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Preface

ASReml-R fits the linear mixed model using Residual Maximum Likelihood (REML)
and is a joint venture between the Queensland Department of Primary Industries
& Fisheries (QDPI&F) and the Biometrics Program of the NSW Department of
Primary Industries. ASReml-R uses the numerical routines from the standalone pro-
gram ASRemlTM [Gilmour et al., 2002], under joint development through the NSW
Department of Primary Indistries the Biomathematics and Bioinformatics Division
of Rothamsted Research. This guide describes Version 3.00 of ASReml-R, released
in March 2009.

Linear mixed effects models provide a rich and flexible tool for the analysis of many
datasets commonly arising in the agricultural, biological, medical and environmental
sciences. Typical applications include the analysis of balanced and unbalanced lon-
gitudinal data, repeated measures, balanced and unbalanced designed experiments,
multi-environment trials, multivariate datasets and regular or irregular spatial data.

This reference manual documents the features of the methods for objects of class
asreml. Outside of the worked examples, it does not consider the statistical issues
involved in fitting models. The authors are contributing to the preparation of other
documents that are focused on the statistical issues rather than the computing
issues. ASReml-R requires that a dynamic link library (Microsoft WindowsTM) or
shared object file (Linux) containing the numerical methods be loaded at runtime.

The features of ASReml-R include

• A flexible syntax for specifying variance models for the random effects, and
the scope this offers the user. There is a potential cost for this complexity.
Users should be aware of the dangers of either overfitting or attempting to fit
inappropriate variance models to small or highly unbalanced data sets. We
stress the importance of the use of data driven diagnostics and encourage the
user to read the examples chapter, in which we have attempted to not only
present the syntax of ASReml-R in the context of real analyses but also to
indicate some of the modelling approaches we have found useful.

• The REML routines use the Average Information (AI) algorithm, and sparse
matrix methods for fitting the mixed model. This enables ASReml-R to effi-
ciently analyse large and complex datasets.
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This manual consists of nine chapters. Chapter 1 introduces ASReml-R , describes
the conventions used throughout the manual, and describes the various data sets
used for illustration; Chapter 2 presents an general overview of basic theory; Chap-
ter 3 presents an introduction to fitting models in ASReml-R followed by a more
detailed description of fitting the linear mixed model; Chapter 4 is a key chapter
that presents the syntax for specifying variance models for random effects in the
model; Chapter 3.13 describes the model specification for a multivariate analyses;
Chapter 5 describes special functions and methods for genetic analyses; Chapter 6
outlines the prediction of linear functions of fixed and random effects in the linear
mixed model; Chapter 7 describes the ASReml-R class and related methods and
finally Chapter 8 presents a comprehensive and diverse set of worked examples.

The data sets and ASReml-R input files used in this manual are included in the
software distribution. They remain the property of the authors or of the original
source, but may be freely distributed provided the source is acknowledged. We have
extensively tested the software but it is inevitable that bugs will exist. These may
be reported to the authors. The authors would also appreciate being informed of
errors and improvements to the manual and software.

Upgrades

ASReml-R and the shared object library are being continually upgraded to implement
new developments in the application of linear mixed models. The release version
will be distributed on CD to licensed users while a developmental version (and fixes)
will be available to licensees from http://www.vsni.co.uk.

http://www.vsni.co.uk
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1
Introduction

1.1 What ASReml-R can do

ASReml-R is designed to fit the general linear mixed model to moderately large data
sets with complex variance models. ASReml-R has application in the analysis of

• (un)balanced longitudinal data,

• repeated measures data (multivariate analysis of variance and spline type mod-
els),

• (un)balanced designed experiments,

• multi-environment trials and meta analysis

• regular or irregular spatial data.

The computational engine of ASReml-R is the algorithm of Gilmour et al. [1995]
adapted from the standalone program ASReml [Gilmour et al., 2002]. The compu-
tational efficiency of ASReml-R arises from using this Average Information REML
algorithm (giving quadratic convergence) and sparse matrix operations. However,
because of overheads inherent in S language implementations, some very large prob-
lems may need to use the standalone ASReml program to overcome memory limita-
tions.

The asreml() function returns an object of class asreml. Standard methods resid(),
fitted(), coef(), summary(), plot(), anova() and predict() work with this object, and
other methods including variogram() and wald() also exist.

1.2 Getting started

1.2.1 Installation

Production versions of ASReml-R are available for several implementations on Mi-
crosoft Windows and Linux systems. Installation varies with each system and in-
structions are contained in a separate document distributed with the archive or
available from the web site. If the instructions are inadequate then please contact
support@asreml.co.uk for assistance.

1
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1.2. Getting started 2

1.2.2 Help and references

Documentation for the asreml() function, support functions and related methods areDocumentation

available in Windows help format, and in HTML form on Linux platforms. Typically,
help is available via the standard help mechanism; that is, help(asreml) or ?asreml
displays the asreml documentation in text or HTML form depending on implemen-
tation and help system state. The function asreml.man() displays a copy of this
manual in PDF form.

There is an ASReml forum that all users are encouraged to join; visitForum

www.vsni.co.uk/forum to register.

The statistical theory underlying the modelling illustrated in this manual is intro-
duced in Chapter 2. An extended discussion, with special reference to the fitting
of variance models to structures at the residual (R) and non-residual (random, G)
levels, will appear in detail in a forthcoming publication.

1.2.3 Conventions

This manual uses the following typographic conventions:

this font is used to denote operating system commands;

this font is used to indicate user supplied arguments to operating system com-
mands, including filenames.

this font is used for ASReml-R function examples; this font for other R functions
and their associated arguments,

this font is used for emphasis and user supplied variables to R functions,

this font is used for verbatim output of R function calls.

The R command prompt is denoted by ”>” and the operating system prompt by
”%”.

1.2.4 Using this guide

Users may find the introductory sections of Chapter 3 useful before reading further.Introduction

This gives an introduction to analysis in ASReml-R using an example from the lit-
erature and covers some common tasks from creating a data frame to setting initial
values for variance components. An introduction to the theory that underpins theTheory

methods in ASReml-R is covered in Chapter 2

Variance modelling is a complex aspect of linear mixed modelling. Chapter 4 givesVariance modeling

details of variance modelling in ASReml-R. You should refer to this chapter if you
wish to fit more complex variance models. Chapter 5 describes the inclusion ofKnown structures

known variance structures, such as those from ancestral pedigree information, in
the model fitting process.

http://www.vsni.co.uk/forum
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Prediction from the fitted linear mixed model is discussed in Chapter 6.Prediction

The asreml() function and asreml class methods are documented in Chapter 7.Function reference

Chapter 8 presents a wide range of additional worked examples.Examples

1.3 Data sets used

1.3.1 Nebraska Intrastate Nursery (NIN) field experiment

The yield data from an advanced Nebraska Intrastate Nursery (NIN) breeding trial
conducted at Alliance in 1988/89 are taken from Stroup et al. [1994]. Four replicates
of 19 released cultivars, 35 experimental wheat lines and 2 additional triticale lines
were laid out in a 22 row by 11 column rectangular array of plots; the varieties
were allocated to the plots using a randomised complete block (RCB) design. In
field trials, complete replicates are typically allocated to consecutive groups of whole
columns or rows. In this trial the replicates were not allocated to groups of whole
columns, but rather, overlapped columns. Table 1.1 gives the allocation of varieties
to plots in field plan order with replicates 1 and 3 in italics and replicates 2 and 4
in bold.

1.3.2 Repeated measures on rats

Growth curve data on the body weights of rats are taken from Box [1950]. A total
of 27 rats was divided randomly into 3 groups of 10, 7 and 10, respectively. Group
1 were kept as a control, group 2 had thyroxin and group 3 had thiouracil added to
their drinking water. Five weekly measurements were taken on each individual and
the raw results are shown in Figure 1.1.

1.3.3 Orange wether trial

Three key traits for the Australian wool industry are the weight of wool grown per
year, the cleanness and the diameter of that wool. Much of the wool is produced
from wethers and most major producers have traditionally used a particular strain or
bloodline. To assess the importance of bloodline differences, many wether trials were
conducted. One trial was conducted from 1984 to 1988 at Borenore near Orange. It
involved 35 teams of wethers representing 27 bloodlines. The file wether.dat shown
below contains greasy fleece weight (kg), yield (percentage of clean fleece weight to
greasy fleece weight) and fibre diameter (microns).

An extract of orange.csv is given below:

Tag, Site, Bloodline, Team, Year, gfw, yield, fdiam
0101, 3, 21, 1, 1, 5.6, 74.3, 18.5
0101, 3, 21, 1, 2, 6.0, 71.2, 19.6
0101, 3, 21, 1, 3, 8.0, 75.7, 21.5
0102, 3, 21, 1, 1, 5.3, 70.9, 20.8
0102, 3, 21, 1, 2, 5.7, 66.1, 20.9
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Figure 1.1: Weekly body weights of rats. C = Control, X = Thyroxin, T = Thiouracil

0102, 3, 21, 1, 3, 6.8, 70.3, 22.1
0103, 3, 21, 1, 1, 5.0, 80.7, 18.9
0103, 3, 21, 1, 2, 5.5, 75.5, 19.9
0103, 3, 21, 1, 3, 7.0, 76.6, 21.9
...
4013, 3, 43, 35, 1, 7.9, 75.9, 22.6
4013, 3, 43, 35, 2, 7.8, 70.3, 23.9
4013, 3, 43, 35, 3, 9.0, 76.2, 25.4
4014, 3, 43, 35, 1, 8.3, 66.5, 22.2
4014, 3, 43, 35, 2, 7.8, 63.9, 23.3
4014, 3, 43, 35, 3, 9.9, 69.8, 25.5
4015, 3, 43, 35, 1, 6.9, 75.1, 20.0
4015, 3, 43, 35, 2, 7.6, 71.2, 20.3
4015, 3, 43, 35, 3, 8.5, 78.1, 21.7

1.3.4 Beef cattle data

These data appear among the examples in Harvey [1977] and are originally from
Harvey [1960]. The data comprise 65 observations on individual calves indexed
by factors Line and Sire within line. The data as used here contain a covariate
ageOfDam and 3 response variates average daily gain, age and initial weight labelled
as y1, y2 and y3, respectively.

An extract from harvey.dat is given below:
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Calf Sire Dam Line ageOfDam y1 y2 y3
101 Sire 1 0 1 3 192 390 224
102 Sire 1 0 1 3 154 403 265
103 Sire 1 0 1 4 185 432 241
104 Sire 1 0 1 4 183 457 225
105 Sire 1 0 1 5 186 483 258
106 Sire 1 0 1 5 177 469 267
107 Sire 1 0 1 5 177 428 271
108 Sire 1 0 1 5 163 439 247
109 Sire 2 0 1 4 188 439 229
110 Sire 2 0 1 4 178 407 226
...
161 Sire 9 0 3 4 184 483 244
162 Sire 9 0 3 5 180 425 266
163 Sire 9 0 3 5 177 420 246
164 Sire 9 0 3 5 175 449 252
165 Sire 9 0 3 5 164 405 242

In a genetic analysis we can specify the relationship among individuals in a pedigree
file. This is a simple text file with columns for the individual’s identity and its male
and female parents. The first 20 line of the pedigree file harvey.ped associated with
these data are:

Calf Sire Dam
101 Sire 1 0
102 Sire 1 0
103 Sire 1 0
104 Sire 1 0
105 Sire 1 0
106 Sire 1 0
107 Sire 1 0
108 Sire 1 0
109 Sire 2 0
110 Sire 2 0
111 Sire 2 0
112 Sire 2 0
113 Sire 2 0
114 Sire 2 0
115 Sire 2 0
116 Sire 2 0
117 Sire 3 0
118 Sire 3 0
119 Sire 3 0
120 Sire 3 0
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where unknown parents are denoted here by 0. In this example the columns of the
pedigree file harvey.ped are fully contained within the data file harvey.dat .



2
Some theory

2.1 The linear mixed model

2.1.1 Introduction

If y denotes the n× 1 vector of observations, the linear mixed model can be written
as

y = Xτ +Zu+ e (2.1)

where τ is the p×1 vector of fixed effects, X is an n×p design matrix of full column
rank which associates observations with the appropriate combination of fixed effects,
u is the q×1 vector of random effects, Z is the n× q design matrix which associates
observations with the appropriate combination of random effects, and e is the n× 1
vector of residual errors.

The model (2.1) is called a linear mixed model or linear mixed effects model. It is
assumed

[

u

e

]

∼ N

([

0
0

]

, θ

[

G(γ) 0
0 R(φ)

])

(2.2)

where the matrices G and R are functions of parameters γ and φ, respectively. The
parameter θ is a variance parameter which we will refer to as the scale parameter.
In mixed effects models with more than one residual variance, arising for example in
the analysis of data with more than one section (see below) or variate, the parameter
θ is fixed to one. In mixed effects models with a single residual variance then θ is
equal to the residual variance (σ2). In this case R must be correlation matrix (see
Table 2.1 for a discussion).

2.1.2 Direct product structures

To undertake variance modelling in asreml() it is important to understand the for-
mation of variance structures via direct products (⊗). The direct product of two
matrices A (m×p) and B (n×q) is













a11B . . . a1pB

...
. . .

...

a
m1B

. . . ampB













.

8
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Direct products in R structures

Consider a vector of common errors associated with an experiment. The usual least
squares assumption (and the default in asreml()) is that these are independently and
identically distributed (IID). However, if the data was from a field experiment laid
out in a rectangular array of r rows by c columns, say, we could arrange the residuals
e as a matrix and potentially consider that they were autocorrelated within rows
and columns. Writing the residuals as a vector in field order, that is, by sorting
the residuals rows within columns (plots within blocks) the variance of the residuals
might then be

σ2e Σc(ρc)⊗Σr(ρr)

where Σc(ρc) and Σr(ρr) are correlation matrices for the row model (order r, au-
tocorrelation parameter ρr) and column model (order c, autocorrelation parameter
ρc) respectively. More specifically, a two-dimensional separable autoregressive spa-
tial structure (AR1 ⊗ AR1) is sometimes assumed for the common errors in a field
trial analysis (see Gogel (1997) and Cullis etal (1998) for examples). In this case

Σr =



















1

ρr 1

ρ2r ρr 1
...

...
...

. . .

ρr−1
r ρr−2

r ρr−3
r . . . 1



















and Σc =



















1

ρc 1

ρ2c ρc 1
...

...
...

. . .

ρc−1
c ρc−2

c ρc−3
c . . . 1



















.

Alternatively, the residuals might relate to a multivariate analysis with nt traitsSee 3.13

and n units and be ordered traits within units. In this case an appropriate variance
structure might be

In ⊗Σ

where Σ (nt×nt) is a variance matrix.

Direct products in G structures

Likewise, the random terms in u in the model may have a direct product variance
structure. For example, for a field trial with s sites, g varieties and the effects ordered
varieties within sites, the model term site.variety may have the variance structure

Σ⊗ Ig

where Σ is the variance matrix for sites. This would imply that the varieties are
independent random effects within each site, have different variances at each site,
and are correlated across sites. Note: whenever a random term is formed as the in-
teraction of two factors, you should consider whether the IID assumption is sufficient
or if a direct product structure might be more appropriate.
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2.1.3 Variance structures for the errors: R structures

The vector e will in some situations be a series of vectors indexed by a factor
or factors. The convention we adopt is to refer to these as sections. Thus e =
[e′1,e

′
2, . . . ,e

′
s]
′ and the ej represent the errors of sections of the data. For exam-

ple, these sections may represent different experiments in a multi-environment trial
(MET), or different trials in a meta analysis. It is assumed that

R = ⊕s
j=1Rj =















R1 0 . . . 0 0
0 R2 . . . 0 0
...

...
. . .

...
...

0 0 . . . Rs−1 0
0 0 . . . 0 Rs















so that each section has its own variance matrix but they are assumed independent.

Cullis et al. [1997] consider the spatial analysis of multi-environment trials in which

Rj = Rj(φj)

= σ2j (Σj(ρj) + ψjInj
)

and each section represents a trial. This model accounts for between trial error
variance heterogeneity (σ2j ) and possibly a different spatial variance model for each
trial.

In the simplest case the matrix R could be known and proportional to an identity
matrix. Each component matrix, Rj (or R itself for one section) is assumed to
be the kronecker (direct) product of one, two or three component matrices. The
component matrices are related to the underlying structure of the data. If the
structure is defined by factors, for example, replicates, rows and columns, then the
matrix R can be constructed as a kronecker product of three matrices describing the
nature of the correlation across replicates, rows and columns. These factors must
completely describe the structure of the data, which means that

1. the number of combined levels of the factors must equal the number of data
points,

2. each factor combination must uniquely specify a single data point.

These conditions are necessary to ensure the expression var (e) = θR is valid. The
assumption that the overall variance structure can be constructed as a direct product
of matrices corresponding to underlying factors is called the assumption of separabil-
ity and assumes that any correlation process across levels of a factor is independent
of any other factors in the term. This assumption is required to make the estimation
process computationally feasible, though it can be relaxed, for certain applications,
for example fitting isotropic covariance models to irregularly spaced spatial data.
Multivariate data and repeated measures data usually satisfy the assumption of
separability. In particular, if the data are indexed by factors units and traits (for
multivariate data) or times (for repeated measures data), then the R structure may
be written as units ⊗ traits or units ⊗ times.
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2.1.4 Variance structures for the random effects: G structures

The q×1 vector of random effects is often composed of b subvectors u = [u′
1 u

′
2 . . . u

′
b]
′

where the subvectors ui are of length qi and these subvectors are usually assumed
independent normally distributed with variance matrices θGi. Thus just like R we
have

G = ⊕b
i=1Gi =















G1 0 . . . 0 0
0 G2 . . . 0 0
...

...
. . .

...
...

0 0 . . . Gb−1 0
0 0 . . . 0 Gb















.

There is a corresponding partition in Z, Z = [Z1 Z2 . . . Zb]. As before each sub-
matrix, Gi, is assumed to be the kronecker product of one, two or three component
matrices. These matrices are indexed for each of the factors constituting the term
in the linear model. For example, the term site:genotype has two factors and so the
matrix Gi is comprised of two component matrices defining the variance structure
for each factor in the term.

Models for the component matrices Gi include the standard model for which Gi =
γiIqi as well as direct product models for correlated random factors given by

Gi = Gi1 ⊗Gi2 ⊗Gi3

for three component factors. The vector ui is therefore assumed to be the vector
representation of a 3-way array. For two factors the vector ui is simply the vec of a
matrix with rows and columns indexed by the component factors in the term, where
vec of a matrix is a function which stacks the columns of its matrix argument below
each other.

A range of models are available for the components of both R and G. They include
correlation (C) models (that is, where the diagonals are 1), or covariance (V ) models
and are discussed in detail in Chapter 4 (see Section 4.2). Some correlation models
include

• autoregressive (order 1 or 2)

• moving average (order 1 or 2)

• ARMA(1,1)

• uniform

• banded

• general correlation.

Some of the covariance models include

• diagonal (that is, independent with heterogeneous variances)

• antedependence
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• unstructured

• factor analytic.

There is the facility within asreml() to allow for a nonzero covariance between the
subvectors of u, for example in random regression models . In this setting the
intercept and say the slope for each unit are assumed to be correlated and it is more
natural to consider the the two component terms as a single term, which gives rise
to a single G structure. This concept is discussed later.

2.2 Estimation

Estimation involves two processes that are very strongly linked. One process involves
estimation of τ and predic- tion of u (although the latter may not always be of
interest) for given θ, φ and γ. The other process involves estimation of these variance
parameters. Note that in the following sections we have set θ = 1 to simplify the
presentation of results.

2.2.1 Variance parameters

Estimation of the variance parameters is carried out using residual or restricted
maximum likelihood (REML), developed by Patterson and Thompson [1971]. Note
firstly that

y ∼ N(Xτ , H). (2.3)

where H = R+ZGZ ′. REML does not use (2.3) for estimation of variance param-
eters, but rather uses a distribution free of τ , essentially based on error contrasts or
residuals. The derivation given below is presented in Verbyla [1990].

We transform y using a non-singular matrix L = [L1 L2] such that

L′
1X = Ip, L′

2X = 0.

If yj = L′
jy, j = 1, 2,

[

y1

y2

]

∼ N

([

τ

0

]

,

[

L′
1HL1 L′

1HL2

L′
2HL1 L′

2HL2

])

.

The full distribution of L′y can be partitioned into a conditional distribution, namely
y1|y2, for estimation of τ , and a marginal distribution based on y2 for estimation
of γ and φ; the latter is the basis of the residual likelihood.

The estimate of τ is found by equating y1 to its conditional expectation, and after
some algebra we find,

τ̂ = (X ′H−1X)−1X ′H−1y

Estimation of κ = [γ ′ φ′]′ is based on the distribution of y2,

ℓR = −1

2
(log detL′

2H
−1L2 + y′

2(L
′
2HL2)

−1y)

= −1

2
(log detX ′H−1X + log detH + y′Py) (2.4)
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where
P = H−1 −H−1X(X ′H−1X)−1X ′H−1.

