of (7.10), namely

140

Chapter 7. Examples

y=ILX)T+I2® Zy)uy+I2® Z;)u, +€* (7.11)

where y = (¥, y,), u, = (u), ,u)), u, = (u ,ul) and e* = (el €})".

There is an equivalence between the effects in this bivariate model and the univariate model of
(7.8). The variety effects for each trait (u, in the bivariate model) are partitioned in (7.8) into
variety main effects and tmt.variety interactions, so that u, = 12 ® u; + ug. There is a similar
partitioning for the run effects and the errors (Table 7.9).

Table 7.9: Equivalence of random effects in bivariate and univariate analyses

bivariate univariate
effects (model 7.11) (model 7.8)
trait:Variety Uy 1o @ up + uo
trait:Run U, 1o ® uz + uy
Pair:trait e* lLb®us+e

In addition to the assumptions in the models for individual traits (7.10), the bivariate analysis
involves the assumptions cov(uy,)u,, = oy, Ia4, cov(u,)u;,, = o,,Ies and cov(ec)e; = ool132.
Thus, random effects and errors are correlated between traits. So, for example, the variance matrix

for the variety effects for each trait is given by

2
o, oy
var(uy,) = | % 5 | @Iy
UUct O-’Ut

This unstructured form for trait:Variety in the bivariate analysis is equivalent to the Variety
main effect plus heterogeneous Variety:Tmt interaction variance structure (7.9) in the univariate
analysis. Similarly, the unstructured form for trait:Run is equivalent to the Run main effect
plus heterogeneous Run:Tmt interaction variance structure. The unstructured form for the errors
(Pair:trait) in the bivariate analysis is equivalent to the Pair plus heterogeneous error (Pair:Tmt)
variance in the univariate analysis.

Hence, the ASReml-R call for this bivariate model is:

riceMV.asr <- asreml(
fixed = cbind(syc, sye) ~ trait,

random = ~us(trait):id(Variety) + us(trait):id(Run),
residual = ~id(units):us(trait),
data = riceMV

141

Chapter 7. Examples

summary (riceMV.asr)$loglik

[1] -343.22

summary (riceMV.asr) $varcomp

component std.error z.ratio bound Y%ch
trait:Variety!trait_syc:syc 3.8370236 1.1041043 3.4752367 P 0.3
trait:Variety!trait_sye:syc 2.3317436 0.7741058 3.0121769 P 0.3
trait:Variety!trait_sye:sye 1.9598665 0.7268965 2.6962112 P 0.3
trait:Run!trait_syc:syc 1.7090708 0.6541103 2.6128176 P 0.3
trait:Run!trait_sye:syc 0.3207441 0.5443446 0.5892299 P 1.7
trait:Run!trait_sye:sye 2.5450260 0.7965487 3.1950665 P 0.2
units:trait!R 1.0000000 NA NA F 0.0
units:trait!trait_syc:syc 2.1435663 0.4820833 4.4464646 P 0.0
units:trait!trait_sye:syc 0.9870784 0.3809549 2.5910636 P O.1
units:trait!trait_sye:sye 2.3471096 0.5073875 4.6258716 P 0.0

wald(rice2.asr, denDF = "numeric", ssType = "conditional")

Df denDF F.inc F.con Margin Pr
(Intercept) 1 56.4 1277.0 1277.0 0
Tmt 1 60.6 448.8 448.8 A O

The resultant REML log-likelihood is identical to that of the heterogeneous univariate analysis
(column (b) of Table 7.8). The estimated variance parameters are summarized in Table 7.10.

Table 7.10: Estimated variance components from bivariate analysis of bloodworm data

control treated

source variance variance covariance
us(trait) :Variety 3.84 1.96 2.33
us(trait) :Run 1.71 2.55 0.32
Pair:us(trait) 2.14 2.35 0.99

The predicted variety means are obtained using:

riceMV.pv <- predict(riceMV.asr, classify = "trait:Variety")

and the first few rows are:

142

Chapter 7. Examples

trait Variety predicted.value std.error status
1 syc AliCombo 14.953221 0.9180989 Estimable
2 syc Amaroo 7.994086 0.7993077 Estimable
3 syc Balilla 16.161246 0.9181010 Estimable
4 syc Bluebelle 8.481302 0.7992850 Estimable
5 syc Bogan 14.420180 0.9185728 Estimable
6 syc Cc22 8.230838 0.7995129 Estimable

These predictions are on the square root scale; it is straightforward to back-transform the predicted
means to the original scale of measurement. Approximate standard errors on the original scale can
be calculated from a Taylor series approximation (i.e., delta method). That is, if x is a random
variable with E(z) = 6, and y = g(x) is some function of z, then var(y) = (dy/dx)3var(x) (see
Kendall and Stuart (1969) pp 231, for an example). In this case, g(z) = 22 and ¢'(z) = dy/dx = 2z.
The following code calculates the transformed predictions and approximate standard errors:

pv <- riceMV.pv$pvals

pvérootwt <- pvépredicted.value~ 2

pvapproxSE <- sqrt(4 * pv$predicted.value 2 * pvistd.error”2)
pvdest.status <- NULL

trait Variety predicted.value std.error status rootwt approxSE
1 syc AliCombo 14.953221 0.9180989 Estimable 223.59883 27.45707
2 syc Amaroo 7.994086 0.7993077 Estimable 63.90540 12.77947
3 syc Balilla 16.161246 0.9181010 Estimable 261.18589 29.67531
4 syc Bluebelle 8.481302 0.7992850 Estimable 71.93248 13.55796
5 syc Bogan 14.420180 0.9185728 Estimable 207.94158 26.49197
6 syc C22 8.230838 0.7995129 Estimable 67.74670 13.16132

Interpretation of results

Recall that the primary interest is varietal tolerance to bloodworms, and this could be defined in
various ways. One option is to consider the regression implicit in the variance structure for the trait
by variety effects. The variance structure can arise from a regression of treated variety effects on
control effects, namely: w,, = fu,, + €, where the slope is § = oy, / a?,c.

Tolerance can be defined in terms of the deviations from regression, €. Varieties with large positive
deviations have the greatest tolerance to bloodworms. Note that this is similar to the original
approach except that the regression has been conducted at the genotypic rather than the phenotypic
level. In Figure 7.9, the E-BLUPs for treated have been plotted against the E-BLUPs for control
for each variety and the fitted regression line (slope = 0.61) has been drawn. Varieties with large
positive deviations from the regression line include YRKS3, Calrose, HR19 and WC1403.

An alternative option for the definition of tolerance is the simple difference between treated and
control E-BLUPs for each variety, namely: 6 = u,, — u,,. Unless § = 1, the two measures € and
have very different interpretations. The key difference is that € is a measure which is independent
of inherent vigour whereas § is not. To see this consider:

143

Chapter 7. Examples

Exposed BLUP

0
Control BLUP

Figure 7.9: E-BLUPs for treated plotted against E-BLUPs for control

cov(€)u,, = cov(ty, — By,)uy,
_ Over 2
= <chz - 012}6: Uw) Iy
=0
whereas
cov(@)ul, = cov(ty, — Uy, Uy,

_ 2
= (% - cht) Iy

The independence of € and u,, and dependence between § and u,, is clearly illustrated in Figures
7.10 and 7.11. In this example, the two measures have provided very different rankings of the
varieties. The choice of tolerance measure depends on the aim of the experiment. Here, the aim
was to identify tolerance which is independent of inherent vigour so the method of deviations from
regression is preferred.

144

Chapter 7. Examples

o
o
) o
8 o
0.51 ° °
E ° °
k= & 8
7]
o o) o
S o
g 0.0 o & ° C?
] ° °
= [o
(=)
0]
a4 ° o
o
° o o
o ° o
-0.51 [¢] °
[
[
o
o

0
Control BLUP

Figure 7.10: Estimated deviations from regression of treated on control for each variety plotted
against estimate for control

o
1 ° o o ©
g °
° o
(7]
o o °
= o
S 5 © ° o
20 ® ° o
o %
o
o o o °
o ©O ° o
o o
® o °
-1 o)

0
Control BLUP

Figure 7.11: Estimated difference between control and treated for each variety plotted against
estimate for control

145

Chapter 7. Examples

7.9 Balanced longitudinal data - random coefficients and cubic smooth-
ing splines

In this section we illustrate the use of random coefficients and cubic smoothing splines for the
analysis of balanced longitudinal data. The implementation of cubic smoothing splines in ASReml-
R is based on the mixed model formulation of Verbyla et al. (1999). The methodology has been
extended so that the user can specify knot points; in the original approach, the knot points were
taken to be the ordered set of unique values of the explanatory variable. The specification of knot
points is particularly useful if the number of unique values in the explanatory variable is large, or
if units are measured at different times.

The data set used in this illustration was originally presented by Draper and Smith (1998) and
has recently been re-analysed by Pinheiro and Bates (2000). The data corresponds to trunk cir-
cumferences (in millimetres) of each of five trees taken at seven measurement times (Figure 7.12).
All trees were measured at the same time so the data set is balanced. The aim of the study is
unclear, though both previous analyses involved modelling the overall growth curve, accounting for
the obvious variation in both level and shape between trees.

Pinheiro and Bates (2000) used a nonlinear mixed effects modelling approach, in which they mod-
elled the growth curves by a three parameter logistic function of age, defined as:

$1

= Trow[(=~ 6)/%d (7.12)

Y

where y is the trunk circumference, = is the tree age (in days since December 31 1968), ¢ is the
asymptotic height, ¢o is the inflection point or the time at which the tree reaches 0.5¢1, and ¢3 is
the time elapsed between trees reaching half and about 3/4 of ¢;.

1 || 2

S)

400 800 12001600 400 800 12001600 400 800 12001600 400 800 12001600 400 800 1200160C
Age

Circumference

Figure 7.12: Trellis plot of trunk circumference (mm) for each tree against age (in days since
December 1st, 1968).

The first few lines of data frame orange are:

146

Chapter 7. Examples

Tree

1

1
1
1
11
1
11

DOk WN -

where Tree is a factor with five levels, x is tree age (in days since 31 December 1968), circ is the
trunk circumference (in mm), and Season is a factor with two levels (Spring and Autumn). The
factor Season was included after noting that tree age spans several years and converted to day of
year, measurements were taken in either April/May (Spring) or September/October (Autumn).

Initially, we restrict the data set to tree 1 to demonstrate fitting cubic splines in ASReml-R. The
model includes the intercept and linear regression of trunk circumference on z and an additional
random term spl(x). This random term includes a special design matrix with 7 — 2 = 5 columns
which relate to the vector, whose elements §;,7 = 2,...,6 are the second differentials of the cubic
spline at the knot points. The second differentials of a natural cubic spline are zero at the first and
last knot points (Green and Silverman (1994)). The following code is used to fit this model:

X
118
484
664
004
231
372

circ Season

30 Spring
58 Spring
87 Autumn
115 Autumn
120 Spring
142 Autumn

orange.asr <- asreml(
fixed = circ ~ x,

random
residu

al

~spl(x),

~units,

knot.points = list(x =
subset = Tree == 1,

data = orange

orange.asr$trace

LogLik
Sigma2
DF
stepsz
spl(x)
units!R

In this example the spline knot points are specifically given in the knot.points argument. These
extra points have no effect in this model fit as they are exactly the seven ages present in the data file.
Hence, in this instance the analysis would be the same if the knot.points argument was omitted.