Note that y′Py = (y−Xτ̂ )′H−1(y−Xτ̂ ). The log-likelihood (2.4) depends on X

and not on the particular non-unique transformation defined by L.

The log residual likelihood (ignoring constants) can be written as

ℓR = −1

2
(log detC + log detR+ log detG+ y′Py). (2.5)

We can also write

P = R−1 −R−1WC−1W ′R−1

with W = [X Z]. Letting κ = (γ,φ), the REML estimates of κi are found by
calculating the score

U(κi) = ∂ℓR/∂κi = −1

2
[tr (PH i)− y′PH iPy] (2.6)

and equating to zero. Note that H i = ∂H/∂κi.

The elements of the observed information matrix are

− ∂2ℓR
∂κi∂κj

=
1

2
tr (PHij)−

1

2
tr (PH iPHj)

+ y′PH iPHjPy − 1

2
y′PH ijPy (2.7)

where H ij = ∂2H/∂κi∂κj .

The elements of the expected information matrix are

E

(

− ∂2ℓR
∂κi∂κj

)

=
1

2
tr (PH iPHj) . (2.8)

Given an initial estimate κ(0), an update of κ, κ(1) using the Fisher-scoring (FS)
algorithm is

κ(1) = κ(0) + I(κ(0),κ(0))−1U(κ(0)) (2.9)

where U(κ(0)) is the score vector (2.6) and I(κ(0), κ(0)) is the expected information
matrix (2.8) of κ evaluated at κ(0).

For large models or large data sets, the evaluation of the trace terms in either
(2.7) or (2.8) is either not feasible or is very computer intensive. To overcome this
problem the AI algorithm [Gilmour et al., 1995] is used. The matrix denoted by
IA is obtained by averaging (2.7) and (2.8) and approximating y′PH ijPy by its
expectation, tr (PH ij) in those cases when H ij 6= 0. For variance components
models (that is, those linear with respect to variances in H), the terms in IA are
exact averages of those in (2.7) and (2.8). The basic idea is to use IA(κi, κj) in place
of the expected information matrix in (2.9) to update κ.

The elements of IA are

IA(κi, κj) =
1

2
y′PH iPHjPy. (2.10)
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The IA matrix is the (scaled) residual sums of squares and products matrix of

y = [y0,y1, . . . ,yk]

where yi, i > 0 is the ‘working’ variate for κi and is given by

yi = H iPy

= H iR
−1ẽ

= RiR
−1ẽ, κi ∈ φ

= ZGiG
−1ũ, κi ∈ γ

where ẽ = y − Xτ̂ − Zũ, τ̂ and ũ are solutions to (2.11) and y0 = y, the data
vector. In this form the AI matrix is relatively straightforward to calculate.

The combination of the AI algorithm with sparse matrix methods, in which only
non-zero values are stored, gives an efficient algorithm in terms of both computing
time and workspace.

One process involves estimation of τ and prediction of u (although the latter may
not always be of interest) for given θ, φ and γ. The other process involves estimation
of these variance parameters.

2.2.2 Fixed and Random effects

To estimate τ and predict u the objective function

log fY (y | u ; τ ,R) + log fU (u ; G)

is used. The is the log-joint distribution of (Y ,u). It is not a log-likelihood though

in extensions to non-normal data it has been treated as a log-likelihood.

Differentiating with respect to τ and u leads to the mixed model equations [Robinson,
1991] which are given by

[

X ′R−1X X ′R−1Z

Z ′R−1X Z ′R−1Z +G−1

] [

τ̂

ũ

]

=

[

X ′R−1y

Z ′R−1y

]

. (2.11)

These can be written as
Cβ̃ = WR−1y

where C = W ′R−1W +G∗, W = [X Z] , β = [τ ′ u′]′ and

G∗ =

[

0 0
0 G−1

]

.

The solution of (2.11) requires values for γ and φ. In practice we replace γ and φ

by their REML estimates γ̂ and φ̂.

Note that τ̂ is the best linear unbiased estimator (BLUE) of τ , while ũ is the best
linear unbiased predictor (BLUP) of u. for known γ and φ. We also note that

β̃ − β =

[

τ̂ − τ

ũ− u

]

∼ N

([

0
0

]

, C−1
)

.
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2.3 What are BLUPs?

Consider a balanced one-way classification. In the following we assume, that the
treatment effects, say, ui are random. That is, u ∼ N(Aν, σ2bIb), for some design
matrix A and parameter vector ν. It can be shown that

ũ =
bσ2b

bσ2b + σ2
(ȳ − 1ȳ··) +

σ2

bσ2b + σ2
Aν (2.12)

where ȳ is the vector of treatment means and ȳ·· is the grand mean. The differences
of the treatment means and the grand mean are the estimates of treatment effects
if treatment effects are fixed. The BLUP is therefore a weighted mean of the data
based estimate and the ‘prior’ mean Aν. If ν = 0, the BLUP in (2.12) becomes

ũ =
bσ2b

bσ2b + σ2
(ȳ − 1ȳ··) (2.13)

and the BLUP is a so-called shrinkage estimate. As σ2b becomes large relative to
σ2, the BLUP tends to the fixed effect solution, while for small σ2b relative to σ2

the BLUP tends towards zero, the assumed initial mean. Thus (2.13) represents a
weighted mean which involves the prior assumption that the ui have zero mean.

Note also that the BLUPs in this simple case are constrained to sum to zero. This is
essentially because the unit vector definingX can be found by summing the columns
of the Z matrix. This linear dependence of the matrices translates to dependence of
the BLUPs and hence constraints. This aspect occurs whenever the column space of
X is contained in the column space of Z. The dependence is slightly more complex
with correlated random effects.

2.4 Combining variance models

The combination of variance models within G structures and R structures and be-
tween G structures and R structures is a difficult and important concept. The
underlying principle is that each Ri and Gi variance model can only have a single
overall scaling variance parameter associated with it. If there is more than one scal-
ing variance parameter for any Ri or Gi then this results in the variance model being
overspecified, or nonidentifiable. Some variance models are presented in Table 2.1
to illustrate this principle.

All of the 9 forms of model in Table 2.1 can be specified within asreml(). However,
only models of forms 4 and 5 are recommended. Models 1-3 have too few variance
parameters and are likely to cause serious estimation problems. For model 6, where
the scale parameter θ has been fitted (univariate single site analysis), it becomes
the scale for G. This parameterisation is bizarre and is not recommended. Models
7-9 have too many variance parameters and asreml() will arbitrarily fix one of the
variance parameters leading to possible confusion for the user. If you fix the variance
parameter to a particular value then it does not count for the purposes of applying
the principle. That is, models 7-9 can be made identifiable by fixing all but one of
the nonidentifiable scaling parameters in each of G and R to a particular value.
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Table 2.1: Combination of G and R structures

model G1 G2 R1 R2 θ comment

1. * * C C n invalid, no scale and R is a correlation model
2. C C C C y invalid, same scale for R and G

3. C C V C n invalid, no scaling parameter for G
4. V C C C y valid
5. V C V C n valid
6. C C V C y valid, but not recommended
7. V V * * * nonidentifiable, 2 scaling parameters for G
8. V C V C y nonidentifiable, scale for R and overall scale
9. * * V V * nonidentifiable, 2 scaling parameters for R

* indicates any valid entry
Note that G1 and G2 are interchangeable in this table, as are R1 and R2

2.5 Inference for random effects

2.5.1 Tests of hypotheses

Inference concerning variance parameters of a linear mixed effects model usually re-
lies on approximate distributions for the (RE)ML estimates derived from asymptotic
results.

It can be shown that the approximate variance matrix for the REML estimates is
given by the inverse of the expected information matrix [Cox and Hinkley, 1974,
Section 4.8]. Since this matrix is not available in asreml() we replace the expected
information matrix by the AI matrix. Furthermore the REML estimates are consis-
tent and asymptotically normal, though in small samples this approximation appears
to be unreliable (see later).

A general method for comparing the fit of nested models fitted by REML is the REML
likelihood ratio test, or REMLRT. The REMLRT is only valid if the fixed effects are
the same for both models. In asreml() this requires not only the same fixed effects
model, but also the same parameterisation, as the log determinant of the matrix
X ′X is not included in the REML log-likelihood.

If ℓR2 is the REML log-likelihood of the more general model and ℓR1 is the REML
log-likelihood of the restricted model (that is, the REML log-likelihood under the
null hypothesis), then the REMLRT is given by

D = 2 log(ℓR2/ℓR1) = 2 [log(ℓR2)− log(ℓR1)] (2.14)

which is strictly positive. If ri is the number of parameters estimated in model
i, then the asymptotic distribution of the REMLRT, under the restricted model is
χ2
r2−r1 .
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The REMLRT is implicitly two-sided, and must be adjusted when the test involves
an hypothesis with the parameter on the boundary of the parameter space. It can be
shown that for a single variance component, the theoretical asymptotic distribution
of the REMLRT is a mixture of χ2 variates, where the mixing probabilities are 0.5,
one with 0 degrees of freedom (spike at 0) and the other with 1 degree of freedom.
The approximate P-value for the REMLRT statistic (D), is 0.5(1-Pr(χ2 ≤ d)), where
d is the observed value of D. This has a 5% critical value of 2.71 in contrast to the
3.84 critical value for a χ2

1 variate. The distribution of the REMLRT for the test
that k variance components are zero, or tests involved in random regressions, which
involve both variance and covariance components, involves a mixture of χ2 variates
from 0 to k degrees of freedom. See Self and Liang [1987] for details.

Test concerning variance components in generally balanced designs, such as the
balanced one-way classification, can be derived from the usual analysis of variance.
It can be shown that the REMLRT for a variance component being zero is a monotone
function of the F-statistic for the associated term.

To compare two (or more) non-nested models we can evaluate the Akaike Infor-

mation Criteria (AIC) or the Bayesian Information Criteria (BIC) for each model.
These are given by

AIC = −2ℓRi + 2ti

BIC = −2ℓRi + ti log ν (2.15)

where ti is the number of variance parameters in model i and ν = n−p is the residual
degrees of freedom. AIC and BIC are calculated for each model and the model with
the smallest value is chosen as the preferred model.

2.5.2 Diagnostics

In this section we will briefly review some of the diagnostics that have been imple-
mented in asreml() for examining the adequacy of the assumed variance matrix for
either R or G structures, or for examining the distributional assumptions regarding
e or u. Firstly we note that the BLUP of the residual vector is given by

ẽ = y −Wβ̃

= RPy (2.16)

It follows that

E (ẽ) = 0

var (ẽ) = R−WC−1W ′

The matrix WC−1W ′ is the so-called extended hat matrix. It is the linear mixedHat matrix

effects model analogue of X(X ′X)−1X ′ for ordinary linear models. The diagonal
elements are returned in the hat component of the asreml object .

The aom argument invokes a partial implementation of research by Alison Smith,Outliers

Ari Verbyla and Brian Cullis. If aom = TRUE, asreml() returns
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• G−1u and G−1u/diag(
√

G−1 −G−1CzzG−1) as a two column matrix, and

• R−1e and R−1e/diag(
√

R−1 −R−1WC−1W ′R−1) as a two column matrix

in components named G and R, respectively, in an aom component of the fitted
object.

The variogram has been suggested as a useful diagnostic for assisting with the identi-Variogram

fication of appropriate variance models for spatial data [Cressie, 1991]. Gilmour et al.
[1997] demonstrate its usefulness for the identification of the sources of variation in
the analysis of field experiments. If the elements of the data vector (and hence the
residual vector) are indexed by a vector of spatial coordinates, si, i = 1, . . . , n, then
the ordinates of the sample variogram are given by

vij =
1

2
[ei(si)− ej(sj)] , i, j = 1, . . . , n; i 6= j

The sample variogram is the triple (lij1, lij2, vij) where lij1 = |si1 − sj1| and lij2 =
|si2−sj2| are the absolute displacements. If the data arise from a regular array there
will be many vij with the same absolute displacements, in which case plot.asreml()
displays the vector (lij1, lij2, v̄ij) as a perspective plot.

If the coordinates do not form a complete lattice, the variogram() method can bevariogram()

method used to form variograms based on polar coordinates. Given a coordinate system
(x, y), a response vector z (from the resid() method, say), a vector of directions
and a strategy for binning distances, asreml.variogram() will return a data frame of
variogram estimates indexed by direction and distance sutable for a trellis plot.

2.6 Inference for fixed effects

Inference for fixed effects in linear mixed models introduces some difficulties. In
general, the methods used to construct F -tests in analysis of variance and regression
cannot be used for the diversity of applications of the general linear mixed model
available in asreml(). One approach would be to use likelihood ratio methods such as
Welham and Thompson [1997] although their approach is not easily implemented.

Wald-type test procedures are generally favoured for conducting tests concerning τ .
The traditional Wald statistic to test the hypothesis H0 : Lτ = l for given L, r×p,
and l, r × 1, is given by

W = (Lτ̂ − l)′{L(X ′H−1X)−1L′}−1(Lτ̂ − l) (2.17)

and asymptotically, this statistic has a chi-square distribution on r degrees of free-
dom. These are marginal tests, so that there is an adjustment for all other terms in
the fixed part of the model. It is also anti-conservative if p-values are constructed
because it assumes the variance parameters are known.

The small sample behaviour of such statistics has been considered by Kenward and Roger
[1997] in some detail. They presented a scaled Wald statistic, together with an F -
approximation to its sampling distribution which they showed performed well in a
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range (though limited in terms of the range of variance models available in asreml()
) of settings.

In the following we describe the facilities currently available in asreml() for conduct-
ing inference concerning terms which are in the dense fixed effects model component
of the general linear mixed model. These facilities are not available for any terms in
the sparse model. These include facilities for computing two types of Wald statistics
and partial implementation of the Kenward and Roger adjustments.

2.6.1 Incremental and Conditional Wald Statistics

The basic tool for inference is the Wald statistic defined in equation 14.1. However,
there are several ways L can be defined to construct a test for a particular model
term, two of which are available in asreml(). An F-statistic is obtained by dividing
the Wald statistic by r, the numerator degrees of freedom. In this form it is possible
to perform an approximate F test if we can deduce the denominator degrees of
freedom. For balanced designs, these Wald F statistics are numerically identical to
the F-tests obtained from the standard analysis of variance.

The first method for computing Wald statistics (for each term) is the incremental

form. For this method, Wald statistics are computed from an incremental sum of
squares in the spirit of the approach used in classical regression analysis [see Searle,
1971]. For example, if we consider a very simple model with terms relating to the
main effects of two qualitative factors A and B, given symbolically by

y ∼ 1+ A+ B

where 1 represents the constant term (µ), then the incremental sums of squares for
this model can be written as the sequence

R(1)

R(A|1) = R(1,A)−R(1)

R(B|1,A) = R(1,A,B)−R(1,A)

where the R(·) operator denotes the reduction in the total sums of squares due
to a model containing its argument and R(·|·) denotes the difference between the
reduction in the sums of squares for any pair of (nested) models. Thus R(B|1, A)
represents the difference between the reduction in sums of squares between the
maximal model

y ∼ 1+ A+ B

and
y ∼ 1+ A

Implicit in these calculations is that

• we only compute Wald statistics for estimable functions [Searle, 1971, p 408]

• all variance parameters are held fixed at the current REML estimates from the
maximal model
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In this example, it is clear that the incremental Wald statistics may not produce the
desired test for the main effect of A, as in many cases we would like to produce a
Wald statistic for A based on

R(A|1,B) = R(1,A,B)−R(1,B)

The issue is further complicated when we invoke marginality considerations. The
issue of marginality between terms in a linear (mixed) model has been discussed in
much detail by Nelder [1977]. In this paper Nelder defines marginality for terms in
a factorial linear model with qualitative factors, but later [Nelder, 1994] extended
this concept to functional marginality for terms involving quantitative covariates
and for mixed terms which involve an interaction between quantitative covariates
and qualitative factors. Referring to our simple illustrative example above, with a
full factorial linear model given symbolically by

y ∼ 1+ A+ B+ A.B

then A and B are said to be marginal to A.B, and 1 is marginal to A and B. In a
three way factorial model given by

y ∼ 1+ A+ B+ C+ A.B+ A.C+ B.C+ A.B.C

the terms A, B, C, A.B, A.C and B.C are marginal to A.B.C. Nelder [1977, 1994] argues
that meaningful and interesting tests for terms in such models can only be conducted
for those tests which respect marginality relations. This philosophy underpins the
following description of the second Wald statistic available in asreml(), the so-called
conditional Wald statistic. This method is invoked by specifying ssType = conditional
in wald.asreml(). asreml() attempts to construct conditional Wald statistics for each
term in the fixed dense linear model so that marginality relations are respected. As
a simple example, for the three way factorial model the conditional Wald statistics
would be computed as

Term Sums of Squares M code
1 R(1) .

A R(A | 1,B,C,B.C) = R(1,A,B,C,B.C) - R(1,B,C,B.C) A

B R(B | 1,A,C,A.C) = R(1,A,B,C,A.C) - R(1,A,C,A.C) A

C R(C | 1,A,B,A.B) = R(1,A,B,C,A.B) - R(1,A,B,A.B) A

A.B R(A.B | 1,A,B,C,A.C,B.C) = R(1,A,B,C,A.B,A.C,B.C) - R(1,A,B,C,A.C,B.C) B

A.C R(A.C | 1,A,B,C,A.B,B.C) = R(1,A,B,C,A.B,A.C,B.C) - R(1,A,B,C,A.B,B.C) B

B.C R(B.C | 1,A,B,C,A.B,A.C) = R(1,A,B,C,A.B,A.C,B.C) - R(1,A,B,C,A.B,A.C) B

A.B.C R(A.B.C | 1,A,B,C,A.B,A.C,B.C) = R(1,A,B,C,A.B,A.C,B.C,A.B.C) -
R(1,A,B,C,A.B,A.C,B.C) C

Of these the conditional Wald statistic for the 1, B.C and A.B.C terms would be the
same as the incremental Wald statistics produced using the linear model

y ∼ 1+ A+ B+ C+ A.B+ A.C+ B.C+ A.B.C

The preceeding table includes a marginality or M code reported when conditional
Wald statistics are requested. All terms with the highest M code letter are tested
conditionally on all other terms in the model, that is, by dropping the term from the
maximal model. All terms with the preceding M code letter, are marginal to at least
one term in a higher group, and so forth. For example, in the table, model term A.B
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has M code B because it is marginal to model term A.B.C and model term A has M
code A because it is marginal to A.B, A.C and A.B.C. Model term mu (M code .) is
a special case in that it is marginal to factors in the model but not to covariates.

Consider now a nested model which might be represented symbolically by

y ∼ 1+ REGION+ REGION.SITE

For this model, the incremental and conditional Wald tests will be the same. How-
ever, it is not uncommon for this model to be specified as

y ∼ 1+ REGION+ SITE

with SITE identified across REGION rather than within REGION. Then the nested
structure is hidden but asreml() will still detect the structure and produce a valid
conditional Wald F-statistic. This situation will be flagged in the M code field by
changing the letter to lower case. Thus, in the nested model, the three M codes
would be ., A and B because REGION.SITE is obviously an interaction dependent
on REGION. In the second model, REGION and SITE appear to be independent
factors so the initial M codes are ., A and A. However they are not independent
because REGION removes additional degrees of freedom from SITE, so the M codes
are changed from ., A and A to ., a and A.

We advise users that the aim of the conditional Wald statistic is to facilitate inference
for fixed effects. It is not meant to be prescriptive nor is it foolproof for every setting.

The Wald statistics are collectively returned by wald.asreml(). The basic table in-
cludes the numerator degrees of freedom (denoted ν1i) and the incremental Wald
F-statistic for each term. To this is added the conditional Wald F-statistic and the
M code if ssType=”conditional”.

2.7 Kenward and Roger Adjustments

In moderately sized analyses, asreml() can also calculate the denominator degrees
of freedom (DenDF, denoted by ν2i, [Kenward and Roger, 1997]) and a probablity
value if these can be computed. They will be for the conditional Wald F-statistic if
it is reported. The denDF argument of wald.asreml() controls the supression (denDF
= ”none”) or the use of a particular algorithmic method: denDF = ”numeric” for
numerical derivatives or denDF = ”algebraic” for algebraic derivatives. The value in
the probability column is computed from an Fν1i,ν2i reference distribution. When
the DenDF is not available, it is possible, though anti-conservative, to use the residual
degrees of freedom for the denominator.

Kenward and Roger [1997] pursued the concept of construction of Wald-type test
statistics through an adjusted variance matrix of τ̂ . They argued that it is useful to
consider an improved estimator of the variance matrix of τ̂ which has less bias and
accounts for the variability in estimation of the variance parameters. There are two
reasons for this. Firstly, the small sample distribution of Wald tests is simplified
when the adjusted variance matrix is used. Secondly, if measures of precision are
required for τ̂ or effects therein, those obtained from the adjusted variance matrix
will generally be preferred. Unfortunately the Wald statistics are currently computed
using an unadjusted variance matrix.
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2.8 Approximate stratum variances

The svc method returns approximate stratum variances and degrees of freedom forsvc method

simple variance components models.

For the linear mixed-effects model with variance components (setting σ2
H
= 1) where

G = ⊕q
j=1γjIbj , it is often possible to consider a natural ordering of the variance

component parameters including σ2. Based on an idea due to Thompson [1980]
asreml() computes approximate stratum degrees of freedom and stratum variances
by a modified Cholesky diagonalisation of the expected (or average) information
matrix. That is, if F is the average information matrix for σ, let U be an upper
triangular matrix such that F = U ′U . Further we define

U c = DcU

where Dc is a diagonal matrix whose elements are given by the inverse elements of
the last column of U ie dcii = 1/uir, i = 1, . . . , r. The matrix U c is therefore upper
triangular with the elements in the last column equal to one. If the vector σ is
ordered in the natural way, with σ2 being the last element, then we can define the
vector of so called pseudo stratum variance components by

ξ = U cσ

Thence
var (ξ) = D2

c

The diagonal elements can be manipulated to produce effective stratum degrees of
freedom [Thompson, 1980] viz

νi = 2ξ2i /d
2
cii

In this way the closeness to an orthogonal block structure can be assessed.



3
Fitting the mixed model

This chapter begins with a brief introduction covering data frame preparation, fitting
the linear model and the fitted asreml object followed by a detailed description of
the asreml() function call and some technical details of model fitting, including the
treatment of missing values, and setting initial values for variance parameters. The
basic concepts are illustrated using a real example and pointers to following chapters
are given. For consistency, the same data are also used for illustration in later
chapters where possible.

Advanced topics such as models for variance components or genetic models are
considered in later chapters. Chapter 8 gives a lengthy set of additional worked
examples.

3.1 The data frame

Data for analysis using asreml() are generally contained in a text file or a spreadsheet
and are read into a data frame using the appropriate R functions. Variates and
factors in the data frame are then resolved through the data argument of the asreml()
function call.

The first 25 lines of the comma separated text file nin89.csv containing the NIN
field trial data described in Section 1.3.1 are reproduced below. Note that the data
are in field order (rows within columns) and a header line (first row) is included.
In this case there are 11 comma separated data fields (Variety. . .Column) and the
complete file has 224 data rows, one for each variety in each replicate.

Variety,Id,pid,raw,Rep,nloc,yield,lat,long,Row,Column
LANCER,1,1101,585,1,4,29.25,4.3,19.2,16,1
BRULE,2,1102,631,1,4,31.55,4.3,20.4,17,1
REDLAND,3,1103,701,1,4,35.05,4.3,21.6,18,1
CODY,4,1104,602,1,4,30.1,4.3,22.8,19,1
ARAPAHOE,5,1105,661,1,4,33.05,4.3,24,20,1
NE83404,6,1106,605,1,4,30.25,4.3,25.2,21,1
NE83406,7,1107,704,1,4,35.2,4.3,26.4,22,1
NE83407,8,1108,388,1,4,19.4,8.6,1.2,1,2
CENTURA,9,1109,487,1,4,24.35,8.6,2.4,2,2
SCOUT66,10,1110,511,1,4,25.55,8.6,3.6,3,2
COLT,11,1111,502,1,4,25.1,8.6,4.8,4,2

23
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NE83498,12,1112,492,1,4,24.6,8.6,6,5,2
NE84557,13,1113,509,1,4,25.45,8.6,7.2,6,2
NE83432,14,1114,268,1,4,13.4,8.6,8.4,7,2
NE85556,15,1115,633,1,4,31.65,8.6,9.6,8,2
NE85623,16,1116,513,1,4,25.65,8.6,10.8,9,2
CENTURAK78,17,1117,632,1,4,31.6,8.6,12,10,2
NORKAN,18,1118,446,1,4,22.3,8.6,13.2,11,2
KS831374,19,1119,684,1,4,34.2,8.6,14.4,12,2
...

This is typical of the required format: a matrix of observations with a row for
each sampling unit and columns containing variates, covariates, factors, weights and
identities in any convenient order. An optional, though recommended, header line
can be used to name the data columns and missing values are denoted by NA.

A data frame is normally created from a text file source using an R function call
like:

> nin89 <- read.table(file=”nin89.csv”, header=T, sep=”,”)

Consult the R documentation for a detailed description of importing data but some
general points to note are:

• blank lines are ignored,

• it is sensible to include a header line in the data file; if no header line is
included, the columns are labelled V1. . .Vn where n is the number of columns,

• the same column label should not be repeated. The numerals 1, 2, etc are
appended to subsequent repeated column labels.

• NA is the only acceptable code for missing values,

• in comma separated text (.csv) files

– consecutive commas imply a missing value,

– provided the number of fields is consistent, a line beginning (ending) with
a comma will generate NA for that observation in the first (last) variate
or a zero length string if a text field.

• blanks may be embedded in text fields provided the field delimiter is not also
the space character, otherwise the string must be enclosed in quotes.

• too many or too few data fields on a line cause an error,

Character fields such as Variety above are automatically converted to factors with
read.table(). However, numeric fields such as Rep remain as variates so that the
user must manually convert numeric fields into factors as required. The utility
function asreml.read.table() offers a convenient alternative; asreml.read.table() readsasreml.read.table

data from a text file and automatically converts variates whose names begin with a
capital letter in the header line into factors. Thus for the NIN data
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> nin89 <- asreml.read.table(file=”nin89.csv”, header=T, sep=”,”)

creates a data frame in which pid, raw, nloc, yield, lat and long are variates, but
Variety, ID, Rep, Row and Column are factors. This is equivalent to the sequence

> nin89 <- read.table(file=”nin89.csv”, header=T, sep=”,”)

> nin89$ID <- factor(nin89$ID); nin89$Rep <- factor(nin89$Rep)

> nin89$Row <- factor(nin89$Row); nin89$Column <- factor(nin89$Column)

3.2 Introducing the asreml() function call

The complete asreml() function call for a simple randomised complete block (RCB)
analysis of the NIN yield data is

> nin89.asr <- asreml(fixed = yield ∼ Variety, random = ∼ Rep,

na.method.X = ”include”,data = nin89)

where nin89.asr is the name we have chosen for the returned object. The key elements
of this call are outlined below while the components of the returned object are
described in Section 3.3.

3.2.1 Model formulae: specifying the linear mixed model

The linear model is specified in the fixed (required), random (optional) and rcov (error
component) arguments as formula objects. A third optional model argument sparse
is also available but is not used explicitly (see also Section 3.10) in this example.

The fixed terms in the model are specified as a formula with the response on the leftFixed terms

of a ∼ operator and the terms separated by + operators on the right. In this case
Variety is a fixed factor in a model for the response variate yield so that the fixed
argument is given as

> nin89.asr <- asreml(fixed = yield ∼ Variety, . . .)

There must be at least one fixed effect in the model and the response may only be
specified in the fixed argument. Thus, if the intercept was the only fixed term in the
model then the fixed argument would be

> nin89.asr <- asreml(fixed = yield ∼ 1, . . .)

The random terms in the model are specified as a formula, however, unlike the fixedRandom terms

formula there is no response on the left of the ∼ operator. In this example Rep is a
random term so the random argument is

nin89.asr <- asreml(. . ., random = ∼ Rep, . . .)

The residual or error component of the model is specified in a formula object throughError terms

the rcov argument. The default is a simple error term and does not need to be
formally specified. However, a special factor units defined as factor(seq(1,n)) where
n is the number of observations, is always automatically generated by asreml(), so
that the default error model in this case could be specified explicitly in the call

> nin89.asr <- asreml(. . ., rcov = ∼ units, . . .)
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3.2.2 Finding the data

The data argument to asreml() is an optional, though strongly recommended, ar-
gument that identifies a data frame containing the variables named in the model
specification. The data frame is nin89 in this case. If the data argument is missing
then asreml() attempts to obey the usual rules for resolving variate names, however,
this is not always possible in complex situations with certain special model functions.

3.3 Components of the fitted model: the asreml object

A call to asreml() produces an object of class asreml which contains numerous com-
ponents of the fit including

• the REML log-likelihood,

• best linear unbiased predictors (BLUPs) of the random effects,

• generalised least squares estimates of the fixed effects,

• REML estimates of variance components,

• (optionally) part of the inverse coefficient matrix,

• the inverse of the average information matrix,

• residuals and fitted values from the linear model.

A complete description of the components of an asreml object are given in Section
7.3.

3.3.1 Methods and related functions

Specific instances of the standard extractor functions coef(), resid() and fitted()
exist, as do summary(), plot() and predict() (see Chapter 6) methods. An anova type
method is implemented by wald() (see Section 3.14),

The summary.asreml() function returns a list with a range of components:summary()

> names(summary(nin89.asr))

[1] "call" "distribution" "link" "loglik"

[5] "nedf" "sigma" "deviance" "heterogeneity"

[9] "varcomp" "coef.fixed" "coef.random" "coef.sparse"

[13] "residuals"

The variance components are returned inComponents

> summary(nin89.asr)$varcomp

gamma component std.error z.ratio constraint

Rep 0.1993231 9.882913 8.792685 1.123993 Positive

R!variance 1.0000000 49.582378 5.458841 9.082950 Positive
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and the coefficients from the fixed, random and sparse parts of the model are sum-Coefficients

marised in the coef.fixed, coef.random and coef.sparse components. For example, the
fixed effects for Variety are given by

> summary(nin89.asr)$coef.fixed

solution std error z ratio

Variety_ARAPAHOE 0.0000 NA NA

Variety_BRULE -3.3625 4.979087 -0.675324649

Variety_BUCKSKIN -3.8750 4.979087 -0.778255171

...

Variety_TAM200 -8.2000 4.979087 -1.646888363

Variety_VONA -5.8375 4.979087 -1.172403758

(Intercept) 29.4375 3.855601 7.634996452

3.4 A note on data order

The observations must be presented in the order specified by the error model, that is,
the value of the rcov argument. The assumption of separability is implicit in the use
of the colon operator (:). Furthermore, the sort order outer:inner of the observations
is implied by the order of appearance of the factors in the rcov formula. In the case,
for example, where

rcov = ∼ ar1(Column):ar1(Row)

the data is assumed to be sorted as rows within columns. Note that if the sort order
of observations is incorrect an error is generated.

3.5 Getting help

A complete description of the asreml object is given in Chapter 7 and can be obtained
from the help system within R:

> ?areml

or
> help(asreml)

generates text based help or html help depending on platform and help system state.

On Windows systems, the asreml.chm help file stored in the ASReml-R installation
directory and on all systems, this manual (asreml.pdf ) is available in the ASReml-R
installation tree.

3.6 Fixed terms

3.6.1 Dense fixed terms

The fixed model formula specifies the response, fixed factors, interactions and co-
variates for which standard errors and tests of significance are required. These terms
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may also include those specified by the relevant model functions from Table 3.1. The
fixed formula must contain at least one term which may simply be the intercept. By
default the intercept is included in the fixed model; for example,

> asreml(fixed = y ∼ Variety, . . .)

includes an intercept plus the main effects for Variety. To specify a model with no
overall mean, include a -1 after ∼ in the list of primary fixed terms, for example,
use

> asreml(fixed = y ∼ -1 + Variety, . . .)

An intercept-only fixed model is specified by including a 1 only after ∼ , for example,

> asreml(fixed = y ∼ 1, random = . . .)

Terms can be modified or generated by special model functions such as lin(). ForSpecial functions

example, to include a linear (single degree of freedom) effect of Row (a factor with
22 levels) use

> asreml(fixed = y ∼ lin(Row) + . . . )

Model functions also exist to generate orthogonal polynomials (pol()) and to fit
terms conditionally (at(); Table 3.1 and Section 3.8). Note that fixed is the only
model formula where the response may be specified.

Table 3.1: Summary of reserved names and special functions with their
typical usage; fixed (f) or random (r)

term purpose usage

reserved names

mv fits missing values as covariates. An example of its use is in spa-
tial analyses, for example, where computing advantages arising
from a balanced spatial layout can be exploited. Missing values
in the response are handled in two ways using the na.method.Y

argument. If na.method.Y = ”omit”, records containing missing
values in the response are deleted. If na.method.Y = ”include”,
missing values are estimated and a factor labelled mv included
in the model frame. If a variate labelled mv already exists in the
data frame it will be overwritten. For a multivariate analysis,
missing values must currently be included

f

trait used with multivariate data to fit the individual trait means. It
is interacted with other factors to estimate their effects for all
traits. It is formally equivalent to the intercept (1) but is a more
natural label for use with multivariate data. If a variate labelled
trait already exists in the data frame it will be overwritten.

f, r

units a factor with a level for each experimental unit; allows a second
error term to be explicitly fitted.

r

model functions
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Summary of reserved names special functions

term purpose usage

at(f,l) condition on level l = 1, . . . , k of factor f. That is, defines a
binary variable which is 1 if the factor f has level l for the ob-
servation. For example, to fit a row factor only for site 3, use
the expression at(site,3):row. Note that if l is numeric, then the
level of f is chosen as the lth in factor (sorted) order. Note also
that when used with spline terms, such as at(f,2):spl(x) then the
knot points are derived from all of factor f , not just level 2.

f, r

dev(x) Forms a factor with a level for each unique value of x. r

grp(obj) Groups contiguous columns of data to be treated as a single
factor named ”obj”. The columns of data are identified by a
character or numeric vector component obj of the group argu-
ment to asreml.control().

r

lin(f) treats the named factor as a variate. The function is defined for
f being a simple factor, trait and units. The lin(f) function does
not center or scale the variable.

f, r

link(a,b) ensures that the structures for terms a and b are contiguous.
The function would typically be used in random coefficient re-
gression, where a covariance between intercept and slope might
be required.

r

mbf(obj) Includes obj as a set of covariates to be fitted as a single term
in a similar way to grp. The name obj must also appear as a
component of the mbf argument to asreml.control() where the
data frame holding the covariates is identified along with a key
field for merging records with those in data.

r

pol(x,t) forms t orthogonal polynomials from the values in x; the mean
is excluded if t is negative. For example, pol(time,2) is a factor
with three columns: a constant in the first, centred and scaled
linear covariate in the second and centred and scaled quadratic
covariate in the third. pol() could be interacted with a design
factor to fit random regression models.

f, r

spl(x, k, points) Random component of a cubic spline for covariate x. spl(x),
dev(x) and possibly lin(x) are used when fitting cubic splines.
The cubic spline is composed of a random nonlinear component
imposed on a linear trend. It is fitted by including a special ran-
dom factor, spl(x), and the fixed covariate (x) in the linear model.
Knot points are placed at the design points if length(unique(x))
< k otherwise there are k equally spaced knot points over the
range of x. The default for k is 50. Alternatively, points may
contain a vector of user specified knot points. Both k and points
may be omitted and defaults set in asreml.control().

r
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3.6.2 Sparse fixed terms

The sparse argument specifies those covariates, factors and interactions for which
standard errors and tests of significance are not required. These effects are estimated
using sparse matrix methods that typically require less memory and less execution
time. asreml() automatically includes missing values in the sparse component with
a factor named mv. This is a reserved word and should not be used to label variates
or factors.

3.6.3 Covariates

For analysis purposes it is recommended that covariates be centred or rescaled to
have a variance of 1 to avoid failure to detect singularities. In addition, missing
values in covariates are replaced with zeros so it is important in these circumstances
to centre the covariate in question. For example, the command

> nin89$linrow <- as.numeric(nin89$Row) - mean(as.numeric(nin89$Row),na.rm=T)

could be used to create a mean centred row covariate. Care should also be exercised
when scaling variates for use in random coefficient or spline models.

3.7 Random terms

The random model formula specifies the factors, interactions, covariates and spe-
cial terms that comprise the random component of the model. These effects are
estimated using sparse matrix methods. Each random term will have a variance
model associated with it which defaults to a scaled identity γIn or σ2In where γ is
a variance ratio. See page 15 under Combining variance models.

3.7.1 Initial values and constraints for variance parameters

Initial values and constraints for variance parameters are held in list objects that
represent the structure of the error variance matrix (referred to as R structures in
this manual and denoted R algebraically, see Chapter 4) and the variance matrix
for the other random terms in the model (referred to as G structures and denoted
G algebraically). The default initial values are 0.1 for both variance ratios and
correlations, and 0.1*v for variance components, where v is half the simple variance
of the response. The corresponding default parameter constraints are P (positive)
for variance component ratios, U (unconstrained) for correlations and P for variance
components.

For example, in the simple RCB field trial analysis

> asreml(fixed = yield ∼ Variety, random = ∼ Rep, data = nin89)

a single variance component ratio is estimated for the random Rep term using an
initial starting value of 0.1 and default constraint of P (that is, the parameter is
constrained to be positive).
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The default starting values and boundary constraints may not be either adequate or
appropriate in all circumstances. There are two ways to alter the starting values and
constraints from their default state, both of which rely on exporting the internally
generated names of the variance components along with their values and constraints
to an R object or external text file. The G.param and R.param arguments are used
to subsequently overwrite the default initial values and constraints in an analysis.
An initial value object is created by setting the start.values argument to asreml().

Replacing elements in an internal object

For example, to set a different initial value for the Rep component, the call

> nin89.sv <- asreml(fixed = yield ∼ Variety, random = ∼ Rep,

na.method.X = ”include”,data = nin89, start.values = TRUE)

returns a list object nin89.sv with components G.param, R.param and gammas.table.
The first two components are list objects while gammas.table is a data frame con-
taining the parameter names, their initial values and boundary constraints.

> iv <- nin89.sv$gammas.table

> iv

Gamma Value Constraint

1 Rep 0.1 P

2 R!variance 1.0 P

Elements of this table can be set by the usual R replacement methods. The new
initial value for Rep can be used in asreml() with the G.param argument. That is,

> nin89.asr <- asreml(fixed = yield ∼ Variety, random = ∼ Rep, na.method.X = ”include”,

data = nin89, G.param = iv)

Editing an external text file

An alternative is to specify a filename as the value of the start.values argument. This
creates a comma separated text file version of gammas.table, with a header line and
columns containing the component name and its initial state. After editing this
file, the revised initial values or constraints can be used similarly to the above by
specifying the text file name as the value of the G.param argument. For example,
the following call creates a comma separated textfile (filename ) for editing

> nin89.sv <- asreml(fixed = yield ∼ Variety, random = ∼ Rep,

na.method.X = ”include”,data = nin89, start.values = "filename" )

with the revised values included in the analysis by:

> nin89.asr <- asreml(fixed = yield ∼ Variety, random = ∼ Rep,

na.method.X = ”include”,data = nin89, G.param = "filename" )

Note that in the above sequence, a list with components G.param,R.param and gam-
mas.table is still returned in nin89.sv.
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3.7.2 Specifying variance structures

The default variance model for a term in the random model is a scaled identity (γIn

or σ2In), that is, independent and identically distributed (IID). This is a special
case of a more general scaled parameterised matrix. An extensive range of varianceBeyond IID

models can be fitted to terms in the random formula and error (rcov) component of
the model. These are specified using special functions in the model formulae and are
described in Chapter 4. For example, the experimental units of nin89 are indexed
by Column and Row, respectively. If we first augment the data frame to complete
the 22 row by 11 column array of plots, we could then specify a separable first order
autoregressive process [Gilmour et al., 1997] in two dimensions by including

rcov = ∼ ar1(Column):ar1(Row)

(assuming the data is correctly ordered as Row within Column) in the call, where
ar1() is a special function specifying a first order autoregressive variance model for
both Column and Row, see Section 4.1. The complete range of possible variance
models is presented in Table B.1.

The behaviour of these special functions can be different from the expected behaviour
of standard R functions; they generally return existing or altered attributes of objects
and/or set up internal structures for the model fitting algorithm. There are some
restrictions on usage, notably nesting. However, there are few instances where it is
sensible to nest these functions, one exception being models with random coefficients.

3.8 Conditional factors: the at() function

A conditional factor is a factor that is present only when another factor has a
particular level. For example, in a multi-environment trial analysis over 2 sites where
each site is a randomised complete block design, we could estimate separate Block
variance components for each Site by including the random term at(Site):Block. If no
levels of the conditioning factor (Site in this case) are specified in the at() function,
a complete set of conditioning terms is generated. In this example at(Site):Block
expands to at(Site,1):Block + at(Site):Block. Note that this is also equivalent to
ftting a diagonal variance model using diag(Site):Block.

If the levels vector (l) of the conditioning factor (f) is specified as a numeric vector
then it refers to the levels of f in the order returned by levels(f). When used in
an rcov formula, at() specifies a variance model for e as a direct sum of l variance
matrices, one for each level of the conditioning factor.

3.9 Weights

Weighted analyses are achieved by using the weights = wt argument to asreml(),
where wt is a variate in the data frame. If these are relative weights (to be scaled
by the units variance) then this is all that is required; for example, the number
of sampling units (wt=c(3, 1, 3, . . . )). If they are absolute weights, that is, the
reciprocal of known variances, the units variance should be constrained to 1. This
can be done by one of two ways:
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1. one of the methods described in Section 3.7.1, that is, editing a default R
parameter list object with asreml.gammas.ed() (start.values=T) or create and
edit an external text file with start.values=”filename”, changing the constraint
of the units variance to F.