The estimated variance components and Wald statistics are:

-20.
48.

5
0.
0
1

1
9042520 -20.
4698131 49.
.0000000 5
5621388 1
.1000000 O
.0000000 1

c(118, 484, 664, 1004, 1231, 1372, 1582)),

2
90127049 -20.
15204735 49.
.00000000 5
.00000000 1
.09102007 O
.00000000 1

3
90127049
15204735

.00000000
.00000000
.07535652
.00000000

147

Chapter 7. Examples

summary (orange.asr) $varcomp

component std.error z.ratio bound Ych

spl(x) 3.703927 10.93709 0.3386573 P 20.8

units!R 49.152047 36.83725 1.3343028 P 0.0

ww <- wald(orange.asr, denDF = "numeric", ssType = "conditional")
Df denDF F.inc F.con Margin Pr

(Intercept) 1 3.5 1377.0 17.96 0.0174544178

X 1 3.5 216.7 216.70 A 0.0002781746

And the predicted values of the spline curve at nominated points can be obtained by:

orange.pv <- predict(
orange.asr,
classify = "x",
design.points = list(x = seq(150, 1500, 50))
)

And the first and last few rows are:

x predicted.value std.error status
1 118 30.75934 6.043879 Estimable
2 150 33.72253 5.701909 Estimable
3 200 38.35142 5.225972 Estimable
4 250 42.97744 4.833550 Estimable
5 300 47.59886 4.529993 Estimable
6 350 52.21392 4.308913 Estimable
x predicted.value std.error status
30 1350 134.3050 3.707470 Estimable
31 1372 135.8261 3.782961 Estimable
32 1400 137.7490 3.899193 Estimable
33 1450 141.1511 4.172183 Estimable
34 1500 144 .5228 4.546196 Estimable
35 1582 150.0168 5.385572 Estimable

The design.points argument used above adds the nominated points to the design matrix
for prediction purposes (Figure 7.13). Note that design.points could have been included in
the call to asreml.options() instead of in predict(). If omitted from either predict() or
asreml.options() a default set of points for prediction purposes would have been generated. The

148

Chapter 7. Examples

1201

Circumference

80 1

40

400 800 1200 1600
Age

Figure 7.13: Fitted cubic smoothing spline for tree 1

Table 7.11: ANOVA decomposition for the orange data

stratum decomposition type df or ne
(Intercept) 1 f 1
Age

X f 1

spl(x) r 5

residual r 7
Tree

Tree re)
Age:Tree

x:Tree re)

spl(x) :Tree r 25
error r

REML estimate of the smoothing constant and the fitted cubic smoothing spline (Figure 7.13)
indicate there is some nonlinearity. The four points below the line are the spring measurements.

An analysis of variance decomposition for the full data set is given in Table 7.11, following Verbyla et
al. (1999). An overall spline is included as well as tree deviation splines. We note that the intercept
and slope for the tree deviation splines are assumed to be random effects, which is consistent with
Verbyla et al. (1999). In this sense, the tree deviation splines play a role in modelling the conditional

149

Chapter 7. Examples

curves for each tree and variance modelling. The intercept and slope for each tree are included as
random coefficients (denoted by rc in Table 7.11). Thus, if U?*? is the matrix of intercepts (column
1) and slopes (column 2) for each tree, then we assume that

var(vec(U)) =X ® I5

where X is a 2 X 2 symmetric positive definite matrix. Non-smooth variation can be modelled at the
overall mean (across trees) level and this is achieved by including the factor dev(x) as a random
term. This full model is:

orangel.asr <- asreml(
fixed = circ ~ x,
random = ~str(~Tree + x:Tree, ~diag(2):id(5)) +
spl(x) + spl(x):id(Tree) + idv(dev(x)),
residual = ~units,
knot.points = list(x = c(118, 484, 664, 1004, 1231, 1372, 1582)),
data = orange

Note that the command str() will apply the direct product variance defined by 35 ® I5 to the
combined set of terms Tree and x:Tree. In this case X5 is a diagonal matrix of dimension 2 but
other structures can be defined.

Table 7.12 presents the sequence of fitted models. We stress the importance of model building in
these settings, where we generally start with relatively simple variance models and update to more
complex variance models if appropriate. Note that the REML log-likelihood values for Models 1
and 2 are comparable and likewise for Models 3 to 6. The REML log-likelihoods are not comparable
between these groups because of the inclusion of the fixed Season factor.

We begin by modelling the variance matrix X for the intercept and slope for each tree as a diagonal
matrix as there is no point including a covariance component between the intercept and slope if
the variance component(s) for one (or both) is zero. Model 1 also does not include a non-smooth
component at the overall level (that is, dev(x)).

The ASRemlI-R call and variance components for model 1 are:

orangel.asr <- asreml(
fixed = circ ~ x,
random = ~str(~Tree + x:Tree, ~diag(2):id(5)) +
spl(x) + spl(x):id(Tree),
residual = ~units,
knot.points = list(x = c(118, 484, 664, 1004, 1231, 1372, 1582)),
data = orange

150

Chapter 7. Examples

Table 7.12: Sequence of models fitted to the orange data

model
term 1 2 3 4 5 6
Tree y y y y y y
x:Tree y y y y y y
cov(Tree, x:Tree) n n n n n y
spl(x) y y y y n y
spl(x) :Tree y y y n y y
dev(x) n y y n n n
Season n n y y y y

REML log-likelihood -97.78 -94.07 -87.95 -91.22 -90.18 -87.43

summary (orangel.asr) $varcomp

component std.error =z.ratio bound %ch
spl(x) 6.398248e+02 4.130439e+02 1.549048 P 0.3
Treet+x:Treeldiag(2) _1 3.048865e+01 2.457266e+01 1.240755 P 0.4
Tree+x:Tree!diag(2) _2 5.980326e-04 4.240080e-04 1.410428 P 0.3
spl(x) :Tree 7.101353e+00 4.915670e+00 1.444636 P 0.7
units!R 6.374557e+00 3.658904e+00 1.742204 P 0.0

The fitted curves from this model are shown in Figure 7.14. The fit is unacceptable because the
spline has picked up too much curvature, suggesting there may be systematic non-smooth variation
at the overall level. This can be formally examined by including the dev(x) term as a random
effect.

orange6.asr <- asreml(
fixed = circ ~ x + Season,
random = ~str(~Tree + x:Tree, ~us(2, init = c¢(5.0, -0.01, 0.0001)):id(5)) +
spl(x) + spl(x):id(Tree),
residual = ~units,
knot.points = list(x = c(118, 484, 664, 1004, 1231, 1372, 1582)),
data = orange

Model 2 increased the REML log-likelihood by 3.70 (P < 0.05) with the spl(x) smoothing constant
approaching the boundary. The Season factor provides a possible explanation. When included in
Model 3, Season has a Wald statistic of 107.3 (P < 0.01) and dev(x) becomes bounded. The spring
measurements are lower than the autumn measurements so growth is slower in winter. Models 4 and
5 successively examined each term, indicating that both smoothing constants are significant. Model

151

Chapter 7. Examples

@© 2001
(&)
[
L 150
Q
% 1001
o
O 50
200 1400 200 1400 200 800 1400 200 1400 200 1400
Age

Figure 7.14: Plot of fitted cubic smoothing spline for model 1

6 includes the covariance parameter between the intercept and slope for each tree; this ensures
that the model will be translation invariant. This model requires care in the choice of starting
values. The ASReml-R call, illustrating an alternative method for specifying initial values, and the
estimated variance components for model 6 are:

component std.error z.ratio bound Ych

spl(x) 6.398248e+02 4.130439e+02 1.549048 P 0.3

Tree+x:Tree!diag(2)_1 3.048865e+01 2.457266e+01 1.240755 P 0.4

Tree+x:Tree!diag(2) _2 5.980326e-04 4.240080e-04 1.410428 P 0.3

spl(x) :Tree 7.101353e+00 4.915670e+00 1.444636 P 0.7

units!R 6.374557e+00 3.658904e+00 1.742204 P 0.0
1 || 2 || 3 | | 4 || 5 || Marginal

100 1

Circumference

= N
a1 o1 o
o o o
\Y
N\

N

\
\
\
\
\

d S
200 800 1400 200 800 1400 200 800 1400 200 800 1400 200 800 1400 200 800 1400
Age

Figure 7.15: Fitted values adjusted for ‘Season’

The fitted values for individual trees (adjusted for Season) from Model 6 together with a marginal
prediction and approximate confidence intervals (2x standard error of prediction) are shown in
Figure 7.15. The conclusions from this analysis are quite different from those obtained by the
nonlinear mixed effects analysis. The individual curves for each tree are not convincingly modelled
by a logistic function. There is a distinct pattern in the residuals shown in Pinheiro and Bates
(2000, 340), which is consistent for all trees; this is modelled here by the Season term.

152

Appendix A

Some technical details about model
fitting in ASReml-R

A.1 Sparse versus dense

The terms in the linear mixed model are partitioned into two sets; a dense set and a sparse set.
The partition is defined by the fixed formula; all terms in the fixed formula are included in the
dense set, while all terms in the random and sparse formulae are included in the sparse set. The
inverse coefficient matrix is fully formed for the terms in the dense set which are fitted using
dense equations. The inverse coefficient matrix is only partially formed for terms in the sparse set.
Typically, the sparse set is large, resulting in savings in memory and computing. A consequence is
that the variance matrix of the BLUEs and BLUPs is only available for terms in the dense portion.

As indicated, random effects are, by default, part of the sparse set. However, genetic relationship
matrices, for example, are typically quite large (in the order of several thousand) and dense, and
it can be more efficient to process such terms as dense. The dense formula component of the
asreml.options() list can be used to include terms in the random formula in the dense set of
equations for processing. The dense formula can also be given directly as an argument to asreml ().
In the following example, we present two ways to include the equations for clonefv in the dense
set for processing.

asreml.options(dense = ~vm(clonefv, nassau.grm))
nassau.asr <- asreml(
fixed = ht6 ~ CulturelID + CultureID:Rep,

random = ~vm(clonefv, nassau.grm) + ide(clonefv) + Rep:IncBlock,
residual = ~units,
data = nassau

153

Appendix A. Some technical details about model fitting in ASReml-R

nassau.asr <- asreml/(
fixed = ht6 ~ CultureID + CulturelID:Rep,

random = ~vm(clonefv, nassau.grm) + ide(clonefv) + Rep:IncBlock,
dense = ~vm(clonefv, nassau.grm),

residual = ~units,

data = nassau

A.2 Ordering of terms in ASReml-R

Solutions for the fixed and random effects in linear mixed model analysis using ASReml-R are
obtained by solving the corresponding mixed model equations in the numerical routines (Gilmour
et al. 1995). The sparse equations are processed first after being re-ordered to retain sparsity during
solution. If keep.order = FALSE, the remaining equations are processed with main effects before
interactions and low-order interactions before higher ones so that normal marginality of terms is
achieved. The order of effects in the solution vector(s) in the returned object reflects the order of
processing.