2. Set the units variance with the family argument

> fm <- asreml(. . . , family = asreml.gaussian(dispersion=1.0),. . . )

3.10 Missing values

Missing values have been included in nin89.csv for the convenience of fitting spatial
models in subsequent examples. By default, missing values in covariates or factors
cause an error (na.method.X = ”fail”). Missing values are treated as follows:

3.10.1 Missing values in the response

Records with missing values in the response are included by default (na.method.Y =
”include”) and estimated as a consequence of fitting the model. A factor labelled
mv is created and included in the sparse equations, and the solutions are returned
in coef(object)$sparse. An alternative action is ”omit” which excludes units with
missing values in the response. Missing values must be estimated in a multivariate
analysis.

3.10.2 Missing values in the explanatory variables

Covariates Records with missing values in covariates are only discarded if na.method.X
= ”omit”. If included, they are treated as zeros which may only be reasonable if the
covariate values are centred.

Design factors Missing values are allowed in design factors and handled as for
covariates. Where this occurs, no formal level is assigned to the factor for that
record, however, the missing value is replaced by a zero in the fitting process.

3.11 Generalized linear models

asreml() includes family functions for fitting Generalized Linear Models
[McCullagh and Nelder, 1994]. These differ from the standard family functions
through the addition of a dispersion argument which determines whether the dis-
persion parameter is fixed or estimated (dispersion=NA). Table 3.2 lists the link
functions that can be used to connect the linear predictor η to the mean (µ) on the
data scale.
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Table 3.2: Families and link functions

Link Function gaussian binomial poisson Gamma

identity η = µ D * *

sqrt η =
√
µ *

log η = log(µ) * D *

inverse η = 1/µ * D

logit η = µ/(1− µ) D

probit η = Φ−1(µ) *

cloglog η = log(− log(1− µ)) *

where µ is the mean on the data scale, η = Xτ is the linear predictor
on the underlying scale and D is the default.

3.12 Generalized Linear Mixed Models

There is the capacity to fit a wider class of models which include additional random
effects for non-normal error distributions. The inclusion of random terms in a GLM
is usually referred to as a Generalized Linear Mixed Model (GLMM). For GLMMs,
asreml() uses what is commonly referred to as penalized quasi-likelihood or PQL
[Breslow and Clayton, 1993]. The technique is also known by other names, including
Schall’s technique [Schall, 1991], pseudo-likelihood [Wolfinger and O’Connell, 1993]
and joint maximisation [Harville and Mee, 1984, Gilmour et al., 1985]. It is imple-
mented in many statistical packages, for instance, in the GLMM procedure [Welham,
2005] and the IRREML procedure of Genstat [Keen, 1994], inMLwiN [Goldstein et al.,
1998], in the GLMMIXEDmacro in SAS and in the GLMMPQL function in R, to name
a few.

The PQL technique is based on a first order Taylor series approximation to the
likelihood. It has been shown to perform poorly for certain types of GLMMs. In
particular, for binary GLMMs where the number of random effects is large com-
pared to the number of observations, it can underestimate the variance components
severely (up to 50%) (for example, Breslow and Lin [1995], Goldstein and Rasbash
[1996], Rodriguez and Goldman [2001], Waddington et al. [1994]). For other types
of GLMMs, such as Poisson data with many observations per random effect, it has
been reported to perform quite well [Breslow, 2003, for example]. As well as the
above references, users can consult McCulloch and Searle [2001] for more informa-
tion about GLMMs.

Most studies investigating PQL have focussed on estimation bias. Much less at-
tention has been given to the wider inferential issues such as hypothesis testing.
In addition, the performance of this technique has only been assessed on a small
set of relatively simple GLMMs. Anecdotal evidence from users suggests that this
technique can give very misleading results in certain situations.
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Therefore, we cannot recommend the use of this technique for general use. It is
included in the current version of asreml() for advanced users. It is highly recom-
mended that its use be accompanied by some form of cross-validatory assessment
for the specific dataset concerned. For instance, one way of doing this would be by
simulating data using the same design and using parameter values similar to the
parameter estimates achieved, such as used in Millar and Willis [1999].

3.13 Multivariate analysis

Multivariate analysis is used when we are interested in estimating the correlations
between distinct traits (for example, fleece weight and fibre diameter in sheep) and
for repeated measures of a single trait. The term multivariate analysis is used here in
the narrow sense of a multivariate mixed model. There are many other multivariate
analysis techniques which are not covered by asreml().

3.13.1 Model specification

If the response term specified in the fixed formula of a asreml() call is a matrix then
a multivariate analysis is automatically performed. That is, for response variates
y1 , . . . , yk in the data frame, a multivariate analysis would be specified with the call

> asreml(fixed = cbind(y1, . . . , yk) ∼ trait, . . .)

In this case, asreml() creates a factor trait (the multivariate equivalent to the uni-
variate general mean) with the names of the response variates as levels.

A multivariate analysis in asreml() can be specified in one of two ways:

• specifying a matrix as the response in the fixed formula, as noted above. For
the wether trial data, the term trait is a factor generated by asreml() with
ntr = 2 levels gfw and fdiam. Internally, asreml() expands the data frame by
repeating each row ntr times such that traits are nested within experimental
units,

• specifying the as.multivariate =trait argument; this assumes that the data frame
has been expanded into a univariate form outside asreml(). In this case the
order need not necessarily be traits within units but the order of terms in the
rcov formula must reflect the data order. Note that in this case trait refers
to the factor in the data frame that defines the traits but is not necessarily
named trait.

The following examples illustrate the specification of multivariate models in asreml(),
some components of the returned object and the wald() method.

A repeated measures example

Wolfinger [1996] summarises a range of variance structures that can be fitted to
repeated measures data, demonstrating the models using the rat dataset described
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in Section 1.3.2. The asreml() function call for an analysis of the five repeated
measures is:

> wolfinger.asr <- asreml(fixed = cbind(wt0,wt1,wt2,wt3,wt4) ∼ trait * Treatment,

+ rcov = units:us(trait,init=rep(0,15)), maxiter=20, data = wolfinger)

The use of rep(0,15) as initial values in the above call signals that in a multivari-
ate analysis reasonable starting values are to be calculated from the phenotypic
variance-covariance matrix. The fitted variance components are given by:

> summary(wolfinger.asr)$varcomp

gamma component std.error z.ratio constraint

R!variance 1.00000 1.00000 NA NA Fixed

R!trait_wt0:wt0 21.57560 21.57560 6.228322 3.464110 Unconstrained

R!trait_wt1:wt0 33.01964 33.01964 10.354376 3.188955 Unconstrained

R!trait_wt1:wt1 68.72738 68.72738 19.839816 3.464114 Unconstrained

R!trait_wt2:wt0 31.58214 31.58214 11.258510 2.805180 Unconstrained

R!trait_wt2:wt1 69.06071 69.06071 21.681866 3.185183 Unconstrained

R!trait_wt2:wt2 94.76905 94.76905 27.357257 3.464128 Unconstrained

R!trait_wt3:wt0 29.37619 29.37619 14.112774 2.081532 Unconstrained

R!trait_wt3:wt1 64.54345 64.54345 26.334015 2.450954 Unconstrained

R!trait_wt3:wt2 116.35595 116.35595 35.791126 3.250972 Unconstrained

R!trait_wt3:wt3 181.55655 181.55655 52.410398 3.464132 Unconstrained

R!trait_wt4:wt0 24.66071 24.66071 16.328866 1.510253 Unconstrained

R!trait_wt4:wt1 56.72024 56.72024 30.044386 1.887881 Unconstrained

R!trait_wt4:wt2 122.88690 122.88690 41.098144 2.990084 Unconstrained

R!trait_wt4:wt3 207.21310 207.21310 61.801813 3.352864 Unconstrained

R!trait_wt4:wt4 268.40952 268.40952 77.482498 3.464131 Unconstrained

A bivariate example

The asreml() function call for a basic bivariate analysis of the wether trial data
described in Section 1.3.3 is:

> wether.asr <- asreml(cbind(gfw,fdiam) ∼ trait+trait:Year,

random = ∼ us(trait,init=c(0.4,0.3,1.3)):Team + us(trait,init=c(0.2,0.2,2.0)):Tag,

rcov = ∼ units:us(trait,init=c(0.2,0.2,0.4)), data = orange)

A trace of the model’s convergence is held in the monitor component:

> wether.asr$monitor[,c(1,’final’,’constraint’)]

1 final constraint

loglik -886.5213 -723.4616740 <NA>

S2 1.0000 1.0000000 <NA>

df 2964.0000 2964.0000000 <NA>

trait:Team!trait_gfw:gfw 0.4000 0.3744933 Unconstrained

trait:Team!trait_fdiam:gfw 0.3000 0.3887395 Unconstrained

trait:Team!trait_fdiam:fdiam 1.3000 1.3653342 Unconstrained

trait:Tag!trait_gfw:gfw 0.2000 0.2571589 Unconstrained

trait:Tag!trait_fdiam:gfw 0.2000 0.2195574 Unconstrained

trait:Tag!trait_fdiam:fdiam 2.0000 1.9208175 Unconstrained

R!variance 1.0000 1.0000000 Fixed

R!trait_gfw:gfw 0.2000 0.1983514 Unconstrained

R!trait_fdiam:gfw 0.2000 0.1288901 Unconstrained

R!trait_fdiam:fdiam 0.4000 0.4406009 Unconstrained
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Final estimates of the variance components are given by summary() (illustrated
above) and an analysis of variance calculating the approximate denominator de-
grees of freedom and conditional F-tests can be obtained by:

> wald(wth0.asr,denDF=’default’,ssType=’conditional’)

Df denDF F_inc F_con Margin Pr

trait 2 33.0 5762 5762 A 0

trait:Year 4 1162.2 1095 1095 B 0

3.13.2 Specifying multivariate variance structures

A more sophisticated default error structure is required for multivariate analysis in
asreml(). Using the notation of Chapter 4, consider a multivariate analysis with nt
traits and n units in which the data are ordered traits within units. An algebraic
expression for the variance matrix in this case is

In ⊗Σ

where Σ (nt×nt ) is an unstructured variance matrix.

For a standard multivariate analysis

• the error structure must be specified as two-dimensional, with independent
units and often an unstructured variance matrix across traits.

– the rcov this model is therefore rcov ∼ units:us(trait)

– missing values are allowed and must be fitted. asreml() automatically
includes the special factor mv in the sparse formula in such cases.

• for the default analysis, that is the response is specified as a matrix, the R
structure must reflect the data order of traits within units which means that
the term units must appear before trait in the rcov formula.

• variance parameters are variances, not variance ratios.

• the error structure is often specified as an unstructured variance matrix but
correlation models may also be used. asreml() attempts to detect such cases
and fix or estimate the residual scale parameter accordingly.

For example, with the Wolfinger data the times are equally spaced so we could
fit a first order autoregressive model using:
> wolfinger.asr <- asreml(fixed = cbind(wt0,wt1,wt2,wt3,wt4) ∼ trait * Treatment,

+ rcov = units:ar1(trait), data = wolfinger)

• as noted previously, initial values for the variance matrices are given as the
lower triangle of the (symmetric) matrix specified row-wise,

• nominating reasonable initial values can be a problem. By default, asreml()
uses half the phenotypic variance in forming initial values.
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3.14 Testing of terms: the wald() method

The type of object returned by the wald() method depends on the value of the denDF
and ssType arguments.

Incremental F-statistics

If denDF = ”none” and ssType = ”incremental” (the defaults), an object of class
anova containing a table of Wald statistics for fixed effects is returned. Terms in the
table are tested sequentially, which means that factors are adjusted for terms higher
in the table (or not in the table), but ignoring terms that occur below.

No denominator degrees of freedom is supplied as the reference distribution for each
Wald statistic is a χ2

k where k is the number of nonsingular effects in the term.

Conditional F-statistics and denominator degrees of freedom

If at least one of denDF or ssType is set to anything other than the default, a data
frame object is returned that includes columns for the approximate denominator de-
grees of freedom or conditional F-statistics depending on the combination of options
chosen.

The data frame has 3 styles:

Source df F_inc F_con M

Source df ddf_inc F_inc P_inc

Source df ddf_con F_inc F_con M P_con

depending on whether conditional F-statistics are reported or whether the denom-
inator degrees of freedom are calculated. See Section 2.6 for more background on
the contents of this table.

The numerator degrees of freedom for each term is easily determined as the number
of non-singular effects involved in the term. However, in general, calculation of
the denominator degrees of freedom is not trivial. asreml() will only attempt the
calculation if specifically requested as it requires further iterations of the model
(using update.asreml()).



4
Specifying variance
structures

This chapter introduces variance model specification in asreml(), a complex aspect
of the modelling process. The key concepts are:

• The mixed linear model
y = Xτ +Zu+ e

has a residual term
e ∼ N(0, θR)

and random effects
u ∼ N(0, θG)

where in the most complex forms

R = ⊕iRi

G = ⊕jGj

and each
Ri = Ri(φi)

Gj = Gj(δj)

where φi and δj parameterise the respective variance models.

• We use the terms R structure and G structure to refer to the matrices Ri and
Gj above in a syntactic manner, respectively,

• R and G structures are typically formed as a direct product of particular
variance models,

• The order of terms in a direct product must agree with the order of effects in
the corresponding model term,

• Variance models may be correlation matrices or variance matrices with equal or
unequal variances on the diagonal. A model for a correlation matrix (eg. ar1)
can be converted to an equal variance form (eg. ar1v) and to a heterogeneous
variance form (eg. ar1h),

39
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• Variances are sometimes estimated as variance component ratios (relative to
the overall scale parameter, θ).

Chapter 2 gives theoretical details. We begin this chapter by considering an ordered
sequence of variance structures for the NIN variety trial (see Section 4.1) as an
introduction to variance modelling in practice; we then consider the topics in detail.

Variance models are specified with special model functions in the random and rcovSpecial functions

formulae. Scaled identity defaults are used if no variance model is explicitly specified.
Table B.1 presents the complete range of variance models available in asreml() and
details of individual (variance model) function calls are given in Section 4.3. Most
of the models listed in Table B.1 are correlation models (id() to agau()) but these
are easily generalised to

• homogeneous variance models by appending a v to the function name, for
example, converting id() to idv() to specify IID errors,

• heterogeneous variance models by appending h to the function name, for exam-
ple, converting id() to idh() to specify independent but heterogeneous errors.

Rules for combining variance models and methods for setting initial values are given
in Section 4.5.

4.1 A sequence of structures for the NIN field trial
data

By way of introduction, seven variance structures of increasing complexity are con-
sidered for the NIN field trial data (see Section 1.3.1). This is to give a general feel
for variance modelling in asreml() from a practical perspective and some idea of the
types of models that are possible (Table B.1).

This section illustrates:

• changes to u and e and the assumptions regarding the variance these terms,

• the impact this has on the random formula for specifying the G structures for
u and the rcov formulae for specifying the R structure(s) for the residuals in
e.

Model 1: randomised complete block (RCB) analysis - blocks fixed

> rcb.asr <- asreml(yield ∼ Replicate + Variety, data = nin89)

The only random term in this analysis is the residual term where we have assumed
e ∼ N(0, θI224). The model therefore involves just one R structure and no G terms.
In asreml()

• the scaled variance structure (R = θI224) is the default for error.
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• this simple error term is implicit in the model and it is not necessary to formally
specify it with the rcov argument,

The asreml() call above is therefore equivalent to

> rcb.asr <- asreml(yield ∼ Replicate + Variety, rcov = ∼ units, data = nin89)

or more specifically

> rcb.asr <- asreml(yield ∼ Replicate + Variety, rcov = ∼ idv(units), data = nin89)

where idv() is the special model function in asreml() that identifies the variance
model. The expression idv(units) explicitly sets the variance matrix for e to a scaled
identity.

The error term is always present in the model and does not need to be explicitly
declared when it has the default structure.

Model 1a: RCB analysis - blocks random

> rcb.asr <- asreml(yield ∼ Variety, random = ∼ Replicate, data = nin89)

This specifies u as a vector of Replicate effects where var(u) = γrI4, γr = σ2r/θ and
assumes that var(e) = θI224.

Note that to obtain the REML estimate of the variance component for Replicate (σ2r )
we compute
> rcb.asr$gammas[”Replicate”]*rcb.asr$sigm

This is done automatically by the summary method (summary.asreml()) where both
variance components and variance ratios are returned.

In asreml(), the IID variance structure is the default for the extra random terms in
the model and does not need to be formally specified in the random formula.

All random terms other than residual error must appear in the random formula (see
Section 3.7).

Model 1b: RCB analysis with G and R structures

> rcb.asr <- asreml(yield ∼ Variety, random = ∼ idv(Replicate), rcov = ∼ idv(units), data = nin89)

This model is equivalent to 1a and introduces the use of variance model functions
in the random and rcov formulae to explicitly specify the G and R structures. In
practice it is usually not necessary to specify the default variance models unless
setting initial values or boundary constraints.

Note that when specifying G structures, the user must ensure that one scale param-
eter is present; asreml() does not automatically include it. All but one of the models
specified in a G structure must be correlation models; the other must be a variance
model.If the variance matrix of a term contains several component matrices the the
problem of identifiability arises. For example,
idv(A):idv(B)

produces a variance matrix of the form γaγbIa.b for A:B where the γA, γB parameters
are not identifiable.
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Model 2: two-dimensional spatial model with correlation in one direction

> sp.asr <- asreml(yield ∼ Variety, rcov = ∼ Column:ar1(Row), data = nin89)

This call specifies a two-dimensional spatial structure for error but with spatial
correlation in the row direction only. In this case var(e) = θ(I11 ⊗ Σr). The R
structure is the direct product of two matrices; an identity matrix of order 11 and a
autoregressive correlation matrix of order 22 with elements {σij} = ρ|i−j| for plots
(in the same column) in rows i and j. The variance model for Column is identity
(id()) but does not need to be formally specified as this is the default. Note that

• the direct product structure is implied by the ”:” operator. The order in whichData order

factors appear in the rcov formula also specifies the order in which the data
must be sorted. Because Column is specified before Row, the implication is
that the data are in the order rows within columns. asreml() does not reorder
the observations; if the data frame is not in the order specified by rcov then
an error is generated and it must be reordered outside asreml().

• Using a separable model for the R structure implies that the data can be re-
garded as a matrix or array whose data is indexed by the levels of the factors
that represent the rows and columns of this array. In this field trial example
these factors are Row and Column, respectively. For this structure to be ap-
plicable, the data in this case must be augmented with 18 additional missing
values. Variety is arbitrarily coded as LANCER for all of the extra missing plots

• asreml() automatically includes missing values in the sparse component with a
factor named mv(see Section 3.10).

• unlike G structures, asreml() automatically includes and estimates θ. In this
example the variance models specified for Row (ar1()) and Column (default
id()) are correlation models. If the R structure is a variance matrix then the
parameter θ must be constrained to 1.0 (using the dispersion argument to the
appropriate family function, such as asreml.gaussian()). asreml() attempts to
detect these situations but it is wise to explicitly constrain θ. Specifically, the
call

> sp.asr <- asreml(yield ∼ Variety, rcov = ∼ idv(Column):ar1(Row), data = nin89,

+ family = asreml.gaussian(dispersion = 1.0))

achieves this.

Model 2a: two-dimensional spatial model

> sp.asr <- asreml(yield ∼ Variety, rcov = ∼ ar1(Column):ar1(Row), data = nin89)

This extends model 2 by specifying a first order autoregressive correlation model of
order 11 for columns (ar1()). The R structure in this case is therefore the direct
product of two autoregressive correlation matrices that is, var(e) = θ(Σc ⊗Σr).
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Model 2b: two-dimensional spatial model with measurement error

> sp.asr <- asreml(yield ∼ Variety, random = ∼ units, rcov = ∼ ar1(Column):ar1(Row),

+ data = nin89)

This model includes a factor with n = 224 levels in u. Since Z = I, var(y) =
θ(γI224 + Σc ⊗ Σr). The quantity θγ is the so-called measurement error variance
or nugget variance in geostatistics. units is a reserved name that asreml() constructs
internally as seq(1,nrow(data)). Again, the default idv() variance model is used for
units.

Model 3: two-dimensional spatial model defined as a G structure

> sp.asr <- asreml(yield ∼ Variety, random = ∼ ar1v(Column):ar1(Row), data = nin89)

This model is equivalent to 2b but with the spatial model defined as a G structure
rather than an R structure. As we discussed in 1b,

• when the G structure term involves more than one model, all but one of the
models must be a correlation model (see Section 4.5). In this example (ar1v())Combining

variance models is the variance model.

• an initial value for the scale parameter in this model must be supplied; the
asreml() generated default (0.1) is used here.

Modelling Column:Row as a G structure is a useful approach to handling incomplete
arrays.

4.2 Types of variance models

There are three types of variance model that are used in fitting R and G structures
in asreml(), namely, correlation models, homogeneous variance models and heteroge-

neous variance models. These determine the form for each component of G and R.
In the following, we denote the variance matrix of any component relating to a term
in random or rcov by Σ.

4.2.1 Correlation models

In correlation models all diagonal elements are identically equal to 1. Algebraically,
if Σ = [ρij] , i, j = 1 . . . ω, denotes the correlation matrix for a particular model,
then

Σ = [ρij ] :

{

ρii = 1, ∀i
ρij = ρji, |ρij | ≤ 1, i 6= j.

The simplest correlation model in asreml() is the id() model, where Σ = Iω
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Table 4.1: Sequence of variance structures for the NIN field trial

asreml() call random term (G) residual error term (R)

model model

1 2 1 2

1 yield ∼ Replicate + Variety - - - units idv() -

1a yield ∼ Variety,
random = ∼ Replicate

Replicate idv() - units idv() -

1b yield ∼ Variety,
random = ∼ idv(Replicate),
rcov = ∼ idv(units)

Replicate idv() - units idv() -

2 yield ∼ Variety,
rcov = ∼ Column:ar1(Row)

- - - Column.Row id() ar1()

2a yield ∼ Variety,
rcov = ∼ ar1(Column):ar1(Row)

- - - Column.Row ar1() ar1()

2b yield ∼ Variety,
random = ∼ units,
rcov = ∼ ar1(Column):ar1(Row)

units idv() - Column.Row ar1() ar1()

3 yield ∼ Variety,
random = ∼
ar1v(Column):ar1(Row)

Column.Rowar1v() ar1() units idv() -

4.2.2 Homogeneous variance models

If the variance model is specified as a homogeneous variance model, the diagonal
elements all have the same positive value, σ2 say. That is,

Σ = [σij ] :

{

σii = σ2, ∀i
σij = σji, i 6= j.

Note that if Σ is a correlation model, a homogeneous variance model (with one extra
parameter) is formed as (σ2I)Σ.

For example, the homogeneous variance model corresponding to id() is idv() where
Σ = σ2Iω (or Σ = γIω).

4.2.3 Heterogeneous variance models

The third variance model is the heterogeneous variance model in which the diagonal
elements are positive but differ. That is,

Σ = [σij] :

{

σii = σ2i , i = 1 . . . ω

σij = σji, i 6= j.
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For the models defined in terms of correlation matrices, allowance for unequal vari-
ances can be made by applying a diagonal matrix D of standard errors to the
correlation matrix to generate a heterogeneous variance model. That is D1/2ΣD1/2

In this case, ω extra parameters are added to the vector of initial values.

For example, the heterogeneous variance model corresponding to id() is idh() where
Σ = diag(σ1, . . . , σω).

4.2.4 Positive definite matrices

Formation of the mixed model equations (MME) requires the inversion of the vari-
ance matrix in the R and G structures. We therefore require these matrices to be
either negative definite or positive definite. They must not be singular. Negative
definite matrices will have negative elements on the diagonal of the matrix and/or
its inverse. The exception is the fa model which has been specifically designed to
fit singular matrices [Thompson et al., 2003].

4.3 Variance model functions

asreml() has a wide range of variance models which can be used to specify the
variance matrix of terms in the random and rcov formulae. The following considers
the various models in terms of functional groups and describes their syntax and
application.

In general, the correlation models described in the following sections have corre-
sponding variance models whose names are simply derived by appending ”v” or ”h”
to the correlation function name. In the former case this yields a homogeneous
variance model while the latter gives the corresponding heterogeneous model. For
example, for the simple correlation model cor(), there also exists the variance func-
tions corv() and corh(). The existence or otherwise of such models is noted for each
functional group in the section detailing initial model parameter values.

4.3.1 Default identity

id(obj)
idv(obj, init=NA)
idh(obj, init=NA)

Required arguments

obj a factor in the data frame.

Optional arguments
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init a vector of initial parameter values. This vector can have an optional
names attribute to set the boundary constraint for each parameter. In
this case, the name of each element may be one of ”P”, ”U” or ”F” for
positive, unconstrained or fixed, respectively.

model number of parameters
f form: f() fv() fh()

id 0 1 n

Details

asreml() uses the id() correlation model or the idv() simple variance component
model, depending on context (see the rules for combining variance models in Section
4.5), for terms in the random or rcov formulae that have no variance model explititly
specified.

4.3.2 Time series type models

ar1(obj, init=NA)
ar2(obj, init=NA)
ar3(obj, init=NA)
sar(obj, init=NA)
sar2(obj, init=NA)
ma1(obj, init=NA)
ma2(obj, init=NA)
arma(obj, init=NA)

Description

Includes autoregressive models of order 1, 2 and 3 (ar1, ar2 and ar3), symmetric au-
toregressive (sar), constrained autoregressive order 3 (sar2), moving average models
of order 1 and 2 (ma1, ma2) and the autoregressive-moving average model (arma).

Required arguments

obj a factor in the data frame.

Optional arguments

init a vector of initial parameter values. This vector can have an optional
names attribute to set the boundary constraint for each parameter. In
this case, the name of each element may be one of ”P”, ”U” or ”F” for
positive, unconstrained or fixed, respectively.
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model number of parameters
(f) form: f() fv() fh()

ar1 1 2 1 + n
ar2 2 3 2 + n
ar3 3 4 3 + n
sar 1 2 1 + n
sar2 2 3 2 + n
ma1 1 2 1 + n
ma2 2 3 2 + n
arma 2 3 2 + n

Details

4.3.3 Metric based models in ℜ or ℜ2

exp(x, init=NA, dist=NA)
gau(x, init=NA, dist=NA)
iexp(x, y, init=NA)
igau(x, y, init=NA)
ieuc(x, y, init=NA)
sph(x, y, init=NA)
cir(x, y, init=NA)
aexp(x, y, init=NA)
agau(x, y, init=NA)
mtrn(x, y, phi=NA, nu=0.5, delta=1.0, alpha=0.0, lambda=2)

Description

Includes one dimensional exponential and gaussian power models (exp, gau), two
dimensional isotropic exponential, gaussian, euclidean, spherical and circular power
models (iexp, igau, ieuc, sph, cir), anisotropic exponential and gaussian models (aexp,
agau) and the Matérn class (mtrn).

Required arguments

x a field in the data frame containing the x coordinates. For one dimen-
sional models, coordinates are obtained as unique(x) or,if specified, from
the component named x in the pwrpoints argument to asreml.control().

. y a field in

Optional arguments

dist for one dimensional models, a vector of coordinates; an alternative way
to specify distance information for x.
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init a vector of initial parameter values. This vector can have an optional
names attribute to set the boundary constraint for each parameter. In
this case, the name of each element may be one of ”P”, ”U” or ”F” for
positive, unconstrained or fixed, respectively.

model number of parameters
(f) form: f() fv() fh()

exp 1 2 1 + n
gau 1 2 1 + n
iexp 1 2 1 + n
igau 1 2 1 + n
ieuc 1 2 1 + n
sph 1 2 1 + n
cir 1 2 1 + n
aexp 2 3 2 + n
agau 2 3 2 + n

phi the range paraeter. Default: φ = NA.
nu the smoothness parameter. Default: ν = 0.5.
delta governs geoetric anisotropy. Default: δ = 1.0.
alpha governs geoetric anisotropy. Default: α = 0.0.
lambda specifies the choice of metric. Default: λ = 2 for Euclidean distance.

For the Matérn function, if an argument is numeric, it is treated as a
starting value for estimation and given the constraint code P (positive).
This behaviour can be altered by concatenating the numeric value fol-
lowed by the constraint code (P, U or F) into a character string. If an
argument is absent from the call, the corresponding parameter is held
fixed at its default value.

Details

Kriging models apply to points in an irregular (or regular) spatial grid. They require
the specification of the data coordinates to calculate pairwise distances. For example,

• the distance between time points in a one-dimensional longitudinal analysis,

• the spatial distance between plot coordinates in a two-dimensional field trial
analysis,

Distance information for power models is obtained from the object(s) or arguments
passed to the relevant special function.

For one dimensional models, the distances are obtained from one of:

1. unique(x) where x is the required argument to the model function identifying
the field in the data frame containing the points..

2. the dist argument to the model function

3. the pwrpoints list argument to asreml.control() (Section 7.2)
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For two dimensional models, the special functions require two arguments nomi-
nating fields in the data frame specifying the (x, y) coordinates of each observation.
For example, in the analysis of spatial data, if the x coordinate was in a variate row
and the y coordinate was in a variate labelled column, an anisotropic exponential
model could be fitted by aexp(row, column).

Note that for an R structure the data order is assumed correct, otherwise an error
is generated.

The Matérn class

asreml() uses an extended Matérn class which accomodates geometric anisotropy and
a choice of metrics for random fields observed in two dimensions. This extension,
described in detail in Haskard [2006], is given by

ρ(h;φ) = ρM (d(h; δ, α, λ);φ, ν)

where h = (hx, hy)
T is the spatial separation vector, (δ, α) governs geometric anisotropy,

(λ) specifies the choice of metric and (φ, ν) are the parameters of the Matérn corre-
lation function. The function is

ρM (d;φ, ν) =
{

2ν−1Γ(ν)
}−1

(

d

φ

)ν

Kν

(

d

φ

)

, (4.1)

where φ > 0 is a range parameter, ν > 0 is a smoothness parameter, Γ(·) is the
gamma function, Kν(.) is the modified Bessel function of the third kind of order
ν (Abramowitz and Stegun, 1965, section 9.6) and d is the distance defined in
terms of X and Y axes: hx = xi − xj ; hy = yi − yj; sx = cos(α)hx + sin(α)hy ;
sy = cos(α)hx − sin(α)hy ; d = (δ|sx|λ + |sy|λ/δ)1/λ.
For a given ν, the range parameter φ affects the rate of decay of ρ(·) with increasing d.
The parameter ν > 0 controls the analytic smoothness of the underlying process us,
the process being ⌈ν⌉−1 times mean-square differentiable, where ⌈ν⌉ is the smallest
integer greater than or equal to ν (Stein, 1999, page 31). Larger ν correspond to
smoother processes. asreml() uses numerical derivatives for ν when its current value
is outside the interval [0.2,5].

When ν = m+ 1
2 with m a non-negative integer, ρM (·) is the product of exp(−d/φ)

and a polynomial of degree m in d. Thus ν = 1
2 yields the exponential correlation

function, ρM (d;φ, 12) = exp(−d/φ), and ν = 1 yields Whittle’s elementary correla-
tion function, ρM (d;φ, 1) = (d/φ)K1(d/φ) (Webster and Oliver, 2001).

When ν = 1.5 then
ρM (d;φ, 1.5) = exp(−d/φ)(1 + d/φ)

which is the correlation function of a random field which is continuous and once
differentiable. This has been used recently by Kammann and Wand [2003]. As
ν → ∞ then ρM (·) tends to the gaussian correlation function.

The metric parameter λ is not estimated by asreml(); it is usually set to 2 for
Euclidean distance. Setting λ = 1 provides the cityblock metric, which together
with ν = 0.5 models a separable AR1×AR1 process. Cityblock metric may be
appropriate when the dominant spatial processes are alighned with rows/columns as
occurs in field experiments. Geometric anisotropy is discussed in most geostatistical
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books [Webster and Oliver, 2001, Diggle et al., 2003] but rarely are the anisotropy
angle or ratio estimated from the data. Similarly the smoothness parameter ν is
often set a-priori [Kammann and Wand, 2003, Diggle et al., 2003]. However Stein
[1999] and Haskard et al. [2005] demonstrate that ν can be reliably estimated even
for modest sized data-sets, subject to caveats regarding the sampling design.

Estimation

The order of the parameters in mtrn(), with their defaults, is (φ, ν = 0.5, δ =
1, α = 0, λ = 2). Parameters are fixed or estimated depending on the data typeestimation

(numeric or character) of the argument to the respective parameter.

• If an argument is numeric, it is treated as a starting value for estimation and
given the constraint code P (positive).

• This behaviour can be altered by concatenating the numeric value followed by
the constraint code (P, U or F) into a character string.

• If an argument is absent from the call, the corresponding parameter is held
fixed at its default value.

For example, to fit a Matérn model with only φ estimated and the other parameters
set at their defaults then we could use mtrn(phi = 0.1) where the starting value for
estimation is given as 0.1.

To fix ν some value other than the default and estimate φ, the fixed value and
constraint code are given as a single string to the nu argument. That is mtrn(phi =
0.1, nu = ”1.0F”)

The parameters φ and ν are highly correlated so it may be better to manually cover
a grid of ν values.

We note that there is non-uniqueness in the anisotropy parameters of this metric d(·)
since inverting δ and adding π

2 to α gives the same distance. This non-uniqueness
can be removed by constraining 0 ≤ α < π

2 and δ > 0, or by constraining 0 ≤ α < π
and either 0 < δ ≤ 1 or δ ≥ 1. With λ = 2, isotropy occurs when δ = 1, and then
the rotation angle α is irrelevant: correlation contours are circles, compared with
ellipses in general. With λ = 1, correlation contours are diamonds.

4.3.4 General structure models

cor(obj, init=NA)
corb(obj, k=1, init=NA)
corg(obj, init=NA)
diag(obj, init=NA)
us(obj, init=NA)
chol(obj, k=1, init=NA)
cholc(obj, k=1, init=NA)
ante(obj, k=1, init=NA)
fa(obj, k=1, init=NA)
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Description

The class of general variance models includes the simple, banded and general corre-
lation models (cor, corb, corg), the diagonal, unstructured, Cholesky and antedepen-
dence variance models (diag, us, chol, cholc, ante) and the factor analytic structure
(fa).

Required arguments

obj a factor in the data frame.

Optional arguments

init a vector of initial parameter values. This vector can have an optional
names attribute to set the boundary constraint for each parameter. In
this case, the name of each element may be one of ”P”, ”U” or ”F” for
positive, unconstrained or fixed, respectively.

model number of parameters
(f) form: f() fv() fh()

cor 1 2 1 + n
corb k − 1 k 2k − 1
corg n(n− 1)/2 1 + n(n− 1)/2 n+ n(n− 1)/2
diag n
us n(n+ 1)/2
chol1 n(n+ 1)/2
cholc1 n(n+ 1)/2
ante1 n(n+ 1)/2
fa kn+ n

1 chol, cholc and ante models have (k+1)(n− k/2) parameters but n(n+1)/2 initial

values row-wise from the lower triangle of an unstructured matrix are given and

converted to the appropriate parameterization.

k the number of subdiagonal bands for corb
the order of the Cholesky decoposition for chol and cholc
the order of antedependence (ante) and factor analytic models (fa).

Details

The k-factor Cholesky structure models Σω×ω asCholesky

Σ = LDL′

where Lω×ω is a unit lower triangular matrix and D = diag(d1, . . . , dω).

In the chol(,k) factorization L has k non-zero (unequal) bands below the diagonal,chol

that is, the elements {lij} of L are

lii = 1

lij = vij. 1 ≤ i− j ≤ k

lij = 0, otherwise

In the cholc(,k) factorization L has columns li = (l1i, . . . , lωi)
′ wherecholc
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lii = 1

lij = 0 for i < j, k < j < i

For example, if a factor Site has 4 levels then

asreml(. . . ,cholc(Site,1). . . )

generates Σ = LDL′ where

L =









1
l21 1
l31 0 1
l41 0 0 1









D =









d1 0 0 0
0 d2 0 0
0 0 d3 0
0 0 0 d4









This form is similar to a Factor Analytic model. In asreml() the initial parame-
ters for both Cholesky factorizations are given as the lower triangle row-wise of an
unstructured matrix and converted internally to the appropriate factorization. So,
if

Σ =









σ11

σ21 σ22

σ31 σ32 σ33

σ41 σ42 σ43 σ44









the initial values are given as

c(σ11, σ21, σ22, . . . , σ44)

The k-factor antedependence ante(,k) structure models Σω×ω asantedependence

Σ−1 = UDU ′

where Uω×ω is a unit upper triangular matrix with elements {uij} where

uii = 1

uij = 0, i > j

uij = uij, 1 ≤ i− j ≤ k

and D = diag(d1, . . . , dω).

Considering the above example for a factor Site with 4 levels,

asreml(. . . ,ante(Site,1). . . )

generates Σ−1 = UDU ′ where

U =









1 u12 0 0
0 1 u23 0
0 0 1 u34
0 0 0 1









D =









d1 0 0 0
0 d2 0 0
0 0 d3 0
0 0 0 d4









In asreml() the parameters for ante are given as for us, chol and cholc as the lower
triangle row-wise of an unstructured matrix.

In a factor analytic model of order k (fa(,k)), the variance matrix Σω×ω is modelledfactor analytic
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as
Σ = ΓΓ′ +Ψ

where Γ (ω×k) is a matrix of loadings and Ψω×ω is a diagonal matrix whose elements
are referred to as specific variances.

For example, if Site is a factor with 4 levels, the component matrices for

asreml(. . . ,fa(Site,1). . . )

are

Γ =









l1
l2
l3
l4









Ψ =









ψ1 0 0 0
0 ψ2 0 0
0 0 ψ3 0
0 0 0 ψ4









where the parameters are given in the order c(diag(Ψ), vec(Γ)).

A key issue with factor analytic models is that it is possible for the REML estimates
of the specific variances to be zero. The fa() algorithm [Thompson et al., 2003] used
in asreml() permits some (or all) specific variances to be set to zero.

If k > 1, constraints on the elements of Γ are required for identifiability. These
constraints are chosen to be: l12 = 0 for k = 1; l13 = l23 = 0 for k = 3;, etc. asreml()
sets these elements to zero and their corresponding boundary constraints to ”F”.

4.3.5 Known relationship structures

giv(obj, init=NA)
ped(obj, init=NA)

Required arguments

obj a factor in the data frame. The name obj must also appear as a com-
ponent in the ginverse list argument to asreml.control() to associate an
inverse relationship matrix with the factor oj

Optional arguments

init a vector of length 1 giving the initial variance parameter value. This
scalar can have an optional names attribute to set the boundary con-
straint. In this case, the name may be one of ”P”, ”U” or ”F” for
positive, unconstrained or fixed, respectively.

Details

The giv() procedure associates a known inverse matrix with the factor obj; the num-
ber of rows in the inverse matrix must be length(levels(obj)) and the order is assumed
correct. The ped() function associates an inverse relationship matrix typically de-
rived from a pedigree with the factor obj. There may be more rows in the inverse
matrix than levels of obj. More than one inverse matrix may be used in an analysis
so the ginverse argument to asreml() must be used in conjunction with giv or ped to
associate particular inverse matrices with factors in the model.



4.4. Default initial values for variance parameters 54

4.3.6 General variance structures

str(form, vmodel)

Required arguments

form a model formula specifying a set of terms to be included in the random
argument that collectively will have an associated variance model.

vmodel a formula object containing asreml variance functions separated by ”:”
operators specifying the direct product structure that applies to the set
of terms in form. The size of the variance structures can be given as an
integer argument to the variance functions in place of the usual factor
object.

Details

Typically a variance structure applies to an individual term in the linear model,
with no covariance between model terms. Sometimes it is appropriate, for example
in random regression models, to include a covariance parameter. The model terms in
form are kept together and identified by the first term in the sequence. The variance
structure defined in vmodel begins at the first term and covers the subsequent terms
in the sequence. The overall size of the variance model is checked against the total
number of levels of the terms in form, however, the sequence of effects matching the
variance structure definition is not checked.

For example, in the random regressions case we would generally wish to estimate
a covariance between intercept and slope. The syntax for a longitudinal analysis of
animal liveweight over time, say, is
> asreml(. . . , random = ∼ str(∼ Animal+Animal:Time, ∼ us(2):id(25)), . . . )

assuming the factor Animal has 25 levels. See Section 8.9 for an example of its use
in fitting random coefficient models.

4.4 Default initial values for variance parameters

The default initial values are 0.1 for both variance ratios and correlations, and 0.1*v
for variance components, where v is half the simple variance of the response. The
corresponding default parameter constraints are P (positive) for variance ratios, U
(unconstrained) for correlations and P for variance components. These defaults can
be altered using the methods described in Section 3.7.1.

4.5 Rules for combining variance models

As discussed in Section 2.4, variance structures are sometimes formed by combining
variance models. For example, a two factor interaction may involve two variance
models, one for each of the two factors in the interaction. Some of the rules for
combining variance models differ for R structures and G structures. The following
rules apply:
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• When combining variance models in both R and G structures, the resulting
direct product structure must match the ordered effects with the outer factor
first. For example, the NIN data are ordered rows within columns. This is why
in Model 3 (page 43) the ar1v() variance model for Column is specified first in
the interaction term.

• asreml() automatically includes and estimates a error variance parameter for
each section of an R structure. The variance structures defined by the user
should therefore normally be correlation matrices. A variance model can be
specified but the dispersion parameter in the family argument must then be
set to 1.0 to fix the error variance at 1 and prevent asreml() trying to estimate
two confounded parameters (error variance and the parameter corresponding
to the variance model specified, see Model 2 on page 42).