A.3 Aliasing and singularities
A singularity occurs when there is either:

¢ a linear dependence in the model and therefore no information left to estimate the correspond-
ing effect,

e mno data for a given fixed effect, or

» 1o data for a simple (uncorrelated) random effect.

The REML routines handle singularities by deleting the equations in question. Since the equations
are solved from the bottom up, the first level (and hence the last level processed) of a factor is
the one that will be declared singular and dropped from the model. The number of singularities
is returned in the asreml object (nsing) and reported during the iterative process. Solutions that
are zero and have NA for their standard error are the singular effects.

Important Singularities in the sparse terms of the model may change with changes in the random
terms included in the model. If this happens it will mean that changes in the REML log-likelihood
are not valid for testing the changes made to the random model. A likelihood ratio test, under
REML, is not valid if the fixed model has changed.

154

Appendix A. Some technical details about model fitting in ASReml-R

A.3.1 Examples of aliasing

The sequence of examples in Table A.1 are presented to facilitate an understanding of over-
parameterized models. It is assumed that Var is defined with four levels, Trt with three levels
and Rep with three levels, and that all Var:Trt combinations are present in the data.

Table A.1: Examples of aliasing

model number of sin- description
gularities
fixed = y ~ -1 + Var, 0 Var fully fitted

random = ~ Rep

fixed = y ~ Var, 1 first level of Var dropped
random = ~ Rep

fixed =y ~ -1 + Var + 1 Var fully specified, first level of Trt
Trt, dropped from the models

random = ~ Rep

fixed = y ~ Var + Trt + 8 first level of both Var and Trt dropped
Var:Trt, from the model, together with subsequent
random = ~ Rep interactions

fixed = ~ Var + Trt, 8 Var:Trt fully specified; (Intercept), Var
random = ~ Rep, and Trt completely singular and dropped
sparse = ~ Var:Trt from the model

155

Appendix B

Description of features in ASReml-R

In this section we describe all arguments, options and output lists associated with ASReml-R. A few
of these are illustrated in more detail.

B.1 Model formula terms

e and(obj, t) Add t times the design matrix for obj to the previous columns.

e at(obj, 1) Form conditioning covariables for the levels [= 1,..., k of factor obj. That is,
it defines a binary variable which is 1 if the factor obj has level 1 for the observation. For
example, to fit a row factor only for site 3, use the expression at(Site, 3):row. Note that
if 1 is numeric, then the level of f is chosen as the 1th in factor (sorted) order. Note also
that when used with spline terms, such as at (£, 2):spl(x) then the knot points are derived
from all knots of factor f, not just level 2.

e C(obj, contr) Define contrasts among the levels of obj from the coefficients in vector contr.

For example, the following vector L is a contrast based on the factor Nitrogen that has four
levels:

L <-¢c(3, 1, -1, -3)

oats.asr <- asreml(
fixed = yield ~ C(Nitrogen, L),
data = oats

This contrast is defined by the term C(Nitrogen, L) in the model call. The length of the
contrast vector (pre-defined as L in this case, although c(3, 1, -1, -3) could replace L in
the call) must be equal to the number of levels in the factor. Missing values in the factor are
excluded in forming the contrast.

e con(obj) Apply sum-to-zero constraints to factor obj.

156

Appendix B. Description of features in ASReml-R

e dev(x) Fit variate x as a factor; hence, it forms a factor with a level for each unique value of
the covariate {x}; typically used for spline deviations.

e dsum(term | obj) Form direct sum operation of term for the levels of obj. Used in
residual to define multiple sections.

e gpf(obj) Include the term defined in the combine argument in the model. It forms a new
factor named obj from an existing factor by merging a subset of its levels. The name obj
must also appear as a component of the combine argument to asreml() where the existing
factor and the levels to merge are defined with a call to levels(). The function Levels
is defined as: function(f, x) where f is the name of an existing factor and x is a vector
of length length(levels(f)) defining the levels of £ to merge. For example, if Site has
levels "1", "2" and "3", combine = 1list(A = Levels(Site, c("1", "2", "1"))) creates
a new factor A with levels "1" and "2" by merging levels "1" and "3" of Site, and would
be included in the model as gpf (A). While the actions of gpf () can be duplicated outside
asreml (), gpf () is necessary if predict() is to be used.

o grp(obj) Include the term defined by obj in the group argument in the model. This function
groups contiguous columns of the data frame data to be treated as a single factor named obj.
The columns of data are identified by a character or numeric vector component obj of the
group argument to asreml ().

e leg(x, t) Legendre polynomials to degree t. It forms t Legendre polynomials from the
values in x; the intercept is excluded if t is negative. For example, leg(time, 2) is a factor
with three columns: a constant in the first, centred and scaled linear covariate in the second
and centred and scaled quadratic covariate in the third. leg() could be interacted with a
design factor to fit random regression models.

o lin(obj) Fit factor obj as a variate. The function is defined for obj being a simple factor,
trait and units. The 1in(obj) function does not centre or scale the variable.

o ma(obj) Form a moving average (order 1) design matrix from factor obj.

e mbf (obj) Include the covariates defined by obj in the obj argument as a factor. It includes
this set of covariates to be fitted as a single term in a similar way to grp. The name obj must
also appear as a component of the mbf argument to asreml () where the data frame holding
the covariates is identified along with a key field for merging records with those in data.

e pol(x, t) Orthogonal polynomials to degree t constructed from the values in x; the intercept
is excluded if t is negative. For example, pol(time, 2) is a factor with three columns: a
constant in the first, centred and scaled linear covariate in the second and centred and scaled
quadratic covariate in the third. pol() could be interacted with a design factor to fit random
regression models.

o pow(obj, p, offset) Create the term: (offset + obj)P.

e sbs(obj) Include the term defined in the prune argument in the model. This function forms
a new factor named obj from an existing factor by selecting a subset of its levels. The
name obj must also appear as a component of the prune argument to asreml (), where the

157

Appendix B. Description of features in ASReml-R

existing factor and the subset of levels to select are defined with a call to Subset(). The
function Subset is defined as: function(f, x) where f is the name of an existing factor
and x is a character or numeric vector of levels to select. For example, prune = 1list(A =
Subset(Site, c(2, 3))) creates a new factor A by selecting the second and third levels of
Site, and would be included in the model as sbs(A). While the actions of sbs() can be
duplicated outside asreml (), sbs() is necessary if the method predict () is to be used.

spl(x, k) The random component of a cubic spline based on covariate x. spl(x), dev(x)
and possibly 1in(x) are used when fitting cubic splines. The cubic spline is composed of a
random nonlinear component imposed on a linear trend. It is fitted by including a special
random factor, spl(x), and the fixed covariate (x) in the linear model. Knot points (k) are
placed at the design points if length(unique(x)) < k otherwise there are k equally-spaced
knot points over the range of x. The default for k is 50. If k is omitted then knots can be
set in asreml.options(). Also, explicit knot points are set in the knot.points argument to
asreml().

e uni(obj) Include the term defined in the uid argument in the model.

B.2 Reserved names/words

The following table presents a list of reserved names from ASReml-R that are used as part of the
model formula for fixed and/or random effects.

Table B.1: Summary of reserved names

Term Purpose Usage

mv

It fits missing values as covariates. An example of its use is in spatial analyses, f
for example, where computing advantages arising from a balanced spatial layout
can be exploited. Missing values in the response are handled in two ways
using the na.method() function. If na.action = na.method(y = "omit"),
records containing missing values in the response are deleted. If na.action =
na.method(y = "include"), missing values are estimated and a factor labelled

mv is included in the model frame. If a variate labelled mv already exists in the
data frame it will be overwritten. For a multivariate analysis, missing values
must currently be included.

trait Used with multivariate data to fit the individual trait means. It is interacted f, r

with other factors to estimate their effects for all traits. It is formally equivalent
to the intercept (1), but it is a more natural label for use with multivariate
data. If a variate labelled trait already exists in the data frame it will be
overwritten.

units A factor with a level for each experimental unit; allows a second error term to r

be explicitly fitted.

158

Appendix B. Description of features in ASReml-R

B.3 The asreml() arguments

e asmv A character string or name specifying the column in the data that identifies the traits in
a multivariate analysis. If not NULL, asmv implies that the data for a multivariate analysis is
set up as though it were for a univariate analysis with the response in a single variate (default
— NULL).

e combine A named list with each component generated from a call to Levels (). The argument
combine, in conjunction with Levels and the model function gpf (), forms a new factor from
an existing one by merging a subset of its levels. The function Levels is defined as:

function(f, x)

where f is the name of an existing factor and x is a vector of length length(levels(f))
defining the levels of £ to merge. The name of the list component is the new factor that may
appear in the model formulae as the argument to the gpf () model function. For example, if
Site has levels "1", "2" and "3",

combine = list(A = Levels(Site, c("1", "2", "1")))

creates a new factor A with levels "1" and "2" by merging levels "1" and "3" of Site, and
would be included in the model as gpf (A). While the actions of combine can be duplicated
outside asreml, gpf () is necessary if the asreml method predict () is to be used.

e data A data frame in which to interpret the variables named in fixed, random, sparse and
residual. If the data argument is missing, the default is sys.parent(). The data frame is
converted internally to a data.table object and returned as such by model.frame.

e equate.levels A character vector of factor names whose levels are to be equated. For
example, if factor A has levels a, b, ¢, d and factor B has levels a, b, ¢, e, the effect of
equate.levels(A, B) is that both A and B have five levels, with as.numeric(A) = 1, 2, 3,
4 and as.numeric(B) = 1, 2, 8, 5. This may be necessary if using the and () model function
to overlay columns of the model’s design matrix in forming a compound term. The default is
a zero-length character vector.

e family A list of functions and expressions for defining the link and variance functions.

Supported families are: gaussian, inverse Gaussian, binomial, negative binomial, poisson,
Gamma and multinomial. Family objects are generated from the asreml family func-
tions which prefix the usual function names with “asr_”; for example asr_gaussian(),
asr_binomial (), etc. In addition to the link argument, these functions take an additional
dispersion argument and a total argument where relevant; for example:

asr_binomial (dispersion = 1.0, total = counts).
The default for asr_gaussian() is dispersion = NA, which implies that asreml will estimate

the dispersion parameter, otherwise the scale is fixed at the nominated value.

o fixed A formula object specifying the fixed terms in the model, with the response on the left
of a ~ operator, and the terms, separated by + operators, on the right. If data is given, all
names used in all formulae should appear in the data frame. A model with the intercept as

159

Appendix B. Description of features in ASReml-R

the only fixed effect can be specified as ~ 1; there must be at least one fixed effect specified.
If the response (y) evaluates to a matrix then a factor trait with levels dimnames (y) [[2]]
is added to the model frame, and must be explicitly included in the model formulae (default
= 1).

e G.param Either:

— A list object derived from the random formula, holding initial parameter estimates and
boundary constraints for each term, or

— A character string naming a comma-delimited file with a header line and three columns
for the variance component name, initial value and constraint code, respectively. This
file can be created using the start.values = TRUE argument; the internal list object is
then generated from the contents of this file.