• asreml() does not have an implicit scale parameter when G structures are
defined in the random model formula. For this reason one, and only one, of
the models in the G structure term must be a variance function; an initialSee Sections 2.1

and B value must be supplied for the associated scale parameter, this is discussed
under Initial values and constraints for variance parameters on page 30.

• When the G structure involves more than one variance model, one must be
either an homogeneous or a heterogeneous variance model and the rest should
be correlation models; if more than one are non-correlation models then con-
straints should be used to avoid identifiability problems, that is, to prevent
attempts to estimate confounded parameters.

4.6 Constraining variance parameters

Equality and more general relationships among variance parameters are specified in
asreml() with a simple linear model. Let κ be the nκ vector of unconstrained variance
parameters and T be a nκ×nc matrix imposing the linear constraints T ′κ = s. This
is equivalent to

κ = Mθ +Es

where θ is the nc vector of constrained parameters. Constraints are specified in
asreml() by the matrix M which must have a dimnames attribute with the names of
κ as its row names.

Note that in asreml() nκ need only encompass the subset of variance parameters
among which constraints will be applied, rather than the entire set.

The function asreml.constraints() generates the matrix M from a linear model for-
mula and a data frame in which to

1. resolve the terms named in that formula, and

2. extract the variance component names as the dimnames attribute of M .
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A default data frame gammas.table to work with is generated by setting the start.values
argument to asreml(). This data frame contains a factor, Gammas, the levels of which
are the names of the variance parameters. Other factors or variates created in this
data frame and named in the formula argument to asreml.constraints() are used to
generate M .

By way of example, consider a model containing a first order interaction term (A:B,an example

say) where the outer factor (A) is of order 7 and we wish to model it with an un-
structured variance matrix with some parameters constrained. Suppose the required
pattern of constraints among the variance parameters is:

v11
v21 v22
v31 v32 v33
v31 v32 0 v33
v31 v32 0 0 v33
v31 v32 0 0 0 v33
v31 v32 0 0 0 0 v33

That is, there are only 7 distinct parameters from the original 28 and one of these
is to be fixed at zero. Furthermore, suppose that none of the remaining variance
parameters from other terms in the model are to be subject to any constraints.

The following call
> model.gam <- asreml(. . . , random = us(A):B, start.values = ”gammas.txt”, . . . )

generates

1. a text file "gammas.txt" containing the component names, their initial values
and boundary constraints, and

2. a data frame component of model.gam named gammas.table with the same
contents as the above file.

If the 28 components of interest are the 47th through 74th in the gammas vector, for
example, the following code subsets model.gam$gammas.table and creates a factor
in the reduced table that can be used to construct M :

gam <- model.gam$gammas.table[47:74,]

gam$fac <- factor(c(

1,

2,3,

4,5,6,

4,5,7,6,

4,5,7,7,6,

4,5,7,7,7,6,

4,5,7,7,7,7,6))

M <- asreml.constraints(∼ fac, gammas=gam)

asreml.constraints() omits the constant by default and calls model.frame() to generate
M . Note that any procedure could be substituted for asreml.constraints() provided
the resulting matrix conforms.
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In this example, M would look like

1 2 3 4 5 6 7
v1,1 1 0 0 0 0 0 0
v2,1 0 1 0 0 0 0 0
v2,2 0 0 1 0 0 0 0
v3,1 0 0 0 1 0 0 0
v3,2 0 0 0 0 1 0 0
v3,3 0 0 0 0 0 1 0
v4,1 0 0 0 1 0 0 0
v4,2 0 0 0 0 1 0 0
v4,3 0 0 0 0 0 0 1
v4,4 0 0 0 0 0 1 0
v5,1 0 0 0 1 0 0 0
v5,2 0 0 0 0 1 0 0
v5,3 0 0 0 0 0 0 1
v5,4 0 0 0 0 0 0 1
v5,5 0 0 0 0 0 1 0
v6,1 0 0 0 1 0 0 0
v6,2 0 0 0 0 1 0 0
v6,3 0 0 0 0 0 0 1
v6,4 0 0 0 0 0 0 1
v6,5 0 0 0 0 0 0 1
v6,6 0 0 0 0 0 1 0
v7,1 0 0 0 1 0 0 0
v7,2 0 0 0 0 1 0 0
v7,3 0 0 0 0 0 0 1
v7,4 0 0 0 0 0 0 1
v7,5 0 0 0 0 0 0 1
v7,6 0 0 0 0 0 0 1
v7,7 0 0 0 0 0 1 0

The final step before fitting the model is to fix the parameters corresponding to
level 7 of fac to zero. This is achieved by editing gammas.txt and setting the appro-
priate values to zero and boundary constraint codes to F. The modified values and
the matrix M are used through the G.param and constraints arguments to asreml(),
respectively. That is

model.asr <- asreml(. . . , random = us(A):B, constraints = M, G.param = ”gammas.txt”, . . . )



5
Genetic analysis

5.1 Introduction

In a genetic analysis we have phenotypic data on a set of individuals that are geneti-
cally linked via a pedigree. The genetic effects are therefore correlated and, assuming
normal modes of inheritance, the correlation expected from additive genetic effects
can be derived from the pedigree provided all the genetic links are present. The
additive genetic relationship matrix (sometimes called the numerator relationship
matrix, or A matrix) can be calculated from the pedigree. It is actually the inverse
relationship matrix that is required by asreml() for analysis.

The inclusion of a A−1 matrix in an analysis is essentially a two step process:

1. the function asreml.Ainverse() takes a pedigree data frame and returns the A−1

matrix in sparse form as a giv object (see below).

2. The matrix from step 1 (giv object) is included in an asreml() analysis using
the ginverse argument in conjunction with the ped() variance model function.

For the more general situation, where the pedigree based inverse relationship matrix
generated by asreml.Ainverse() is not appropriate, the user can include a general
inverse variance matrix provided its structure adheres to one of the allowable forms
for a giv object (see below).

There may be more than one G-inverse matrix present and each are supplied through
named components of the ginverse argument. The ped() and giv() special functions in
the random model formula associate the appropriate G-inverse with the nominated
model factor.

In this chapter we illustrate the procedure using the data in Harvey [1977] described
in Section 1.3.4.

5.2 Pedigree, G-inverse objects and genetic groups

5.2.1 Pedigree objects

The pedigree defines the genetic relationships among individuals when fitting a ge-
netic model. The pedigree object is simply a data frame with the following proper-
ties:

58
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• three columns: the identity of the individual, its male parent and its female
parent (or maternal grand sire if the MGS option to asreml.Ainverse() is to be
specified),

• is sorted so that the row giving the pedigree of an individual appears before
any row where that individual appears as a parent,

• uses identity 0 or NA for unknown parents

For example, the first 20 lines of harvey.ped are:

> harvey.ped <- read.table("harvey.ped",header=T,as.is=T)

> harvey.ped[1:20,]

Calf Sire Dam

1 Sire_1 0 0

2 Sire_2 0 0

3 Sire_3 0 0

4 Sire_4 0 0

5 Sire_5 0 0

6 Sire_6 0 0

7 Sire_7 0 0

8 Sire_8 0 0

9 Sire_9 0 0

10 101 Sire_1 0

11 102 Sire_1 0

12 103 Sire_1 0

13 104 Sire_1 0

14 105 Sire_1 0

15 106 Sire_1 0

16 107 Sire_1 0

17 108 Sire_1 0

18 109 Sire_2 0

19 110 Sire_2 0

20 111 Sire_2 0

5.2.2 giv objects

An inverse relationship matrix, A−1 or a general inverse matrix from an external
source can be included in the analysis as:

• a data frame of three columns containing the non-zero elements of the lower
triangle of the matrix in row order. The first two columns of the data frame are
the row and column indices and must be named row and column, respectively.
This is the structure returned by asreml.Ainverse().

• a matrix object. Only the lower triangle is used and NAs are ignored.

• the complete lower triangle in vector form stored row by row; NAs are ignored.

• in all cases every diagonal element must be present.
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In all cases the giv matrix object must have an attribute rowNames, a character
vector that uniquely identifies each row of the matrix. This vector of identifiers may
be a super set of the vector of levels of the corresponding factor in the data, but
must at least contain all the individuals in the data.

An inverse relationship matrix can be obtained from the harvey pedigree using:

> harvey.ainv <- asreml.Ainverse(harvey.ped)$ginv

> attr(harvey.ainv,"rowNames")

[1] "Sire_1" "Sire_2" "Sire_3" "Sire_4" "Sire_5" "Sire_6" "Sire_7" "Sire_8"

[9] "Sire_9" "101" "102" "103" "104" "105" "106" "107"

[17] "108" "109" "110" "111" "112" "113" "114" "115"

[25] "116" "117" "118" "119" "120" "121" "122" "123"

[33] "124" "125" "126" "127" "128" "129" "130" "131"

[41] "132" "133" "134" "135" "136" "137" "138" "139"

[49] "140" "141" "142" "143" "144" "145" "146" "147"

[57] "148" "149" "150" "151" "152" "153" "154" "155"

[65] "156" "157" "158" "159" "160" "161" "162" "163"

[73] "164" "165"

> harvey.ainv[1:20,]

Row Column Ainverse

1 1 1 3.6666667

2 2 2 3.6666667

3 3 3 2.6666667

4 4 4 3.6666667

5 5 5 3.3333333

6 6 6 3.0000000

7 7 7 3.6666667

8 8 8 3.3333333

9 9 9 3.6666667

10 10 1 -0.6666667

11 10 10 1.3333333

12 11 1 -0.6666667

13 11 11 1.3333333

14 12 1 -0.6666667

15 12 12 1.3333333

16 13 1 -0.6666667

17 13 13 1.3333333

18 14 1 -0.6666667

19 14 14 1.3333333

20 15 1 -0.6666667

5.2.3 Genetic groups

If all individuals belong to one genetic group then, as above, use 0 as the identity
of the parents of base individuals. However, if base individuals belong to various
genetic groups, this can be specified using the groups argument to asreml.Ainverse.
The pedigree data frame must then identify these groups. All base individuals should
have group identifiers as parents. In this case the identity 0 will only appear on the
group identity rows, as in the following example where three sire lines are fitted as
genetic groups.

> harveyG.ped <- read.table("harveyg.ped",header=T,as.is=T)

> harveyG.ped[1:20,]

Calf Sire Dam

1 G1 0 0
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2 G2 0 0

3 G3 0 0

4 Sire_1 G1 G1

5 Sire_2 G1 G1

6 Sire_3 G1 G1

7 Sire_4 G2 G2

8 Sire_5 G2 G2

9 Sire_6 G3 G3

10 Sire_7 G3 G3

11 Sire_8 G3 G3

12 Sire_9 G3 G3

13 101 Sire_1 G1

14 102 Sire_1 G1

15 103 Sire_1 G1

16 104 Sire_1 G1

17 105 Sire_1 G1

18 106 Sire_1 G1

19 107 Sire_1 G1

20 108 Sire_1 G1

It is usually appropriate to allocate a genetic group identifier where the parent is
unknown.

5.3 Generating an A-inverse matrix with

asreml.Ainverse()

asreml.Ainverse() uses the method of Meuwissen and Luo [1992] to compute the in-
verse relationship matrix directly from the pedigree. A complete description of the
arguments and return value of a call to asreml.Ainverse() is given in Section 7.4.2.

5.4 Using Pedigree and G-inverse objects

Putting it all together, an analysis of average daily gain (y1 in harvey.dat ) using
the pedigree harvey.ped can be obtained from:

> harvey.ainv <- asreml.Ainverse(harvey.ped)$ginv

> adg.asr <- asreml(y1∼ Line, random =∼ ped(Calf, var=T), ginverse=list(Calf=harvey.ainv), data=harvey)

The variance components are given in
> summary(adg.asr)$varcomp

gamma component std.error z.ratio constraint

ped(Calf) 1.828628 499.5096 500.5393 0.9979427 Positive

R!variance 1.000000 273.1609 410.0210 0.6662119 Positive

and the BLUP estimates by:
> summary(adg.asr)$coef.random

solution std error z ratio

ped(Calf)_Sire_1 11.0252890 17.44623 0.631958069

ped(Calf)_Sire_2 -17.6385364 17.44623 -1.011022518
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ped(Calf)_Sire_3 6.6132474 18.02693 0.366853786

ped(Calf)_Sire_4 -8.0185320 18.76570 -0.427297361

ped(Calf)_Sire_5 8.0185320 18.76570 0.427297361

ped(Calf)_Sire_6 8.4824687 17.13032 0.495172801

ped(Calf)_Sire_7 0.4445043 16.60110 0.026775595

ped(Calf)_Sire_8 -26.9640897 16.83823 -1.601361699

ped(Calf)_Sire_9 18.0371167 16.60110 1.086501425

ped(Calf)_101 -7.3121005 14.75468 -0.495578393

ped(Calf)_102 16.3994122 14.75468 1.111471922

...

ped(Calf)_164 13.7740505 14.28636 0.964140026

ped(Calf)_165 7.9907547 14.28636 0.559327589

User specified general inverse matrices are included in an analysis in the same way.
Consider an easily verified example where we define a general inverse matrix for Sire
in the harvey data as 0.5I9.

A simple analysis fitting Sire and ignoring the pedigree:

> adg1.asr <- asreml(y1 ∼ Line, random = ∼ Sire, data=harvey)

gives

> summary(adg1.asr)$varcomp

gamma component std.error z.ratio constraint

Sire 0.2055558 27.20922 26.59081 1.023256 Positive

R!variance 1.0000000 132.36900 25.00140 5.294463 Positive

while including the general inverse 0.5I9:

> sire.giv <- data.frame(row=seq(1,9),column=seq(1,9),value=rep(0.5,9))

> attr(sire.giv,”rowNames”) ¡- paste(”Sire ”,seq(1,9),sep=””)

> adg2.asr <- asreml(y1 ∼ Line, random =∼ giv(Sire, var=T), ginverse=list(Sire=sire.giv), data=harvey)

gives

> summary(adg2.asr)$varcomp

gamma component std.error z.ratio constraint

giv(Sire) 0.1027814 13.61135 13.20766 1.030565 Positive

R!variance 1.0000000 132.43012 25.01868 5.293250 Positive



6
Prediction from the linear
model

6.1 Introduction

Prediction is the process of forming a linear function of the vector of fixed and
random effects in the linear model to obtain an estimated or predicted value for a
quantity of interest. It is primarily used for predicting tables of adjusted means. If
the table is based on a subset of the explanatory variables then the other variables
need to be accounted for. It is usual to form a predicted value either at specified
values of the remaining variables, or averaging over them in some way.

Some predict methods require as input a data frame of the factor levels and variate
values used to fit the model, augmented by new points for which predictions are
required. This approach has limitations; for example, it does not lend itself easily
to the notion of averaging over particular factors in the model to form predictions.

The approach to prediction described here is a generalisation of that of Lane and Nelder
[1982] who consider fixed effects models only. They form fitted values for all combi-
nations of the explanatory variables in the model, then take marginal means across
the explanatory variables not relevent to the current prediction. Our case is more
general in that random effects can be fitted in mixed models. A full description can
be found in Gilmour et al. [2004] and Welham et al. [2004].

Random factor terms may contribute to predictions in several ways. They may be
evaluated at a given value(s) specified by the user, they may be averaged over, or they
may be omitted from the fitted values used to form the prediction. Averaging over
the set of random effects gives a prediction specific to the random effects observed.
We describe this as a conditional prediction. Omitting the term from the model
produces a prediction at the population average (zero), that is, substituting the
assumed population mean for an unknown random effect. We call this a marginal

prediction. Note that in any prediction, some terms may be evaluated as conditional
and others at marginal values, depending on the aim of prediction.

For fixed factors there is no pre-defined population average, so there is no natural
interpretation for a prediction derived by omitting a fixed term from the fitted values.
Averages must therefore be taken over all the levels present to give a sample specific
average, or value(s) must be specified by the user.

For covariate terms (fixed or random) the associated effect represents the coefficient
of a linear trend in the data with respect to the covariate values. These terms should
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be evaluated at a given value of the covariate, or averaged over several given values.
Omission of a covariate from the predictive model is equivalent to predicting at a
zero covariate value, which is often inappropriate.

Interaction terms constructed from factors generate an effect for each combination
of the factor levels, and behave like single factor terms in prediction. Interactions
constructed from covariates fit a linear trend for the product of the covariate values
and behave like a single covariate term. An interaction of a factor and a covariate
fits a linear trend for the covariate for each level of the factor. For both fixed and
random terms, a value for the covariate must be given, but the factor levels may be
evaluated at a given level, averaged over or (for random terms only) omitted.

Before considering some examples in detail, it is useful to consider the conceptual
steps involved in the prediction process. Given the explanatory variables used to
define the linear (mixed) model, the four main steps are

1. Choose the explanatory variable(s) and their respective value(s) for which
predictions are required; the variables involved will be referred to as the classify
set and together define the multiway table to be predicted.

2. Determine which variables should be averaged over to form predictions. The
values to be averaged over must also be defined for each variable; the variables
involved will be referred to as the averaging set. The combination of the classify
set with these averaging variables defines a multiway hyper-table. Note that
variables evaluated at only one value, for example, a covariate at its mean
value, can be formally introduced as part of the classifying or averaging set.

3. Determine which terms from the linear mixed model are to be used in forming
predictions for each cell in the multiway hyper-table in order to give appropri-
ate conditional or marginal prediction.

4. Choose the weights to be used when averaging cells in the hyper-table to
produce the multiway table to be reported.

Note that after steps 1 and 2 there may be some explanatory variables in the fitted
model that do not classify the hyper-table. These variables occur in terms that are
ignored when forming the predicted values. It was concluded above that fixed terms
could not sensibly be ignored in forming predictions, so that variables should only
be omitted from the hyper-table when they only appear in random terms. Whether
terms derived from these variables should be used when forming predictions depends
on the application and aim of prediction.

The main difference in this prediction process compared to that described by Lane and Nelder
[1982] is the choice of whether to include or exclude model terms when forming pre-
dictions. In linear models, since all terms are fixed, terms not in the classify set
must be in the averaging set.

6.2 The predict method

The predict method is detailed in Section 7.4.12. A simple example is the prediction
of variety means from fitting model 2a (Section 4.1) to the NIN field trial data.
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Recall that a randomised block model with random replicate effects is fitted to this
data by:

> rcb.asr <- asreml(yield ∼ Variety, random = ∼ Rep, na.method.X = ”include”, data = nin89)

A table of means classified by Variety can be obtained from:

> rcb.pv <- predict(rcb.asr,classify=”Variety”)

A component named predictions is included in the asreml object.

> rcb.pv$predictions

$pvals

Notes:

- Rep terms are ignored unless specifically included

- mv is averaged over fixed levels

- Variety is included in the prediction

- (Intercept) is included in the prediction

- mv is ignored in this prediction

Variety predicted.value standard.error est.status

1 ARAPAHOE 29.4375 3.855687 Estimable

2 BRULE 26.0750 3.855687 Estimable

3 BUCKSKIN 25.5625 3.855687 Estimable

...

54 TAM107 28.4000 3.855687 Estimable

55 TAM200 21.2375 3.855687 Estimable

56 VONA 23.6000 3.855687 Estimable

$avsed

[1] 4.979075

6.2.1 The prediction process

Predictions are formed as an extra process in the final iteration. predict.asreml()
parses the argument list and calls update.asreml() using the final parameter estimates
in the required asreml object. Additional arguments to asreml() may be included in
the call to predict.asreml(), such as requesting extra memory, adding spline predict
points or controlling the number of additional iterations, bound by the rules of
update.asreml().

By default, factors are predicted at each level, simple covariates are predicted at their
overall mean and covariates used as a basis for splines or orthogonal polynomials
are predicted at their design points. Covariates grouped into a single term using the
grp() model function) are treated as covariates.

Special model terms mv and units are always ignored.mv, units

Prediction at particular values of a covariate or particular levels of a factor is achieved
by:

1. Including the variables in the classify set and specifying any non-default values
at which predictions are to be made by using the levels argument.
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2. Specifying the averaging set. The default averaging set is those explanatory
variables involved in fixed effect model terms that are not in the classifying set.
By default variables that only define random model terms are ignored. The
average argument allows these variables to be added to the default averaging
set.

3. Determining the linear model terms to use in prediction. The default rule
is that all model terms based entirely on the classifying and averaging set
are used. The use and ignore arguments allow this default set of model
terms to be modified by adding or removing terms, respectively. The onlyuse
argument explicitly specifies the model terms to use, ignoring all others. The
argument except explicitly specifies the model terms not to use, including all
others. These arguments may implicitly modify the averaging set by including
variables defining terms in the predicted model not in the classify set. It is
sometimes easier to specify the classify set and the prediction linear model and
allow asreml() to construct the averaging set.

4. Choosing the weights for forming means over dimensions in the hyper-table.
The default is to average over the specified levels but the average argument
can be used to specify weights to be used in averaging over a factor.