On termination, G.param is updated with the final random component estimates.

e group A named list where each component is a numeric vector specifying contiguous fields in
data that are to be considered as a single term. The component names can then appear in
the asreml model formulae using the grp() special function. The default is an empty list.

e knot.points A named list where each component is a vector of user-supplied knot points for
a particular spline term; the component name is the object of the spl() model function.

e last A named list restricting the order equations are solved in the sparse partition for the
nominated model terms. Each component of the list is named by a model term and contains
a scalar n specifying that the first n levels of the term will be solved after all others in the
sparse set. It is intended for use when there are multiple fixed terms in the sparse equations
so that asreml will be consistent in which effects are identified as singular. A maximum of
three factor/level pairs can be specified.

o mbf A named list specifying sets of covariates to be included with one or more mbf () model
functions. Each component of the list must in turn contain components named key and cov,
where cov is a character string naming the data frame holding the covariates, and key is a
character vector of length two naming the columns in data and cov, respectively, used to
match corresponding records in the two data frames. The default is an empty list.

The covariate data frame required for mbf can be supplied using the component cov, as shown
in the following example:

naf.asr <- asreml(

fixed = yield ~ type,

random = ~mbf(A) + Variety,

residual = ~arilv(column):aril(row),

mbf = list(A = list(key = c("Variety", "V1"), cov = "naf31H")),
data = naf

)

fits a function associated with factor A defined in data frame naf31H.

160

Appendix B. Description of features in ASReml-R

o mef A named list linking a relationship matrix (or its inverse) as specified in the vm() special
function with the original matrix of subject x regressor (typically molecular marker) scores.
If this is not an empty list mef flags the computation of the regressor (marker) effects from
the subject effects. For example,

mef = list(MM = snp.mat)
links the relationship matrix MM to the original marker scores found in the file snp.mat.

The mef list would typically be set from a call to the asreml meff () method.

o model.frame If TRUE, the model frame (a data.table object with additional attributes de-
rived from the model specification) is included in the returned object (default = TRUE). The
model frame is required by the asreml summary, plot, resid and fitted methods.

In large analyses, the model frame is likely to be a large object. If model.frame is a character
string, the model frame is saved in a file as an RDS object by a call to saveRDS (), and named
by the supplied string with the extension .RDS. If the model frame is not included in the
returned asreml object, this RDS file is searched for by the methods noted previously.

The motivation is to reduce the size of the asreml object in large examples. The data as
used in the fit is needed for some post fitting methods like resid and plot, but automatically
including it in the object adds to the size of the object and the .RData file, particularly if
the data alone is hundreds or thousands of megabytes. The RDS file is a convenient way to
keep the data (model) frame and all its properties outside the .RData workspace. This is
illustrated below:

oats.asr <- asreml(
fixed = yield ~ Variety * Nitrogen,
data = oats,
model.frame = "oats.RDS"

Here, oats.RDS contains the data used in the analysis (i.e. after any model functions, etc. have
had their way) as a data.table object with numerous internal attributes. The model.frame
component of oats.asr then just contains the string oats.RDS, which then allows plot to
find it.

e na.action A call to na.method() specifying the action to be taken when missing values are
encountered in the response (y) or explanatory variables (x for factors and/or variates). The
function definition for na.method is:
function(y = c("include", "omit", "fail"), x = c("fail", "include", "omit"))

The default action is "include" (and estimate) missing values in the response, and raise an
error ("fail" if there are missing values in any of the explanatory variables.

e predict A list object specifying the classifying factors and related options when forming
predictions from the model. This list would normally be the value returned by a call to the
method predict for asreml objects.

161

Appendix B. Description of features in ASReml-R

e prune A named list with each component generated from a call to Subset (). The argument
prune, in conjunction with Subset and the model function sbs(), forms a new factor from
an existing one by selecting a subset of its levels. The function Subset is defined as:

function(f, x)

where f is the name of an existing factor and x is a character or numeric vector of levels
to select. The name of the list component is the new factor that may appear in the model
formulae as the argument to the sbs() model function. For example,

prune = list(A = Subset(Site, c(2, 3)))

creates a new factor A by selecting the second and third levels of Site, and would be included
in the model as: sbs(4A), for example by using idv(sbs(A)) as part of a random term. While
the actions of prune can be duplicated outside asreml, sbs() is necessary if the asreml
method predict () is to be used.

e pwr.points A named list with each component containing a vector of distances to be used
in a one-dimensional power model. The component names must correspond to the object
arguments of the power function model terms. For example,

grass.asr <- asreml(
fixed = cbind(yl, y3, y5, y7, yl0) ~ trait + Tmt + trait:Tmt,
residual = ~ id(units):exp(trait),
pwr.points = list(trait = c(1, 3, 5, 7, 10)),
data = grass

If not given, expv() gets the points from unique (datal[[time]]).

e R.param Either:

— A list object derived from the random formula, holding initial parameter estimates and
boundary constraints, or

— A character string naming a comma-delimited file with a header line and three columns
for the variance component name, initial value and constraint code, respectively. This
file can be created using the start.values = TRUE argument; the internal list object is
then generated from the contents of this file.

On termination, R.param is updated with the final residual component estimates.

e random A formula object specifying the random effects in the model. This argument has the
same general characteristics as fixed, but there can be no left side to the ~ operator. Variance
structures imposed on random terms are specified using special model functions (default =
NULL).

e residual A formula object specifying the residual model; any term specified on the left of the
~ expression is ignored. The default is ~ units, where the reserved word units is defined as
seq(1,nrow(data)) and is automatically included in the model frame. Variance models for

162

Appendix B. Description of features in ASReml-R

the residual component of the model can be specified using special model functions (default
= NULL).

For single-section univariate models, the residual variance model determines the computational
mode: If the residual variance model specifies a correlation structure (includes id()), then
the model is fitted on the gamma scale, otherwise the model is fitted on the sigma scale. The
default is id(units) if not explicitly specified.

e sparse A formula object, specifying the fixed effects for which the full variance-covariance
matrix is not required. This argument has the same general characteristics as fixed, but
there can be no left side to the ~ expression. Wald statistics are not available for sparse fixed
terms in order to reduce the computing load (default = NULL).

e start.values If TRUE, asreml exits prior to the fitting process and returns a list of length
three: the G.param and R.paran lists, and a data frame (containing variance parameter names,
initial values and boundary constraints). Initial values or constraints can then be set in the
list or data frame objects (default = FALSE).

If this is a character string, then a file of that name is created and the data frame object
containing initial parameter values is written out in comma-separated form. This file can be
edited externally and subsequently specified in the G.param or R.param arguments.

e subset A logical vector identifying which subset of the rows of data should be used in the
fit. All observations are included by default.

e uid A named list with each component generated from a call to Units (). The argument uid,
in conjunction with Units and the model function uni(), forms a new factor by selecting a
subset of records from an existing one. The function Units is defined as:

function(f, n = 0)

where f is the name of an existing factor and n is a character or numeric scalar that determines
which records are selected. The default, n = 0, forms a factor with a level for each record
where f is non-zero (strictly, £ != 0). Otherwise, a factor with a level for each record in data
where £ has the value n is formed. For example,

uid = list(A = Units(group, 1))

creates a new factor A with levels from row.names(data) where group = 1, and would be
included in the model as: uni (A). While the actions of uid can be duplicated outside asreml,
uni() is necessary if the asreml method predict () is to be used.

e vcc Equality constraints between variance parameters; a two-column numeric matrix with a
dimnames attribute. The first column defines the grouping structure of equated components,
that is, components within an equality group are given the same numeric index, and the
second column contains the scaling coefficients. The dimnames () [[1]] attribute must match
the component names in the asreml parameter vector; see start.values.

The parameters are scaled relative to the first parameter in its group, so the scaling of the
first parameter in each group is one.

For example, the following vcc matrix:

163

Appendix B. Description of features in ASReml-R

W N N =
— N =

is equivalent to the vem matrix:

o O O
SO N = O
— o O O

e vcm A matrix defining relationships among variance parameters. The matrix has a row for each
original variance parameter and a column for each new parameter. The default is the identity
matrix, that is, no action. See function vem.1m for further information and an example.

e wald A named list with three components: denDF, ssType and Ftest.

— denDF: A character string from the options: "none", "numeric", "algebraic", and
"default" specifying the calculation of approximate denominator degrees of freedom.
The option "none" is to suppress the computations. Algebraic computations are not
feasible in large analyses; use "default" to automatically choose numeric or algebraic
computations depending on problem size. The denominator degrees of freedom are cal-
culated according to Kenward and Roger (1997) for terms in the fixed model formula
(default = "none").

— ssType: It can be "incremental" for incremental sum of squares or "conditional" for
F-tests that respect both structural and intrinsic marginality (default = "incremental").

— Ftest: A one-sided formula of the form ~ test_term | background_terms specifying a
conditional Wald test of the contribution of test_term conditional on those fixed terms
listed in background_terms, and those in the random and sparse model formulae.

e weights A character string or name identifying the column of data to use as weights in the
fit.

e ... Additional arguments to asreml() directed at asreml.options(), such as: maxit,
workspace, pworkspace, fixgammas, trace, aom.

B.4 The asreml object list

The library asreml once run provides an object of class asreml with a rich list of elements that can
be used to extract output or perform additional processing based on the fitted linear model. This
section provides additional details of the elements of this list.

o ai The inverse average information matrix of the variance parameters. A Matrix class object,
sub-class dspMatrix is returned.

e call An image of the asreml function call.

164

Appendix B. Description of features in ASReml-R

e Cfixed Reflexive generalized inverse of the coefficient matrix of the mixed model equations
relating to the dense fixed effects (if , a matrix of class Matrix, sub-class dspMatrix is re-
turned).

A dspMatrix class object is a dense symmetric matrix provided by the Matrix sparse matrix
package in R. Only n(n + 1)/2 elements are stored but are visible to the user through normal
subscripting.

e coefficients A list with three components named fixed, random and sparse containing the
solutions to the mixed model equations corresponding to the E-BLUEs of the fixed effects, the
E-BLUPs of the random effects, and the solutions corresponding to the sparse fixed effects,
respectively. The coefficients are labelled by a concatenation of factor name and level separated
by n n .

e Csparse If is not NULL, the non-zero elements of the reflexive generalised inverse matrix of
the coefficient matrix for the sparse stored model terms nominated in the Csparse formula.
A matrix in triplet form giving the row, column and non-zero elements.

o design The design matrix as a sparse Matrix of class dgCMatrix if asreml.options(design
= TRUE).

e deviance The deviance from the fit.
e factor.names A character vector of term names appearing in the model.

e fitted.values A vector containing the fitted values from the model, obtained by transforming
the linear predictors by the inverse of the link function.

e formulae A list object containing the fixed, random, sparse and residual formula argu-
ments to asreml.

e G.param A list object containing the constraints and final estimates of the variance parameters
relating to the random part of the model. This object may be used as the value of the G.param
argument to provide initial parameter estimates to asreml.

« hat The diagonal elements of the matrix WC~'W7, the extended hat matrix. This is the
linear mixed effects model analogue of X (X7 X)~!XT for ordinary linear models.

e license A character string containing the license information. The string has embedded
new-line characters and is best formatted through cat ().

e linear.predictors The linear fit on the link scale.
e loglik The log-likelihood at completion of the asreml call.
o meff Regressor scores (marker effects) if nominated in the mef list argument.

e mf The model frame with the data as a data.table object with numerous attributes from the
model specification. Inspect for details.

o nedf The residual degrees of freedom, length(y) - rank(X).

165

Appendix B. Description of features in ASReml-R

e noeff A vector containing the number of effects for each term.
e nwv The number of working variables.

e predictions If predict is not NULL, a list object with components pvals, sed, vcov and
avsed. The predictions component only is returned by the predict method for asreml
objects.

e R.param A list object containing the constraints and final estimates of the variance parameters
relating to the error structure of the model. This object may be used as the value of the
R.param argument to provide initial parameter estimates to asreml.

e residuals A single column matrix containing the residuals from the model.
e score The score vector of length number of random parameters.
o sigma2 The REML estimate of the scale parameter.

e trace A numeric matrix recording the convergence sequence for each random component, as
well as the log-likelihood, residual variance and residual degrees of freedom.

e vcoeff A list with three components named fixed, random and sparse contain-
ing the unscaled variances of the coefficients. The actual variances are calculated as
vcoeffxobject$sigma2 and returned by the summary function.

e vparameters The vector of variance components estimates from the model fit.

e vparameters.con A numeric vector identifying the boundary constraint applied to each vari-
ance parameter at termination. Common values are 1, 3 and 4 for Positive, Unconstrained
and Fixed, respectively.

e vparameters.pc Percentage change in gammas parameters over the last iteration.

e vparameters.type A numeric vector identifying the variance parameter types. Numeric val-
ues are used internally and the character codes as used by the own() variance model can be
obtained from the function vpt.char.

o yssqu A vector of incremental sums of squares for (dense) fixed terms.

B.5 The asreml.options() arguments

In asreml.options() the less frequently used settings are set per session outside the asreml ()
function call in an options environment by a call to asreml.options(). With no arguments,
asreml.options() returns a list of settings that can be altered; arguments are a sequence
of name = value pairs. The full list of options follows and can be displayed in R by typing
help(asreml.options).

166

Appendix B. Description of features in ASReml-R

o about If TRUE, the date packaged is printed for identification (default = FALSE).

o ai.loadings Controls modification to Average Information (AI) updates of loadings in ex-
tended factor-analytic (fa(, k)) models. After asreml calculates updates for variance pa-
rameters, it checks whether the updates are reasonable and sometimes reduces them over and
above any step.size shrinkage. The extra shrinkage has two levels: loadings that change
sign are restricted to doubling in magnitude; and if the average change in magnitude of load-
ings is greater than 10-fold, they are all shrunk. Unless the user specifies constraints, asreml
sets them and rotates the loadings each iteration.

When ai.loadings =i is specified (i = —1 is no action), it also prevents Al updates of some
loadings during the first ¢ iterations. For f > 1 factors, only the last factor is estimated
(conditional on the earlier ones) in the first f — 1 iterations. Then pairs, including the last,
are estimated until iteration ¢ (default = 0).

o ai.penalty This refers to the algorithm for updating loadings in factor analytic (fa) mod-
els. The present strategy modifies the average information matrix by increasing the diagonal
elements pertaining to loadings by a percentage, p. The default is to start with p = 10% and
reduce it by 1 or 2% each iteration down to 1%. If the starting values are poor, 10% may
not be a sufficient initial retardation. If it appears the updates are unreasonable, the value
of p is increased by 10%. After the penalty has reduced to 1%, it is further reduced to 0.2%.
ai.penalty can be set to 0 if desired (default = 10, corresponding to 10%).

e ai.sing If TRUE, forces continuation if a singularity is detected in the average information
matrix. Variance components are reported to help identify singularity but these are often
incorrect (default = FALSE).

o aodev If TRUE, return an analysis of deviance (default = FALSE).

e aom If TRUE, return standardized conditional residuals and standardized conditional BLUPs
in the aom component of the asreml object (default = FALSE).

o Cfixed If TRUE, return the computed part of the C~! matrix in component Cfixed. The
inverse coefficient matrix is fully formed for terms in the dense set (default = FALSE).

e colourise If TRUE, the header text produced by methods such as wald and predict will be
displayed in a different colour if supported by the output terminal device (default = TRUE).

« Csparse If a formula is specified, return the computed part of C~! for those terms given in the
formula. The library asreml does not compute the whole of C~!, only that which is sufficient
to calculate the REML solution (default = Csparse = NULL).

o debug Return internal data structures for helping debugging (default = FALSE).

o dense Include the equation(s) for the term(s) in the formula in the dense set. This results
in faster processing if the term is associated with a known dense inverse relationship matrix
(default = dense = NULL).

e design If TRUE, return the design matrix for component design of the asreml object. This
option might be used, for example, in generating design matrices that can then be used in
post-processing (default = FALSE).

167

Appendix B. Description of features in ASReml-R

e drop.unused.levels If TRUE, levels of simple factors that do not appear in the data are
dropped (default = TRUE).

e eqorder Set the algorithm used for ordering the mixed-model equations prior to solution. The
argument eqorder = -1 processes the equations in user order; generally this will run much
slower, if at all, in real time for large analyses (default = 3).

o extra Forces other mod (extra, maxit) iterations after apparent convergence (default = 0).

e fail If "hard", fatal errors will terminate execution, otherwise if "soft" such conditions
will be reported as warnings, allowing testing runs, for example, to continue. In both cases
the converge component of the asreml object will be set to FALSE and the results will be
erroneous (default = "hard").

o fixgammas If TRUE, all variance parameters are constrained to be fixed at their starting values
(default = FALSE).

o font.scale Scale axis text and labels (relative to the asreml default settings) in the graphs
generated by plot() (default = 1.0).

e gammaPar If TRUE, single-section models will be fitted using the gamma parameterization ir-
respective of whether the residual formula specifies a correlation or variance model. The
default behaviour for single-section models is to fit on the gamma scale if the residual formula
specifies a correlation structure, and on the sigma scale if the residual formula specifies a
variance structure (default = FALSE).

This option allows the user to change between the sigma and gamma parameterizations for
model fitting. There are sometimes advantages in using a gamma parameterization in terms
of providing appropriate initial values. If the residual model has only one variance parameter
then setting gammaPar = TRUE within asreml.options() switches from the sigma parame-
terization to the gamma parameterization in fitting the mixed model.

e glmminloop Set the number of inner iterations performed in an iteratively weighted least
squares analysis. These estimate the effects in the linear model for the current set of variance
parameters; outer iterations are the average information updates to the variance parameters.
The default is to perform 4 inner iterations in the first round and 2 in subsequent rounds of
the outer iteration. Set to 2 or more to increase the number of inner iterations (default = 1).

o grid A logical vector of length 1 or length(design.points) (see predict) controlling the
expansion of coordinates for two-dimensional kriging. For a given term, the coordinates for
prediction in two dimensions (z,y) are given as a list of two vectors or a two-column matrix
component of design.points. If TRUE, the coordinates are expanded to form an (z,y) grid of
all possible combinations, otherwise the columns of the matrix are taken in parallel (default
— TRUE).

e keep.order If TRUE, the order of terms in the fixed formula is retained. Set to TRUE if the
special model function and () is present (default = FALSE).

e knots The number of knot points for spline terms to consider. For a variate x, the number of
knot points is min(length(unique(x)), knots) (default = 50).

168

Appendix B. Description of features in ASReml-R

o license_id If 0, a new license_id is created for identification (default = 0).
o maxit Maximum number of iterations to stop fitting (default = 13).

e nsppoints Value that influences the number of points used when predicting splines and poly-
nomials. The design matrix generated by the pol(x) and spl(x) functions are modified to
include extra rows for points used in prediction. The range of x is divided by nsppoints -
1 to give a step size . For each point p in x, a predict point is inserted at p + ¢ if there is no
data value in the interval [p,p + 1.11].

The argument nsppoints is ignored if the predict () argument design.points is set (or the
design.points component of the predict list argument to asreml() is not empty). This
process also affects the number of levels identified by dev(x) (default = 21).

o oscillate If TRUE, the test for oscillating log-likelihood is implemented (default = TRUE).

e pworkspace Sets the workspace needed by the predict () method; follows the same convention
as workspace. Ignored if the predict argument to asreml() is not set. Note that the total
workspace used for prediction is: workspace + pworkspace (default = "128mb").

o pxem Selection of the (PX)EM update strategy for unstructured (us) variance models when
average information updates cause them to be non-positive definite (see uspd) (default = 1).
Valid options are:

Standard EM + 10 local EM steps
Standard EM + 10 local PXEM steps
Standard EM + 10 local EM steps*
Standard EM + 10 local PXEM steps*
Standard EM only

Single local PXEM

Standard EM + 1 local EM step
Standard EM + 1 local PXEM step

*Options 3 and 4 cause all us structures to be updated by (PX)EM if any particular one
requires EM updates.

00 g O U i W N

e random.order If option "noeff" the terms in the random and sparse formulae are reordered
in increasing number of effects. This is almost always desirable, especially if the stratum
variance decomposition is required. Other options are "user" to retain the order given in the
model specification, or "R" for the default R rules (default = "noeff").

e rotate.fa If FALSE, asreml() initially constrains the first £k — 1 loadings for higher order
(k > 1) factors in factor analytic models to zero. If constraints are not set for factor analytic
models with more than one factor, asreml () will set them internally and rotate the loadings
each iteration (rotate.fa = TRUE). This option also modifies the action of update.Gcon such
that rotation, if specified, is applied on an update (default = FALSE).

Constraints are required in the I' matrix for & > 1 for identifiability in fa(, k) models. These
are automatically set unless the user ensures identifiability by constraining one parameter in
the second column, two in the third column, and so on. With rotate.fa = FALSE, ASReml-R

169

Appendix B. Description of features in ASReml-R

fixes the j = 1, ...,4— 1 loadings for the i-th factor (2 < i < k) to zero and their corresponding
boundary constraints to FALSE. The total number of constraints is: k(k — 1)/2.