For example,

obj.asr <- asreml(yield ∼ Site + Variety, random = ∼ Site:Variety + at(Site):Block, . . . )

pbj.pv <- predict(obj.asr, clasify = ”Variety”)

puts Variety in the classify set, Site in the averaging set and Block in the ignore
set. Consequently, the Site×Variety hyper-table is formed from from model terms
Site, Variety and Site:Variety but ignoring all terms in at(Site):Block, and
then averaging across sites to produce variety predictions.

6.3 Aliasing

There are often situations in which the fixed effects design matrix X is not of full
column rank. These can be classified according to the cause of aliasing.

1. linear dependencies among the model terms due to over-parameterisation of
the model,

2. no data present for some factor combinations so that the corresponding effects
cannot be estimated,

3. linear dependencies due to other, usually unexpected, structure in the data.

The first type of aliasing is imposed by the parameterisation chosen and can be
determined from the model. The second type of aliasing can be detected when
setting up the design matrix for parameter estimation (which may require revision
of imposed constraints). The third type can then be detected during the absorption



6.4. Complicated weighting 67

of the mixed model equations. Dependencies (aliasing) can be dealt with in several
ways and asreml() checks that predictions are of estimable functions in the sense
defined by Searle (1971, p160) and are invariant to the constraint method used.

Normally asreml() does not return predictions of non-estimable functions but the
aliased argument can be used to control this for each predict table. However, using
aliased is rarely a satisfactory solution. Failure to report predicted values normally
means that the prediction is averaging over some cells of the hyper-table that have
no information and therefore cannot be averaged in a meaningful way. Appropriate
use of the average or present arguments will usually resolve the problem. The present
argument enables the construction of means by averaging only the estimable cells of
the hyper-table. It is reguarly used for nested factors, for example locations nested
in regions.

6.4 Complicated weighting

Generally, when forming a prediction table, it is necessary to average over (or ignore)
some potential dimensions of the prediction table. By default, asreml() uses equal
weights (1/f for a factor with f levels). More complicated weighting is achieved by
using the average argument to set specific (unequal) weights for each level of a factor.
However, sometimes the weights to be used need to be defined with respect to two
or more factors. The simplest case is when there are missing cells and weighting
is equal for those cells in a multiway table that are present; achieved by using the
present argument. This is further generalized by allowing weights for use by the
present averaging process via a named component prwts of the present list.

The factors in the table of weights are specified with the present argument and
the table of weights with the prwts component of the present list. There may be
a maximum of two independent lists of factors in the present list, and, if specified
prwts applies to the first list only. The order of factors in the tables of weights must
correspond to the order in the present list with later factors nested within preceding
factors. Check the output to ensure that the values in the tables of weights are
applied in the correct order.

Consider a rather complicated example from a rotation experiment conducted over
several years. This particular analysis followed the analysis of the daily live weight
gain per hectare of the sheep grazing the plots. There were periods when no sheep
grazed. Different flocks grazed in the different years. Daily liveweight gain was
assessed between 5 and 8 times in the various years. To obtain a measure of total
productivity in terms of sheep liveweight, we need to weight the daily per sheep
figures by the number of sheep grazing days per month. Treatment effects for each
year can be obtained from:

predict(obj.asr, classify = "year:crop:pasture:lime",

levels = list(year=1,crop=1),

average = list(month=c(56,55,56,53,57,63 rep(0,6))))

predict(obj.asr, classify = "year:crop:pasture:lime",

levels = list(year=2,crop=1),
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average = list(month=c(36,0,0,53,23,24,54,54,43,35,0,0)))

predict(obj.asr, classify = "year:crop:pasture:lime",

levels = list(year=3,crop=1),

average = list(month=c(70,0,21,17,0,0,0,70,0,0,53,0)))

predict(obj.asr, classify = "year:crop:pasture:lime",

levels = list(year=4,crop=1),

average = list(month=c(53,56,22,92,19,44,0,0,36,0,0,49)))

predict(obj.asr, classify = "year:crop:pasture:lime",

levels = list(year=5,crop=1),

average = list(month=c(0,22,0,53,70,22,0,51,16,51,0,0)))

and averages over years from:

predict(obj.asr, classify="crop:pasture:lime",

levels = list(crop=1),

present = list(c("year","month"),

prwts=c(56,55,56,53,57,63,0,0,0,0,0,0,

36,0,0,53,23,24,54,54,43,35,0,0,

70,0,,21,17,0,0,0,70,0,0,53,0,

53,56,22,92,19,44,0,0,36,0,0,49,

0,22,0,53,70,22,0,51,16,51,0,0}/5))

Both sets of predict() calls are given to show how the weights were derived and used. Notice that the
order in c("year", "month") implies that the weight coefficients are presented in standard order
with the levels for months cycling within levels for years.

6.5 Further examples

• Predict variety means from an RCB analysis of the NIN field trial data.

> nin89.asr <- asreml(fixed = yield ∼ Variety, random = ∼ Rep, data = nin89)
> nin89.pv <- predict(nin89.fm, classify=”Variety”)

• Variety means from the NIN field trial data in the presence of a covariate x.

> nin89.asr <- asreml(fixed = yield ∼ Variety + x, random = ∼ Rep, data = nin89)
> nin89.pv <- predict(nin89.fm, classify=”Variety”)

will predict variety means at the average of x ignoring random replicate effects.

• Variety means from the NIN field trial data at a specified value of x

> nin89.asr <- asreml(fixed = yield ∼ Variety + x + Rep, data = nin89)
> nin89.pv <- predict(nin89.fm, classify=”Variety:x”, levels=list(x=2))

predicts variety means at x=2, averaged over fixed replicate effects.

• Variety effects from an across site analysis

> obj.asr <- asreml(fixed = yield ∼ Variety , random = ∼ Variety:Site, data = ...)
> obj.pv <- predict(sm, classify=”Variety”)

predicts variety means ignoring the site:variety term while

> obj.pv <- predict(sm, classify=”Variety”, average=list(Site=NULL))

forms the hyper-table based on Site and Variety with each cell formed from linear com-
binations of Variety and Variety:Site effects; Variety predictions are then formed from
averages across Site levels.
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• Predict trait means for each team for the Orange wether trial

> orange.asr <- asreml(cbind(gfw,fdiam) ∼ trait+trait:Year, random =∼ trait:Team, data=orange)
> orange.pv <- predict(orange.asr, classify = ”trait:Team”)

forms the hyper-table for each trait based on Year and Team with each linear combination in
each cell of the hyper-table for each trait using Team and Year effects. Team predictions are
produced by averaging over years.



7
The asreml class

7.1 asreml

asreml Fit the linear mixed model

Description

Asreml estimates variance components under a general linear mixed model by residual maxi-
mum likelihood (REML).

Usage

asreml(fixed = y ~ 1, random, sparse, rcov, G.param, R.param,

predict = predict.asreml(), constraints = asreml.constraints(),

data = sys.parent(), subset, family = asreml.gaussian(),

weights = NULL, offset = NULL, na.method.Y = "include",

na.method.X = "fail", keep.order = FALSE, ran.order = "user",

fixgammas = FALSE, as.multivariate = NULL, model.frame = FALSE,

start.values = FALSE, dump.model = FALSE, model = FALSE,

control = asreml.control(...), ...)

Arguments

fixed formula object specifying the fixed effects part of the model, with the re-
sponse on the left of a ∼ operator, and the terms, separated by + operators,
on the right. If data is given, all names used in the formula should be de-
fined as variables or columns in the data frame. A model with the intercept
as the only fixed effect can be specified as ∼1. There must be at least one
fixed effect specified. If the response evaluates to a matrix (y) then a factor
trait with levels dimnames(y)[[2]] is added to the model frame.

random a formula object, specifying the random effects part of the model, with
the terms, separated by + operators, on the right of a ∼ operator. This
argument has the same general characteristics as fixed, but there will be no
left side to the ∼ operator. Variance structures imposed on random terms
are specified using special functions.

sparse a formula object, specifying the fixed effects to be absorbed, with the terms,
separated by + operators, on the right of a ∼ operator. This argument has
the same general characteristics as fixed, but there will be no left side to
the ∼ expression.
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rcov a formula object, specifying the R model, with the terms, separated by +
operators, on the right of a ∼ operator. This argument has the same general
characteristics as fixed, but there will be no left side to the ∼ expression.
The default is the keyword units which is defined as seq(1,nrow(data))

and automatically included in the model frame. Variance models for the
residual component of the model can be specified using special functions.

G.param a list object, generated by a call to asreml.gdflt using the random formula,
holding initial parameter estimates and constraints relating to G.

Can also be a character string, in which case it is treated as the name of
a comma delimited file with a header line and a column for each variance
component’s name, initial value and constraint code. The internal list object
is generated from the contents of this file.

See start.values

R.param a list object, generated by a call to to asreml.rdflt using the rcov formula,
holding initial parameter estimates and constraints, including σ2, relating
to R.

Can also be a character string, in which case it is treated as the name
of a comma delimited file with a header line and a column for each of
the varianve component name, its initial value and constraint code. The
required list object is generated from the contents of this file.

see start.values

predict a list object specifying the classifying factors and related options to obtain
tables of predicted values from the model. This list would normally be the
value returned by a call to predict.asreml.

constraints A matrix used to constraints among the variance components with as many
rows as there are (original) variance parameters and as many columns as
there are constrained parameters. See asreml.constraints for an example.

data a data frame in which to interpret the variables named in fixed, random,

sparse, and rcov. If the data argument to asreml is missing, the function
sets data to sys.parent() and the context for interpreting names will be
the next function up the calling stack.

subset a logical vector identifying which subset of the rows of the data should be
used in the fit. All observations are included by default.

family family object - a list of functions and expressions for defining the link and
variance functions. The currently supported families are gaussian, binomial,
negative binomial, poisson and Gamma. Family objects are supported via
the asreml family functions asreml.gaussian(), asreml.binomial() etc.
In addition to the link argument, these functions take an additional disper-
sion argument as in

asreml.gaussian(link="identity",dispersion=NA).

The default for asreml.gaussian() is NA which implies that asreml will
estimate the scale parameter, otherwise the parameter is fixed at the nom-
inated value.

weights character string or name identifying the column of data to use as weights
in the fit.

offset character string or name identifying the column of data to include as an
offset in the model. This is ignored if family=gaussian(link=”identity”).

na.method.Y a character string ("include", "omit" or "fail") specifying how missing
data in the response is to be handled. This is applied to the model frame
after any subset argument has been used. The default ("include") is to
estimate missing values; this is necessary in spatial models to preserve the
spatial structure. "omit" deletes observations that contain missing values
in the response.
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na.method.X a character string ("include", "omit" or "fail") specifying how missing
data in covariates is to be handled. This is applied to the model frame
after any subset argument has been used but before any at() functions are
invoked. The default "fail" causes an error if there are missing values in
any covariate. "omit" deletes observations that contain missing values in
any covariate.

keep.order should the terms in the fixed formula be kept in the order they are specified.
By default (FALSE), terms are re-ordered so that main effects appear before
interactions.

ran.order a character string specifying the order of terms in the random formula, may
be one of:

”user:” terms are kept in the order in which they appear,

”R”: the order determined by terms(random,keep.order=FALSE),

”noef”: terms ordered by increasing numbers of effects.

Default is ”user”.

fixgammas if TRUE, overrides the settings in R.param and G.param and constrains all
variance parameters to be fixed.

as.multivariate A character string or name specifying the column in the data that identifies
the traits in a multivariate analysis. If not NULL, implies that the data for
a multivariate analysis is set up as though it were for a univariate analysis.

model.frame if TRUE, the model frame used in the fit is returned in the asreml object.

start.values if TRUE, asreml exits prior to the fitting process and returns a list of length
3 containing the G.param and R.param lists and a data frame containing
component names, initial values and boundary constraints. Initial values or
constraints in the list or data frame objects can then be set.

If a character string, then a file of that name is created and the data frame
object written out in comma separated form. This file can be edited ex-
ternally by a text editor or spreadsheet application and subsequently used
with the G.param or R.param arguments.

dump.model if TRUE, asreml exits prior to the fitting process and returns a list with all
components necessary for the fit. This argument would be used in conjunc-
tion with model in a simulation setting, for example, to avoid the overheads
of (repeatedly) interpreting the formulae objects.

model if this argument is not of mode logical, the object is assumed to have been
created by the dump.model argument and asreml will extract the necessary
components and perform the fit. The default is FALSE which implies normal
execution; TRUE generates an error.

control a list of iteration, algorithmic and parameter settings, including those re-
lated to spline knot points and known variance structures. See asreml.control()
for their names and default values. These can also be set as argument/value
pairs in the asreml call.

Details

Models for asreml are specified symbolically in formula objects fixed, random, sparse and
rcov. These objects are parsed in the context of the data frame, all internal objects required
by the REML routines are constructed and a call to the underlying C and Fortran routines is
generated. Variance models for terms in random are specified using “special” formula functions,
which if not specified, defaults to (scaled) identity. See the reference guide for details on special
model functions and their use. Some of these model functions require the formula arguments be
partially evaluated before the final model frame is computed; for this reason, it is recommended
that all names mentioned in the formulae be defined as variables in a data frame named by the
data argument.



7.2. asreml.control 73

If the response is a matrix, a multivariate linear model is fitted to the columns of the matrix.

The terms in the fixed formula will be re-ordered so that main effects come first, followed by
the interactions, all second-order, all third-order and so on; keep.order can be used to modify
this behaviour.

A formula has an implied intercept term. To remove this use ’y ∼ -1 + ...’ . This is only
effective in the fixed formula; in all other formula arguments any reference to the intercept is
ignored.

The subset argument, like the terms in formula, is evaluated in the context of the data frame.
The specific action of the subset argument is as follows: the model frame, including weights,
is computed on the rows of data after the appropriate subset is extracted.

Value

an object of class asreml representing the fit. Generic functions such as plot(), predict()

and summary() have methods to return various results of the fit. The functions resid(),

coef() and fitted() can be used to extract some of its components. See asreml.object for
the components of the fit.

Author(s)

David Butler

References

Gilmour, A. R., Thompson, R. and Cullis, B. R. (1995). AI, an efficient algorithm for REML
estimation in linear mixed models, Biometrics, 51, 1440-1450.

Smith, A. B., Cullis, B. R., Gilmour, A.R. and Thompson, R. (1998). Multiplicative models
for interaction in spatial mixed model analyses of Multi-Environment trial data, Proceedings of
the International Biometrics Conference, Capetown.

Verbyla, A. P., Cullis, B. R., Kenward, M. G. and Welham, S. J. (1999). The analysis of
designed experiments and longitudinal data using smoothing splines, Journal of the Royal
Statistical Society, Series C, 48, 269-311.

See Also

asreml.object summary.asreml wald.asreml plot.asreml predict.asreml variogram.asreml

tr.asreml svc.asreml asreml.man

Examples

dat <- data.frame(y=rnorm(20),x=seq(1,20))

ex.asr <- asreml(y ~ x, data=dat)

## The oats data

data(oats)

oats.asr <- asreml(yield ~ Variety*Nitrogen, random = ~ Blocks/Wplots, data=oats)

7.2 asreml.control
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asreml.control Set control parameters for asreml()

Description

Set various constants and additional arguments for asreml.

Usage

asreml.control(knots = 50, nsppoints = 21, splinepoints = list(),

predictpoints = list(), grid = TRUE, splinescale = -1,

spline.step = list(dev = 10000, pol = 10000),

pwrpoints = list(), ginverse = list(), mbf = list(),

group = list(), Cfixed = FALSE, Csparse = formula("~NULL"),

aom = FALSE, equate.levels = character(0), trace = TRUE,

maxiter = 13, stepsize = 0.1, workspace = 8e+06,

pworkspace = 8e+06, ...)

Arguments

knots default number of knot points for a spline. The number of knot points used
is min(unique( levels, knots)).

nsppoints influences the number of points used when predicting splines and polyno-
mials. The design matrix generated by the pol() and spl() functions are
modified to include extra rows used for prediction. The range of the data
is divided by n-1 to give a step size i. For each point p in the list, a predict
point is inserted at p+i if there is no data value in the interval [p, p+1.1i ].
nsppoints is ignored if splinepoints is set. This process also affects the
number of levels identified by dev().

splinepoints a list with named components where each component is a vector of user
supplied knot points for a particular spline and the component name is the
factor named in the spl() function.

predictpoints a list with named components where each component is a list (for two
dimensions) or vector (single dimension) of user supplied predict points for
spl(), pol(), dev(), power or Matern models. If a component of this list
is in turn a list of length 2 then the first vector is taken as the x coordinates
and the second as the y coordinates. The names of the components of the
predictpoints list must match exactly those used in the model functions.

grid a vector controlling the expansion of predictpoints lists for 2 dimensional
kriging. For a given term, the coordinates for prediction in 2 dimensions are
given as component vectors in a list argument within the predictpoints

tree. If TRUE (the default), the x and y coordinates are expanded to form
an (x,y) grid of all possible combinations, otherwise the x and y vectors
must be of equal length and are taken in parallel.

splinescale when forming a design matrix for a spl() term, a standardised scale

(splinescale = -1) is used. splinescale = 1 forces ASReml to use the
scale of the variable. The default is recommended in most cases.
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spline.step a list with components named dev and pol specifying the resolution for
spline deviations and polynomial functions respectively. The default is

list(dev=10000,pol=10000). Points closer together than

1/(group.step) of the range will be treated as a single point.

pwrpoints a named list with each component containing the vector of distances to be
used in a one-dimensional power model. The names of the components must
match the corresponding model term named in the model formula.

ginverse a named list with each component identifying a G-inverse matrix to include
in the analysis. Each matrix can be included in the analysis as:

1. a data frame of three columns containing the non-zero elements of the
lower triangle of the matrix. The first two columns of the data frame are the
row and column indices and must be named row and column, respectively.
This is the structure returned by ASReml.Ainverse().

2. a matrix object. Only the lower triangle is used and NAs are ignored.

3. the complete lower triangle in vector form stored row by row; NAs are
ignored.

in all cases every diagonal element must be present.

mbf a list specifying a set of covariates to be included with one or more mbf()

model functions. Each component of the list must in turn contain com-
ponents named key and dataFrame, where dataFrame is a character string
naming the data frame holding the covariates and key is a character vec-
tor of length 2 naming the columns in data and dataFrame to match the
records.

group a list object with named components where each component is a numeric
vector specifying contiguous fields in the data frame that are to be consid-
ered as a single term. The component names can then appear in asreml
model formulae.

Cfixed if TRUE then the part of the C-inverse matrix that is calculated is returned
in component Cfixed of the ASReml object. ASReml does not compute the
whole C-inverse matrix but only that which is sufficient to calculate the
REML solution.

Csparse if not NULL then a formula object nominating the terms in the sparse com-
ponent of the model for which available elements of C-inverse are required.
A data frame giving the row, column and non-zero element of C-inverse
for the nominated terms is returned in component Csparse of the ASReml

object.

aom if TRUE, invokes research results in progress on Alternate Outlier Models
and returns standardized conditional residuals and standardized conditional
BLUPs in the asreml object.

equate.levels a character vector of factor names whose levels are to be equated. If factor A
has levels a,b,c,d and factor B has levels a,b,c,e, the effect of equate.levels
is that both A and B have 5 levels and as.numeric(A) = 1,2,3,4 and
as.numeric(B) = 1,2,3,5. See the and model function in the asreml ref-
erence manual.

trace if TRUE then partial iteration details are displayed in the console. The
component monitor of the ASReml object is a data frame containing the full
convergence sequence. The tr method generates a graphical trace of each
parameter’s convergence sequence.

maxiter maximum number of iterations (default is 10).

stepsize update shrinkage factor. The step size actually used is sqrt(stepsize).

workspace size of workspace for the REML routines measured in double precision words
(groups of 8 bytes). The default is workspace=8e6 (or 64,000,000 bytes).

pworkspace size of workspace for prediction from the linear model measured in double
precision words (groups of 8 bytes). The default is workspace=8e6 (or
64,000,000 bytes).
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Details

The asreml.control() argument/value pairs can be given directly in an ASReml call. These
are then filtered through asreml.control() inside asreml().

Value

a list with components that correspond to each of the above arguments. See the control

argument of ASReml.

Author(s)

David Butler

See Also

asreml

7.3 The asreml object

asreml.object asreml object

Description

This class of object represents a fitted linear mixed model from the asreml() function. Ob-
jects of this class have methods for the generic functions wald(), coef(), fitted(), plot(),

predict(), residuals(), summary() and update.