An alternative set of constraints can be set if identifiability constraints have not been imposed,
using rotate.fa = TRUE. The factors are rotated to orthogonality in each iteration, and k(k—
1)/2 constraints are imposed on the loadings depending on the values in this orthogonalized
I’ matrix. This option is hypothesized to have better convergence properties but we do not
have sufficient evidence yet to make a definite recommendation on its use. We note that extra
constraints might be needed to ensure identifiability if the number of parameters in a k factor
analytic model, w(1 + k) — k(k —1)/2, is greater than the w(w + 1)/2 parameters that can be
estimated in 3.

o scale Overall scale parameter (default = 1.0).

o score If TRUE, the score vector is returned in a component score of the asreml object (default
= FALSE).

e spline.scale When forming a design matrix for a spl() term, a standardized scale is used.
Setting spline.scale = 1 forces asreml to use the scale of the variable. The value -1 is
recommended in most cases (default = -1).

e spline.step A list with components named spl, dev and pol specifying the resolution
for spline deviations and polynomial functions, respectively. Points closer together than
1/spline.step of the range will be treated as a single point (default spline.step =
list(spl = 10000, dev = 10000, pol = 10000)).

e step.size Value for updating shrinkage factor. It reduces the update step sizes of the variance
parameters. The step size is incremented each iteration to a maximum of 1.0 (default =
0.316).

e threads The maximum number of threads to be used with OMP parallel processing. asreml
will use all threads available up to the maximum number specified. The value -1 will use all
available threads (default = -1).

e tol A vector of length two that modifies the sensitivity of asreml to detect singularities in
the mixed model equations. This is intended for the rare occasions when singularities are
detected after the first iteration (default = c(0, 0)).

Normally a singularity is declared if the adjusted sum of squares of a covariable is less than e,
or less than the uncorrected sum of squares xe, where e = 10~% in the first iteration and 1010
thereafter. If tol = c(a, b), e is scaled by $10"a} for the the first iteration, and $10"b} for
subsequent iterations. Once a singularity is detected, the corresponding equation is dropped
(forced to be zero) in subsequent iterations.

If the problem of later singularities arises because of the low coefficient of variation of a
covariable, it may be advisable to centre and rescale the covariable. If the degrees of freedom
are correct in the first iteration, the problem lies with the variance parameters and a different
variance model (or constraint) is needed.

o trace If TRUE, convergence monitoring of the current fit is reported in the console (default =
TRUE).

170

Appendix B. Description of features in ASReml-R

B.6

update.Gcon If TRUE, the constraint status of variance parameters in the G.param list com-
ponent on termination is updated; this may influence subsequent updates to the model fit
(default = TRUE).

update.Rcon If TRUE, the constraint status of variance parameters in the R.param list com-
ponent on termination is updated; this may influence subsequent updates to the model fit
(default = TRUE).

update.step.size Value for updating shrinkage factor to use in a call to update (). If ignored
it is set to 0.316 or if step.size is explicitly specified on the update() call; otherwise the
shrinkage factor is set to update.step.size in the call to asreml () constructed by update ()
(default = 0.316).

use.blas If "standard", then asreml will make use of linear algebra routines compiled into
the asreml package, otherwise the version of BLAS / LAPACK from R will be used (default
= "standard").

uspd If TRUE, set the boundary constraint for each parameter in unstructured variance models
to "P". Under these conditions, asreml checks whether the updated matrix is positive definite;
if not, the average information update is replaced with an EM update (see pxem) (default =
TRUE).

workspace Sets the workspace for the core REML routines in the form of a number optionally
followed directly by a valid measurement unit. Valid units are kb, mb or gb; if no units are
given then the value is interpreted as double-precision words (groups of 8 bytes) (default =
"128mb").

Methods and functions

The library asreml has an array of methods and functions to fit linear mixed models. Some are
required for internal processing, but others help to assist with pre- and post-analyses by preparing

data,

obtaining relevant matrices, or expanding the results to facilitate interpretation and explo-

ration. Below, a list of the most relevant methods and functions is presented with a brief description.
The majority of these require as input an object of class asreml, and further details can be found
directly in the help from ASReml-R.

Table B.2: Relevant methods and functions

Item Description

ainverse Generates an inverse relationship matrix in sparse triplet form from a pedigree
data frame.

asreml Main function to fit the general linear mixed model

asreml.options Set less frequently used asreml () options.

171

Appendix B. Description of features in ASReml-R

Relevant methods and functions

Item Description

asreml.read.table Reads in a file in table format and creates a data frame that is easily used by
asreml().

chkPed Checks a pedigree for consistency, adds missing founders and sorts so that
founders appear before individuals.

coef Extract model coefficients (BLUEs and BLUPs) from an asreml object.

fa.init Estimate initial parameter values for factor analytic models from the observed
variance-covariance matrix.

1rt Generic function to calculate likelihood ratio statistics for fitted models.

plot Four plots are generated: a histogram of the residuals, a Normal Q-Q plot,
a plot of residuals against fitted values and a plot of residuals against unit
number.

summary A summary method for objects inheriting from class asreml. It returns a list

of several statistics, tables and summaries of the model fit.

update Extract and evaluate the call from the fitted object, replacing any arguments
with changed values.

vpredict Form functions of variance components from an asreml object.
wald Pseudo analysis of variance using incremental Wald statistics or conditional
F-tests.

B.7 GLM/GLMM and the exponential family of distributions

B.7.1 Further details on GLMMs

For GLMMSs, asreml() uses what is commonly referred to as penalized quasi-likelihood or PQL
(Breslow and Clayton 1993). The library asreml () has implemented the techniques penalized quasi-
likelihood or PQL (Breslow and Clayton 1993). The is also known by other names, including Schall’s
technique (Schall 1991), pseudo-likelihood (Wolfinger and O’Connell 1993) and joint maximisation
(Harville and Mee 1984; Gilmour et al. 1985). PQL is implemented in many statistical packages;
for instance, in the GLMM procedure (Welham 2005) and the IRREML procedure of Genstat (Keen
1994), in MLwiN (Goldstein et al. 1998), in the GLIMMIXED macro in SAS and in the glmmPQL
function in R, to name a few.

The PQL technique is based on a first-order Taylor series approximation to the likelihood. It has
been shown to perform poorly for certain types of GLMMs. In particular, for binary GLMMs where
the number of random effects is large compared to the number of observations, it can underestimate
the variance components severely (up to 50%) (for example, Breslow and Lin (1995), Goldstein and
Rasbash (1996), Rodriguez and Goldman (2001), Waddington et al. (1994)). For other types of

172

Appendix B. Description of features in ASReml-R

GLMMs, such as Poisson data with many observations per random effect, it has been reported to
perform quite well (for example, Breslow 2003). As well as the above references, users can consult
McCulloch and Searle (2001) for more information about GLMMs.

Most studies investigating PQL have focused on estimation bias. Much less attention has been
given to the wider inferential issues such as hypothesis testing. In addition, the performance of
this technique has only been assessed on a small set of relatively simple GLMMs. Anecdotal
evidence from users suggests that this technique can give very misleading results in certain situations;
therefore, we cannot recommend the use of this technique for general use. It is included in the
current version of asreml () for advanced users. It is highly recommended to consider with caution.
For instance, one way of doing this would be by simulating data using the same design and using
parameter values similar to the parameter estimates achieved, such as used in Millar and Willis
(1999).

173

Appendix C

Variance structures in ASReml-R

C.1 Variance and correlation structure functions

Table C.1 presents the full range of variance models available in ASRem|-R with their algebraic
descriptions and numbers of parameters. In most cases the algebraic form is for the correlation
model (1d() to agau()). However, the models from diag() onwards are additional heterogeneous
variance models. Recall from Section 4.2 the algebraic forms of the homogeneous and heterogeneous
variance models are determined as follows.

Let C “*®) = [C}] be the correlation matrix for a particular correlation model. Tf 3 (“X%) js the
corresponding homogeneous variance matrix then

Y = ¢C

and has just one more parameter than the correlation model. For example, the homogeneous
variance model corresponding to the id () correlation model has variance matrix ¥ = 021, (specified
idv() in the ASReml-R function call, see below) and one parameter. Likewise, if Eh(wxw) is the

heterogeneous variance matrix corresponding to C, then

¥, = DCD

where D (@X@) = diag (0;). In this case there are an additional w parameters. For example, the
ASReml-R function for the heterogeneous variance model corresponding to id() variance model has
variance matrix

012 0 0

0 o? 0
3 = .

0 0 o2

Appendix C. Variance structures in ASReml-R

2 2

(specified idh () in the asreml () call, see following table) and involves the w parameters o7 ...o7.
Table C.1: Details of the available variance models
function description algebraic number of parameters
name form
corr homog. heterog.
variance variance

Correlation models

idO) identity C,=10C,=0, i#j 0 1 w
ar1() 1" order C.=1,C,, =0 1 2 1+ w
autoregressive Cij =g, 01_1,]'» i>j+1
AR
ar2() 2" order C, =1, 2 3 2+ w
autoregressive Cori=6,/(1—9,)

Cij = ¢1Ci—1,j +¢20i—2,j7 1>7+1

‘()bl :t¢z| < 17
6. <1, |6, <1

rd

ar3() 3 order C,=10=1—¢, —¢s(¢, +¢3), 3 4 34w
autoregressive Cipry = (b, + Pobs)/ 2,
Ci+2,i = (¢1 (¢1 + ¢3) + ¢2(1 - ¢2))/Qa
Cij = ¢1C«;—1,j + ‘:bzci—z,j + ¢3Ci—3,j7 P> -7 +2
‘¢1| < (1 _¢2)7|¢2| < 17|¢3| <1

sar() symmetric C, =1, 1 2 14+ w
autoregressive Crory =0/ + ¢?/4)
Cij = ¢1Ci71,j - ¢?/4 Ci—Z,j’
1>7+1
|, <1
sar2() constrained as for AR3 using 2 3 24w
autoregressive 3 b, =7, +27,,
used for 6, = —7, (27, +7,)
competition 2 722 T Y2)
¢3 =M
mal() 17 order C, =1, 1 2 14w
moving average Ci+1 L=—0,/(1+ ‘9?)
C,,=0,j>i+2
10, <1

175

Appendix C. Variance structures in ASReml-R

Details of the available variance models

function description algebraic number of parameters
name form
corr homog. heterog.
variance variance
ma2() 2" order c, =1, 2 3 2+ w
moving average Ciir, =0, (1—-6,)/(1+ 9? + 93)
Ci+2,i = 702/(1 + ‘9? + 03)
C,,=0,j>i+2
0, £0, <1
10, <1, 16, <1
arma() autoregressive C, =1, 2 3 2+ w
moving average Ci+1,i =0 -9)(1-09)/(1+
0% — 20¢)
C,,=¢C, ,,,j>i+1
0] <1, ¢ <1
cor() uniform C,=1,0C,;,=0,i#] 1 2 14w
correlation
corb() banded C,=1 j j+1 jtw
lati — ;
correlation Ci+j,i — ¢j7 1 S j <w
|65 <1
corg() general c,=1 “’“’271) w(“’;l) +1 “’W;l) +w
correlation C.=¢,,i#j
corgh() =us() ‘¢LJ| < 1”
ij
One-dimensional unequally spaced power models
exp() exponential C,=1 1 2 14w
Cij = ¢|93'i_33j|7 i F g
x; are coordinates
¢l <1
gau() gaussian C,=1 1 2 14+ w
C,;]‘ = ¢<Ti*1j>2
x; are coordinates
ol <1
1vr() linear C, = (1-06) 1 2 1+w
variance 0< ¢,

176

Appendix C. Variance structures in ASReml-R

Details of the available variance models

function
name

description

algebraic number of parameters
form

corr homog. heterog.

variance variance

Two-dimensional irregularly spaced power models

iexp()

igau()

ieuc()

sph)

cir()

aexp()

agau()

mtrn()

isotropic
exponential

isotropic
gaussian

isotropic
euclidean

spherical

circular?

anisotropic
exponential

anisotropic
gaussian

Matérn with
first 1< k<5
parameters
specified by
the user

c, =1 1 2
— Hlzi—zjl+lyi—y;

C, = ¢! 3l +lyi =yl

2 and (y) vectors of coordinates

ol <1

C, =1 1 2
Cij _ ¢<Ii*1j>2+(yi*y]‘)2

x and (y) vectors of coordinates

¢l <1

C, =1 1 2
c, = oV @i=2)2+wi=v;)?

x and (y) vectors of coordinates

9l <1
3 103
0< ¢
c, =1 1 2
— %(9”‘1 /1 — 912] + sin_lei]-)
0< ¢
c,=1 2 3
Cij _ ¢|1$i*xj|¢\2yi*yj|
x and (y) vectors of coordinates
6] <1, |¢o| <1
c,=1 2 3
zi—x;)? i—vi)?
C,y =" g
x and (y) vectors of coordinates
0] <1, [a] <1
C,; =Matérn: see Section C.2.1 k E+1

¢ > 0 range, v shape(0.5)
0 > 0 anisotropy ratio(1),
a anisotropy angle(0),
A(1)2) metric(2)

177

1+ w

14w

14+ w

1+w

14w

24w

2+ w

k+w

Appendix C. Variance structures in ASReml-R

Details of the available variance models

function description algebraic number of parameters
name form
corr homog. heterog.
variance variance
Heterogeneous variance models
diag() diagonal = X,=¢,3,=0,i#j - - w
idh O
us () unstructured i = gi)” - - %
general
covariance
ante(, k) antedependence > ' =UDU’ - - (k+1)(w—k/2)
der k _
order D, =d,, D,; =0,i#
1 < order < U,=10U,; =u,, 1 <j—i<
w—1 order
Uij =0, 1> 7
chol(, k) cholesky > =LDL - - (k+1)(w—k/2)
Erder D;, =d,, Dij =0,i#]
1 < order < L,=11L,=1,;,1<i—j<order
w—1
sfa(, k) factor analytic 3 =DCD, - - kw+w
order k, C=FF +E,
scaled form F' contains correlation factors
FE diagonal
DD = diag (%)
fa(, k) factor analytic =TT+ ¥, - - kw+w
order k, T contains covariance factors
sparse form W contains specific variance
facv(, k) factor analytic =TT+ ¥, - - kw +w
order k, T contains covariance factors
covariance form W contains specific variance
rr(, k) reduced rank > =TI’ - - kw

order k

Known variance structures

T contains covariance factors

vm () known variance model (genetic relationship matrix

or its inverse)

General variance models

str() variance model relating to a sequence of terms in
the model
dsum() direct sum structures for the residual error term

178

Appendix C. Variance structures in ASReml-R

fWebster and Oliver (2001)

C.2 Further details on variance structures

C.2.1 The Matérn variance structure mtrn()

ASReml-R uses an extended Matérn class which accommodates geometric anisotropy and a choice
of metrics for random fields observed in two dimensions. This extension, described in detail in
Haskard (2006), is given by

p(h; @) = prp(d(h; 0,0, \); ¢,v)

where h = (hy, hy)7T is the spatial separation vector, (J, @) governs geometric anisotropy, (A) specifies
the choice of metric and (¢, v) are the parameters of the Matérn correlation function. The function
is

pae(ds o,v) = {2 T} (Z)VK,, <Z> (1)

where ¢ > 0 is a range parameter, v > 0 is a smoothness parameter, I'(:) is the gamma function,
K, (.) is the modified Bessel function of the third kind of order v (Abramowitz and Stegun 1965,
9.6) and d is the distance defined in terms of z and y axes: h, = x; — xj; hy = Yi — Yj; Sz =
cos(a)hy + sin(a)hy; s, = cos(a)hy — sin(a)hy; d = (3]s |* + |5, /6) /.

For a given v, the range parameter ¢ affects the rate of decay of p(-) with increasing d. The
parameter v > 0 controls the analytic smoothness of the underlying process ug, the process being
[v] — 1 times mean-square differentiable, where [v] is the smallest integer greater than or equal
to v (Stein, 1999, page 31). Larger v correspond to smoother processes. ASReml-R uses numerical
derivatives for v when its current value is outside the interval [0.2, 5].

When v = er% with m a non-negative integer, pps(-) is the product of exp(—d/¢) and a polynomial
of degree m in d. Thus v = % yields the exponential correlation function, pys(d; ¢, %) = exp(—d/¢),
and v = 1 yields Whittle’s elementary correlation function: pys(d;¢,1) = (d/¢)Ki1(d/¢) (Webster
and Oliver 2001).

When v = 1.5 then

pm(d; ¢,1.5) = exp(—d/o)(1 + d/p)

which is the correlation function of a random field which is continuous and once-differentiable.
This has been used by Kammann and Wand (2003). As v — oo then py/(-) tends to the gaussian
correlation function.

The metric parameter A is not estimated by ASReml-R; it is usually set to 2 for Euclidean distance.
Setting A = 1 provides the cityblock metric, which together with v = 0.5 models a separable
AR1xAR1 process. The cityblock metric may be appropriate when the dominant spatial processes

179

Appendix C. Variance structures in ASReml-R

are aligned with rows/columns as occurs in field experiments. Geometric anisotropy is discussed in
most geostatistical books (Webster and Oliver 2001; Diggle et al. 2003) but rarely are the anisotropy
angle or ratio estimated from the data. Similarly, the smoothness parameter v is often set a priori
(Diggle et al. 2003; Kammann and Wand 2003). However, Stein (1999) and Haskard et al. (2007)
demonstrate that v can be reliably estimated even for modest sized data sets, subject to caveats
regarding the sampling design.

Estimation

The order of the parameters in mtrn(), with their defaults, is (¢, v =0.5, d =1, a =0, A =2).
Parameters are fixed or estimated depending on the data type (numeric or character) of the argument
to the respective parameter.

e If an argument is numeric, it is treated as a starting value for estimation and given the
constraint code P (positive).

e This behaviour can be altered by concatenating the numeric value followed by the constraint
code (P, U or F) into a character string.

e If an argument is absent from the call, the corresponding parameter is held fixed at its default
value.

For example, to fit a Matérn model with only ¢ estimated and the other parameters set at their
defaults then we could use mtrn(phi = 0.1) where the starting value for estimation is given as 0.1.

To fix v at some value other than the default and estimate ¢, the fixed value and constraint code
are given as a single string to the nu argument. That is mtrn(phi = 0.1, nu = "1.0F").

The parameters ¢ and v are highly correlated so it may be better to manually cover a grid of v
values.

We note that there is non-uniqueness in the anisotropy parameters of this metric d(-) since inverting
0 and adding § to « gives the same distance. This non-uniqueness can be removed by constraining
0 <a< Fandd >0, or by constraining 0 < a < 7 and either 0 < < 1or d > 1. With A = 2,
isotropy occurs when 6 = 1, and then the rotation angle « is irrelevant: correlation contours are
circles, compared with ellipses in general. With A = 1, correlation contours are diamonds.

C.2.2 The user-defined variance structure own()

The own () variance model allows the specification of a user-defined variance structure. This feature
requires a user-provided R function (the default is myowngdg()) that returns a list containing the
variance matrix and a full set of partial derivative matrices, one for each parameter. Before each
iteration, ASReml-R calls myowngdg () passing basic information on the variance parameters given
by the own() model term, and retrieves the returned list containing the variance matrix and its
derivatives.

We use the data set shf (an agricultural field experiment arranged in a rectangular grid of plots) to
illustrate the use of own(). The function my.ar1() is an example myowngdg (), that for illustration
it duplicates the AR1 variance structure.

180

Appendix C. Variance structures in ASReml-R

Ignoring the design factors, the following simple analysis models the residuals with separable au-
toregressive processes in the Row and Column dimensions:

shf.arl <- asreml(
fixed = yield ~ Variety,
residual = ~ariv(Row) :arl1(Column),
data = shf

We can define my.ar1 as a regular function:

my.arl <- function(order, kappa) {
t <- l:order
H <- abs(outer(t, t, "-"))
V <- kappa"H
dV <- Hx(kappa (H - 1))
return(list(V, dV))

}

and the following call replaces the intrinsic ASReml|-R variance model ar1() with the user-defined
function my.ar1() for the Column factor:

shf.arl <- asreml(
fixed = yield ~ Variety,
residual = ~arlv(Row) :own(Column, "my.arl", 0.1, "R"),
data = shf

where the arguments to own() are:

Column The object in the data.
"my.arl" The name of the user-defined function as a character string.
0.1 A vector of initial parameter values.
"R" A character vector specifying the parameter type(s),
in this case "R" designates the single parameter as a correlation.

C.2.3 Other variance structures

e facv() An alternative form of the factor analytic model fa(). If the size of the matrix
modelled is much larger than the number of factors, the sparse or extended formulation fa ()
is usually computationally preferable.

e vm() Known variance models. These may be genetic relationship matrices or their inverses
if they exist. If an inverse, it must have an INVERSE attribute set to TRUE. For example, the
inverse relationship matrix harvey.ai would need to have an inverse attribute set manually:

181

Appendix C. Variance structures in ASReml-R

attr(harvey.ai, "INVERSE") <- TRUE

or

attr(harvey.ai) $INVERSE <- TRUE

unless it was constructed from a pedigree file using ainverse() in which case an "INVERSE"
= TRUE attribute would be automatically set.

harvey.ai <- ainverse(harvey.ped)

182

Bibliography

Abramowitz, M., and I. A. Stegun. 1965. Handbook of mathematical functions: With formulas,
graphs, and mathematical tables. National Bureau of Standards Applied Mathematics Series. e.
55:953.

Breslow, N. E. 2003. Whither PQL? UW Biostatistics Working Paper Series, University of Wash-
ington. Available online at: https://biostats.bepress.com/uwbiostat/paper192/.

Breslow, N. E., and D. G. Clayton. 1993. Approximate inference in generalized linear mixed models.
Journal of the American Statistical Association. 88:9-25.

Breslow, N. E., and X. Lin. 1995. Bias correction in generalised linear mixed models with a single
component of dispersion. Biometrika. 82:81-91.

Cox, D. R., and D. V. Hinkley. 1974. Theoretical statistics. Chapman; Hall.
Cox, D. R., and E. J. Snell. 1981. Applied statistics; principles and examples. Chapman; Hall.
Cressie, N. A. C. 1991. Statistics for spatial data. John Wiley; Sons.

Cullis, B. R., and A. C. Gleeson. 1991. Spatial analysis of field experiments - an extension to two
dimensions. Biometrics. 47:1449-1460.

Cullis, B. R., A. C. Gleeson, W. J. Lill, J. A. Fisher, and B. J. Read. 1989. A new procedure for
the analysis of early generation variety trials. Applied Statistics. 38:361-375.

Cullis, B., B. Gogel, A. Verbyla, and R. Thompson. 1998. Spatial analysis of multi-environment
early generation variety trials. Biometrics. :1-18.

Dempster, A. P., M. R. Selwyn, C. M. Patel, and A. J. Roth. 1984. Statistical and computational
aspects of mixed model analysis. Applied Statistics. 33:203-214.

Diggle, P. J., P. J. Ribeiro, and O. F. Christensen. 2003. An introduction to model-based geostatis-
tics. P. 43-86 in Spatial statistics and computational methods, Moller, J. (ed.). Springer-Verlag.

Draper, N. R., and H. Smith. 1998. Applied regression analysis. 3rd ed. John Wyley; Sons, New
York.

183

https://biostats.bepress.com/uwbiostat/paper192/

Gelfand, A. E., M. Fuentes, P. Guttorp, and P. Diggle. 2010. Handbook of spatial statistics. Taylor
& Francis.

Gilmour, A. R., R. D. Anderson, and A. L. Rae. 1985. The analysis of binomial data by a generalised
linear mixed model. Biometrika. 72:593-599.

Gilmour, A. R., B. R. Cullis, and A. P. Verbyla. 1997. Accounting for natural and extraneous varia-
tion in the analysis of field experiments. Journal of Agricultural, Biological, and Environmental
Statistics. 2:269-273.

Gilmour, A. R., B. R. Cullis, S. J. Welham, B. J. Gogel, and R. Thompson. 2004. An efficient
computing strategy for prediction in mixed linear models. Computational Statistics and Data
Analysis. 44:571-586.

Gilmour, A. R., B. J. Gogel, B. R. Cullis, S. J. Welham, and R. Thompson. 2002. ASReml user
guide release 1.0. VSN International, 5 The Waterhouse, Waterhouse St, Hemel Hempstead,
HP1 1ES, UK.

Gilmour, A. R., R. Thompson, and B. R. Cullis. 1995. Average information REML: An efficient
algorithm for variance parameter estimation in linear mixed models. Biometrics. 51:1440-1450.

Gleeson, A. C., and B. R. Cullis. 1987. Residual maximum likelihood (REML) estimation of a
neighbour model for field experiments. Biometrics. 43:277-288.

Gogel, B. J. 1997. Spatial analysis of multi-environment variety trials/beverley j. gogel. PhD
thesis.

Goldstein, H., and J. Rasbash. 1996. Improved approximations for multilevel models with binary
response. Journal of the Royal Statistical Society, Series A. 159:505-513.

Goldstein, H., J. Rasbash, 1. Plewis, D. Draper, W. Browne, M. Yang, G. Woodhouse, and M.
Healy. 1998. A user’s guide to MLwiN. Institute of Education, London. Available online at:
http://multilevel.ioe.ac.uk/.

Green, P. J., and B. W. Silverman. 1994. Nonparametric regression and generalized linear models.
Chapman; Hall.

Harvey, W. R. 1977. Users’ guide to LSML76. Ohio State University, Columbus.

Harville, D. A., and R. W. Mee. 1984. A mixed model procedure for analysing ordered categorical
data. Biometrics. 40:393—-408.

Haskard, K. A. 2006. Anisotropic Matérn correlation and other issues in model-based geostatistics.
PhD thesis, BiometricsSA, University of Adelaide.

Haskard, K. A., B. R. Cullis, and A. P. Verbyla. 2007. Anisotropic Matérn correlation and spa-
tial prediction using REML. Journal of Agricultural, Biological, and Environmental Statistics.

184

http://multilevel.ioe.ac.uk/

12:147-160.
Kammann, E. E., and M. P. Wand. 2003. Geoadditive models. Applied Statistics. 52(1):1-18.

Keen, A. 1994. Procedure IRREML. P. Report LWA-94-16 in GLW-DLO procedure library manual,
Agricultural Mathematics Group, Wageningen, The Netherlands.

Kendall, M. G., and A. Stuart. 1969. The advanced theory of statistics. Charles Griffin, London.

Kenward, M. G., and J. H. Roger. 1997. The precision of fixed effects estimates from restricted
maximum likelihood. Biometrics. 53:983-997.

Lane, P. W., and J. A. Nelder. 1982. Analysis of covariance and standardisation as instances of
predicton. Biometrics. 38:613-621.

McCullagh, P., and J. A. Nelder. 1994. Generalized linear models. 2nd ed. Chapman; Hall, London.

McCulloch, C. E., and S. R. Searle. 2001. Generalized, linear, and mized models. John Wiley;
Sons, Inc.

Meuwissen, T. H. E., and Z. Luo. 1992. Computing inbreeding coefficients in large populations.
Genetics Selection Evolution. 24.

Millar, R. B., and T. J. Willis. 1999. Estimating the relative density of snapper in and around a
marine reserve using a log-linear mixed-effects model. Australian and New Zealand Journal of
Statistics. 41:383-394.

Nelder, J. A. 1977. A reformulation of linear models. Journal of the Royal Statistical Society, Series
A. 140:48-76.

Nelder, J. A. 1994. The statistics of linear models: Back to basics. Statistics and Computing.
4:221-234.

Patterson, H. D., and R. Thompson. 1971. Recovery of interblock information when block sizes are
unequal. Biometrika. 31:100-109.

Pinheiro, J. C., and D. M. Bates. 2000. Mized-effects models in S and S-PLUS. Springer-Verlaag.

Quaas, R. L., and E. J. Pollak. 1980. Mixed model methodology for farm and ranch beef cattle
testing programs. Journal of Animal Science. 51(6):1277-1287.

Robinson, G. K. 1991. That BLUP is a good thing: The estimation of random effects. Statistical
Science. 6:15-51.

Rodriguez, G., and N. Goldman. 2001. Improved estimation procedures for multilevel models with
binary response: A case study. Journal of the Royal Statistical Society, Series A. 164(2):339-355.

Schall, R. 1991. Estimation in generalized linear models with random effects. Biometrika.

185

78(4):719-27.
Searle, S. R. 1971. Linear models. John Wiley; Sons, inc.

Searle, S. R., G. Casella, and C. E. McCulloch. 1992. Variance components. J. W. Wiley, New
York.

Self, S. C., and K. Y. Liang. 1987. Asymptotic properties of maximum likelihood estimators and
likelihood ratio tests under non-standard conditions. Journal of the American Statistical Society.
82:605-610.

Stein, M. L. 1999. Interpolation of spatial data: Some theory for kriging. Springer-Verlag, New
York.

Stevens, M. M., K. M. Fox, G. N. Warren, B. R. Cullis, N. E. Coombes, and L. G. Lewin. 1999.
An image analysis technique for assessing resistance in rice cultivars to root-feeding chironomid
midge larvae (Diptera: Chironomidae). Field Crops Research. 66:25-26.

Thompson, R. 1980. Maximum likelihood estimation of variance components. Series Statistics.
11:545-561.

Thompson, R., B. R. Cullis, A. Smith, and A. R. Gilmour. 2003. A sparse implementation of the
average information algorithm for factor analytic and reduced rank variance models. Australian
and New Zealand Journal of Statistics. 45:445-459.

Verbyla, A. P. 1990. A conditional derivation of residual maximum likelihood. Australian Journal
of Statistics. 32(2):227-230.

Verbyla, A. P., B. R. Cullis, M. G. Kenward, and S. J. Welham. 1999. The analysis of designed
experiments and longitudinal data using smoothing splines. Journal of the Royal Statistical
Society, Series C. :269-311.

Waddington, D., S. J. Welham, A. R. Gilmour, and R. Thompson. 1994. Comparisons of some
GLMM estimators for a simple binomial model. Genstat Newsletter. 30:13-24.

Webster, R., and M. A. Oliver. 2001. Geostatistics for environmental scientists. John Wiley; Sons,
Chichester.

Welham, S. J. 2005. GLMM fits a generalized linear mixed model. P. 260-265 in GenStat reference
manual 8: Procedure library PL17, Payne, R.W., and P.W. Lane (eds.). VSN International,
Hemel Hempstead, UK.

Welham, S. J., B. R. Cullis, B. J. Gogel, A. R. Gilmour, and R. Thompson. 2004. Prediction in
linear mixed models. Australian and New Zealand Journal of Statistics. 46:325-347.

Welham, S. J., and R. Thompson. 1997. Likelihood ratio tests for fixed model terms using residual
maximum likelihood. Journal of the Royal Statistical Society, Series B. 59:701-714.

186

Wolfinger, R. D. 1996. Heterogeneous variance-covariance structures for repeated measures. Journal
of Agricultural, Biological, and Environmental Statistics. 1:362—-389.

Wolfinger, R., and M. O’Connell. 1993. Generalized linear mixed models: A pseudo-likelihood
approach. Journal of Statistical Computation and Sitmulation. 48:233-243.

Yates, F. 1935. Complex experiments. Journal of the Royal Statistical Society, Series B. 2:181-247.

187

	Preface
	Introduction
	What can do
	Getting started
	Data sets used

	Some theory
	The general linear mixed model
	Estimation
	What are ?
	Inference: fixed effects
	Inference: random effects

	Fitting the mixed model
	The data frame
	Introducing the asreml() function call
	Components of the fitted model: the asreml object
	A note on data order
	Fixed terms
	Random terms
	Conditional factors: the at() and dsum() functions
	Two rules for defining the residual error term
	Diagnostic plots
	Weights
	Missing values
	Generalized linear (mixed) models
	Multivariate analyses
	Testing of terms: the wald() method

	Specifying variance structures
	A sequence of structures for the field trial data
	Types of variance models
	Variance model functions
	Rules for combining variance models
	Default initial values and constraints for variance parameters
	Estimates from functions of variance components
	Switching between the gamma and sigma parameterization
	Comparing models with different variance structures

	Specifying variance structures using genetic and other relationships
	Introduction
	Pedigree and the numerator relationship matrix
	Specifying relationship and inverse relationship matrices
	Generating an A-inverse matrix using ainverse()

	Prediction from the linear model
	Introduction
	Estimating means: the method
	Aliasing
	Complicated weighting
	Further examples

	Examples
	Introduction
	Split-plot design
	Unbalanced nested design
	Sources of variability in unbalanced data
	Balanced repeated measures
	Spatial analysis of a field experiment
	Unreplicated early generation variety trial
	Paired case-control study
	Balanced longitudinal data - random coefficients and cubic smoothing splines

	Some technical details about model fitting in
	Sparse versus dense
	Ordering of terms in
	Aliasing and singularities

	Description of features in
	Model formula terms
	Reserved names/words
	The asreml() arguments
	The asreml object list
	The asreml.options() arguments
	Methods and functions
	GLM/GLMM and the exponential family of distributions

	Variance structures in
	Variance and correlation structure functions
	Further details on variance structures

	Bibliography