Value

The following components must be included in a legitimate asreml object. The residuals, fitted
values and coefficients can be extracted by the generic functions of the same name, or by the
”\$” operator.

monitor a data frame of random components (rows) by iterations (columns) tracing
the convergence sequence.

loglik the loglikelihood at termination.

gammas a vector of nk variance parameter estimates from the fit.

gammas.con a vector identifying the boundary constraint applied to each variance pa-
rameter (Positive, Fixed, Unconstrained).

score the score vector of length number of random components.

coefficients a list with three components, fixed, random and sparse, where the first
is a vector containing the E-solutions to the mixed model equations corre-
sponding to the fixed effects in the dense part of the model formula, the
second is a vector containing the E-BLUPs of the random effects and the
third is a vector of E-solutions corresponding to the effects in the sparse

formula. The names of the coefficients are the same as those in the re-
spective formulae in the call to asreml() with factor levels appended and
separated by ”\ ”.
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vcoeff a list with three components, fixed, random and sparse, containing the
unscaled variances of the coefficients. The actual variances are calculated
as vcoeff*object$sigma2.

predictions a list object with components pvals, sed, vcov and avsed.

fitted.values a vector containing the fitted values from the model, obtained by transform-
ing the linear predictors by the inverse of the link function.

linear.predictors

the linear fit on link scale.

residuals a vector containing the residuals from the model.

hat the diagonal elements of the matrix WC−1W T , the so-called extended hat
matrix. This is the linear mixed effects model analogue ofX(XTX)−1XT

for ordinary linear models.

sigma2 the REML estimate of the scale parameter.

nedf the residual degrees of freedom, length(y)-rank(X).

ai the inverse average information matrix of the variance parameters. A vec-
tor of length nk(nk+1)/2 where nk = length(gammas)holding the lower
triangle row-wise.

Cfixed reflexive generalised inverse of the coefficient matrix of the mixed model
equations relating to the dense fixed effects (if Cfixed=TRUE, see asreml.control()).
The returned object is a vector containing the lower triangle row-wise of C-
inverse.

Csparse non-zero elements of the reflexive generalised inverse matrix of the coefficient
matrix for the sparse stored model terms nominated in the Csparse formula
(see asreml.control()). The returned object is a data frame giving the
row, column and non-zero element.

family family object, the result of a call to asreml.family.

call an image of the call that produced the object.

license a character string containing the license information. The string has em-
bedded new-line characters and is best formatted through cat().

G.param a list object containing the constraints and final estimates of the variance
parameters relating to G, the random part of the model. This object may
be used as the value of the G.param argument to provide initial parameter
estimates to asreml.

R.param a list object containing the constraints and final estimates of the variance
parameters relating toR, the error structure, including σ2. This object may
be used as the value of the R.param argument to provide initial parameter
estimates to asreml for the error component of the model.

See Also

asreml asreml.control

7.4 Methods and related functions

7.4.1 asreml.About

Description

Returns version details of the asreml functions and compiled code.
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Usage

asreml.About()

7.4.2 asreml.Ainverse

Description

Calculates an inverse relationship matrix in sparse form from a pedigree data frame.

Usage

asreml.Ainverse(pedigree, fgen = list(character(0), 0.01),

gender = character(0), groups = 0, groupOffset = 0,

selfing = NA, inBreed = NA, mgs = FALSE,

mv = c("NA", "0", "*"))

Arguments

pedigree a data frame with (at least) three columns that correspond to the individual,
male parent and female parent, respectively. The row giving the pedigree
of an individual must appear before any row where that individual appears
as a parent. Founders use 0 (zero) or NA in the parental columns.

fgen an optional list of length 2 where fgen[[1]] is a character string naming
the column in pedigree that contains the level of selfing or the level of
inbreeding of an individual. In pedigree[,fgen[[1]]], 0 indicates a simple
cross, 1 indicates selfed once, 2 indicates selfed twice, etc. A value between
0 and 1 for a base individual is taken as its inbreeding value. If the pedigree
has implicit individuals (they appear as parents but not as individuals), they
will be assumed base non-inbred individuals unless their inbreeding level is
set with fgen[[2]] where 0 < fgen[[2]] < 1 is the inbreeding level of such
individuals.

gender an optional character string naming the column of pedigree that codes for
the gender of an individual. pedigree[, gender] is coerced to a factor and
must only have two (arbitrary) levels, the first of which is taken to mean
”male”. An inverse relationship matrix is formed for the X chromosome as
described by Fernando and Grossman (1990) for species where the male is
XY and the female is XX.

groups includes genetic groups in the pedigree. The first g lines of the pedigree iden-
tify genetic groups (with zero in both the male and female parent columns).
All other rows must specify one of the genetic groups as sire or dam if the
actual parent is unknown.

groupOffset Describe groupOffset here

selfing allows for partial selfing when the third field of pedigree is unknown. It
indicates that progeny from a cross where the male parent is unknown is
assumed to be from selfing with probability s and from outcrossing with
probability (1-s). This is appropriate in some forestry tree breeding studies
where seed collected from a tree may have been pollinated by the mother
tree or pollinated by some other tree (Dutkowski and Gilmour, 2001). Do
not use the selfing argument in conjunction with inBreed or mgs.

inBreed the inbreeding coefficient for base individuals. This argument generates the
numerator relationship matrix for inbred lines. Each cross is assumed to be
selfed several times to stabilize as an inbred line as is usual for cereal crops,
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for example, before being evaluated or crossed with another line. Since
inbreeding is usually associated with strong selection, it is not obvious that
a pedigree assumption of covariance of 0.5 between parent and offspring
actually holds. The inBreed argument cannot be used in conjunction with
selfing or mgs.

mgs if TRUE, the third identity in the pedigree is the male parent of the female
parent (maternal grand-sire) rather than the female parent.

mv missing value indicator; elements of prdigree that exactly match mv are
treated as missing.

Details

asreml.Ainverse uses the method of Meuwissen and Luo (1992) to compute the inverse rela-
tionship matrix directly from the pedigree.

Value

a list with the following components:

ginv a data frame with 3 columns holding the lower triangle of the inverse rela-
tionship matrix in sparse form. The first 2 columns are the row and column
indices of the matrix element, respectively, and the third column holds the
(inverse) matrix element itself. Sort order is columns within rows, that is,
the lower triangle row-wise. This data frame has an attribute rowNames

containing the vector of identifiers for the rows matrix.

inbreeding the inbreeding coefficient for each individual, calculated as diag(A-I).

det the log determinant.

References

Fernando, R. and Grossman, M. (1990). Genetic evaluation with autosomal and x-chromosomal
inheritance, Theoretical and Applied Genetics, 80, 75-80.

Meuwissen, T. H. E., and Luo, Z. (1992) Computing inbreeding coefficients in large populations.
Genetics Selection Evolution, 24, 305-313.

7.4.3 asreml.asUnivariate

Description

creates a univariate data frame from a multivariate style data frame.

Usage

asreml.asUnivariate(stack, data, response = "y",

traitName = "Trait", traitsWithinUnits = TRUE)
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Arguments

stack a character or numeric vector specifying the columns in the multivariate
data frame to be stacked, that is, the equivalent to an rbind(); the remain-
ing columns are replicated. Typically, the columns to be stacked would be
a series of repeated response variates from a set of subjects.

data the multivariate data frame.

response a character string naming the column resulting from the stack operation;
default is "y".

traitName a character string naming the column in the output data frame that contains
the (replicated) names of the variates in the stack argument; default is
"Trait".

traitsWithinUnits

a logical response that determines the sort order of the returned data frame.
If TRUE (the default), the returned object is sorted as traits, that is, the
column identified by traitName, within units, where units is defined as
seq(1,nrow(data)). If FALSE, the order is units within traitName.

Details

Data frames with multivariate responses are typically arranged with a separate column for
each multivariate response. In some circumstances it may be necessary to restructure the data
into a univariate style, where the individual responses are arranged in a single column and an
appropriate identifying column added.

Value

a data frame with the columns identified in stack concatenated into a single variate named by
response, a column traitName identifying the (original) response of each observation added
and the remaining columns in the input data frame replicated to length. The data frame is
sorted according to traitsWithinUnits.

7.4.4 asreml.constraints

Description

Return a constraints matrix that sets variance parameter constraints for asreml.

Usage

asreml.constraints(form, gammas, drop.unused.levels = TRUE,

intercept = FALSE, na.action = na.include)

Arguments

formula a model formula including at least one factor of length nc, where nc is the
number of variance parameters to be considered in the constrained set, the
levels of which are taken from κ, the full vector of variance parameters, and
the number of distinct levels is less than nc.

data a data frame in which to resolve the names in formula.
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Details

Variance parameter constraints are specified through a design matrix M from a simple linear
model. Let κ be the nk vector of unconstrained variance parameters and T be a nk × nc

imposing the linear constraints T Tκ = s. This is equivalent to κ =Mθ +Es where θ is the nc

vector of constrained parameters.

The matrix M is given as the value to the constraints argument of asreml. M must have a
dimnames attribute with the names of κ as its row names.

A data frame containing a factor, Gamma, whose levels are the nk names of the variance param-
eters is returned by asreml when start.values=TRUE. The matrix M is obtained from a call
to model.matrix using formula and factors derived from or interacting with Gamma.

Value

A nk × nc matrix M specifying the variance parameter constraints, where nc is the length
of the reduced vector of variance components. In the simplest case, for example, where two
parameters are constrained to be equal, nc = nk − 1 and the appropriate column of M will
contain ones in the rows corresponding to the parameters in question and zeros elsewhere.

References

Smith, A.B. (1999), Multiplicative Mixed Models, PhD thesis, Department of Statistics, Uni-
versity of Adelaide.

7.4.5 asreml.man

Description

display the asreml reference guide in PDF form.

Usage

asreml.man(browser = "acroread")

Arguments

browser not used on Windows systems. On UNIX systems, sets the appropriate PDF
file viewer.

7.4.6 asreml.read.table

Description

Reads in a file in table format and creates a data frame with the same number of rows as there
are lines in the file, and the same number of variables as there are fields in the file. Variables

whose names begin with a capital letter are converted to factors

Usage

asreml.read.table(...)
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Arguments

... arguments are as for read.table(). One of header or col.names must be
specified to name the variables.

Details

asreml.read.table checks if header or col.names is set and calls read.table. Any variable in
the resulting dataframe from read.table that is not a factor and begins with a capital letter
is converted to a factor.

Value

a data frame with as many rows as the file has lines (or one less if header=T) and as many
variables as the file has fields (or one less if one variable was used for row names). Fields are
initially read in as character data. If all the items in a field are numeric, the corresponding
variable is numeric, subject to the field naming convention below. Otherwise, it is a factor
(unordered), except as controlled by the as.is argument to read.table(). All lines must
have the same number of fields (except the header, which can have one less if the first field is to
be used for row names). Fields whose name begins with a capital letter are converted

to factors.

7.4.7 asreml.variogram

Description

Calculates the empirical variogram from regular or irregular two dimensional data.

Usage

asreml.variogram(x, y, z, composite = TRUE, model = c("empirical"),

metric = c("euclidean", "manhattan"), angle = 0,

angle.tol = 180, nlag = 20, maxdist = 0.5,

xlag = NA, lag.tol = 0.5, grid = TRUE)

Arguments

x numeric vector of x coordinates, may also be a matrix or data frame with
2 or 3 columns. If ncol(x) is 3, the columns are taken to be the x and y
corrdinates and the response (z), respectively. If ncol(x) is 2, the columns
are taken to be the x coordinates and the response, respectively. In this
case the y coordinates are generated as rep(1,nrow(x)).

y numeric vector of y coordinates.

z response vector.

composite for data on a regular grid. If TRUE, the average of the variograms in
quadrants (x,y) and (x,-y) is returned. Otherwise, both variograms are
returned and identified as quadrants 1 and 4.

model can only be ”empirical” at present

metric distance between (x,y) points. Valid measures are "euclidean" or "manhattan".

angle a vector of directions. Angles are measured in degrees anticlockwise from
the x axis. Default is 0.
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angle.tol the angle subtended by each direction. That is, an arc angle +- angle.tol/2.
Default is 180 which gives an omnidirectional variogram.

nlag the maximum number of lags. Default is 20.

maxdist the fraction of the maximum distance to include in the calculation. The
default is half the maximum distance in the data.

xlag the width of the lags. If missing, xlag is set to maxdist/nlag.

lag.tol the distance tolerance. If missing, lag.tol is set to xlag/2.

grid if FALSE, forces polar variograms if (x,y) specifies a regular grid.

Details

For one dimensional data the y coordinates need not be supplied and a vector of ones is
generated. The function identifies data on a complete regular array and in such cases only
computes polar variograms If grid = FALSE. The data is assumed sorted with the x coordinates
changing the fastest; the data is sorted internally if this is not the case.

Value

a data frame including the following components:

x the original x coordinates.

y the original y coordinates.

gamma the variogram estimate.

distance the average distance for pairs in the lag.

np the number of pairs in the lag.

angle direction if not a regular grid.

References

Webster, W. and Oliver, M.A.(2001) Geostatistics for Environmental Scientists, John Wiley:
West Sussex.

7.4.8 coef.asreml

Description

This is a method for the function coef() for objects inheriting from class asreml. See coef()

for the general behavior of this function.

Usage

coef.asreml(object, list = FALSE, pattern = character(0))

Arguments

object an asreml object

list if TRUE, the coefficients are returned in a named list of length the number
of terms in the model.

pattern an interaction term in the model, that is a character string of variable names
separated by “:”, designed to extract a subset of coefficients for that term
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Value

If neither pattern or list is set, then a list of length 3 with the following components:

fixed E-solutions to the mixed model equations for the fixed (dense) terms.

random E-BLUPs for the effects in the random model.

sparse E-solutions to the mixed model equations for the fixed sparse-stored terms.

If list=TRUE, a list object where each component corresponds to a term in the model and is a
single column matrix with a dimnames attribute; othwerwise a single column matrix of effects
as specified by pattern.

7.4.9 fitted.asreml

Description

Extracts fitted values from asreml objects.

Usage

fitted.asreml(object, type = c("response", "link"))

Arguments

object an asreml object.

type if "link", the linear fit on the link scale, otherwise, if "response", the fitted
values obtained by transforming the linear predictors by the inverse of the
link function.

Value

The vector of fitted values.

7.4.10 plot.asreml

Description

A method for the generic function plot() for objects inheriting from class asreml.

Usage

plot.asreml(object, formula = ~NULL, fun = NULL, spatial = "plot",

npanels = NA, ...)
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Arguments

object An object inheriting from class asreml.

formula an optional formula specifying the form of a Trellis plot, where the trellis
function to be used is given by the fun argument. This overrides the default
plot behaviour. Variables in the original data frame can be referenced in the
formula and the object itself can be referenced by ”.”, allowing extractor
functions like resid and fitted to be used.

fun a character string naming a Trellis or user defined function to be used with
the formula argument. Required if formula is specified.

spatial If "plot" and an independent error has been fitted with units in the random
formula, these are added to the residuals, otherwise if "trend" then units

are not added even if present in the model.

npanels an integer specifying the maximum number of panels per page. If NA then
a suitable default is determined.

... graphical parameters, typically title information, can be supplied to plot.asreml().

Details

By default, four plots are currently generated: a histogram of the residuals, a Normal Q-Q
plot, a plot of residuals against fitted values and a plot of residuals against unit number. If the
residual structure of the model contains multiple sections, the default plots are conditioned on
the factor whose levels define the sections. For multivariate analyses, the plots are conditioned
on trait.

Value

An invisible list of trellis graph objects. The default behaviour uses print.trellis to position
the four plots on the screen

7.4.11 plot.asrVariogram

Description

A Trellis plot of an asrVariogram object using either xyplot or wireframe.

Usage

plot.asrVariogram(obj, npanels = NA, scale = TRUE, ...)

Arguments

obj an asrVariogram object from variogram.asreml.

npanels an optional number of panels per page in multi-panel plots; if NA then a
suitable default is determined.

scale if TRUE and a multi-panel plot, the ordinate for each group is scaled relative
to its maximum.

... graphical parameters can be passed to the Trellis functions.
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Value

An invisible Trellis object.

7.4.12 predict.asreml

Description

A method for the generic function predict for objects of class asreml. Forms a linear function
of the vector of fixed and random effects in the linear model to obtain an estimated or predicted
value.

Usage

predict.asreml(object = NULL, classify = character(0), levels = list(),

present = list(), ignore = character(0),

use = character(0), except = character(0),

only = character(0), associate = formula("~NULL"),

average = list(), vcov = logical(0), sed = logical(0),

parallel = logical(0), aliased = logical(0), ...)

Arguments

object an asreml object.

classify a character string giving the variables that define the margins of the mul-
tiway table to be predicted. Multiway tables are specified by forming an
interaction type term from the classifying variables, that is, separating the
variable names with the ”:” operator.

levels a list, named by the margins of the classifying table, of vectors specifying the
levels at which predictions are required. If omitted, factors are predicted
at each level, simple covariates are predicted at their overall mean and
covariates used as a basis for splines or orthogonal polynomials are predicted
at their design points. Additional prediction points for spline terms should
be included in the design matrix with the splinepoints argument (see
asreml.control) and included in the predict set with the predictpoints

argument. The factors mv and units are always ignored.

present a character vector specifying which variables to include in the present av-
eraging set. The present set is used when averaging is to be based only on
cells with data. The present set may include variables in the classify set
but not those in the average set.

If a list, there can be a maximum of two components, each a character vec-
tor of variable names, representing non-overlapping present categorisations
and one optional component named prwts containing a vector of weights to
be used for averaging the first present table only. The vector(s) of names
may include variables in the classify set but not those in the average set.

ignore a character vector specifying which variables to ignore in the prediction
process.

use a character vector specifying which variables to add to the prediction model
after the default rules have been invoked.

except a character vector specifying which variables to exclude in the prediction
process. That is, the prediction model includes all fitted model terms not
in the except list.



7.4. Methods and related functions 87

only a character vector specifying which variables form the prediction model,
that is, the default rules are not invoked.

associate a formula object specifying terms in up to two independent nested hier-
archies. The factors in each hierarchy are written as a compound term
separated by the ":" operator and in left-to-right outer to inner nesting
order. Nested hierarchies are separated by the "+" operator; only one "+"

operator is currently permitted, giving a maximum of two associate lists.

average a list, named by the margins of the classifying table, specifying which vari-
ables to include in the averaging set. Optionally, each component of the
list is a vector specifying the weights to use in the averaging process. If
omitted, equal weights are used.

vcov if TRUE, the full variance matrix of the predicted values is returned in a
component vcov. Default is FALSE.

sed if TRUE, the full standard error of difference matrix of the predicted values
is returned in a component sed. Default is FALSE.

parallel a list specifying those variables whose levels are to be expanded in parallel.
Each component of the list is a vector specifying the levels in full, and all
vectors must be of equal length.

aliased if TRUE, the predicted values are returned for non-estimable functions.
Default is FALSE.

... other arguments to asreml can be given.

Details

The prediction process forms a linear function of the vector of fixed and random effects in the
linear model to obtain an estimated or predicted value for a quantity of interest. It is primarily
used for predicting tables of adjusted means. If the table is based on a subset of the explanatory
variables then the other variables need to be accounted for. It is usual to form a predicted
value either at specified values of the remaining variables, or averaging over them in some way.

Prediction equations are formed just prior to the final iteration in asreml. The process is
basically: predict.asreml passes a list of the user specifications to the predict argument of
asreml; structures required to construct the prediction design matrix are passed to the REML
routines; predicted values and standard errors are returned in a component predictions of the
asreml object. predict.asreml calls update.asreml to run the model from its final solution
and set the predict argument of asreml.

Value

A list named predictions with the following components is included in the asreml object:

pvals a dataframe of predicted values.

sed optional matrix of standard errors of difference.

vcov optional matrix of variances of predicted values.

avsed summary standard error of difference.

References

Welham, S. J., Cullis, B. R., Gogel, B. J., Gilmour, A. R. and Thompson, R. (2004) Prediction
in linear mixed models, Australian and New Zealand Journal of Statistics, 46, 325-347.
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7.4.13 residuals.asreml

Description

This is a method for the function residuals for objects inheriting from class asreml. See
resid() for the general behavior of this function.

Usage

residuals.asreml(object, type = c("stdCond", "working", "deviance",

"pearson", "response"),

spatial = c("trend", "plot"))

Arguments

object an asreml object

type type of residuals, with choices "stdCond","working","deviance", "pearson",

"working" or "response"; "stdCond" is the default if aom = TRUE is given
in the asreml call, else "deviance" residuals are returned unless specified
otherwise.

spatial if a second independent error term has been fitted by including units in
the random formula, the residuals will have the units BLUPs added if
spatial = "plot".

Value

the vector of residuals.

7.4.14 summary.asreml

Description

A method for the generic function summary for objects inheriting from class asreml.

Usage

summary.asreml(object, nice = FALSE, all = FALSE)

Arguments

object an asreml object

nice if TRUE, vectors of variance parameters in lower triangular order for het-
erogeneous variance models are converted to full matrix form.

all if TRUE, coefficients from the fixed, random and absorbed factors (sparse),
and information on the error distribution are included in the returned ob-
ject.
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Value

an object of class summary.asreml with the following components:

call the component from object.

loglik the component from object.

nedf the component from object.

sigma sqrt(object$sigma2).

varcomp a dataframe summarising the variance parameter vector (object$gammas).
Variance component ratios are converted to components when appropriate
and a measure of precision is presented along with constraints (either as set
by the user or enforced by asreml.

nice a list object with a component for each random term giving a nice form
of the fitted variance model. Vectors are returned as is and matrices are
converted to full form. For ante and chol models, the parameters are
returned in varcomp and nice converts this to variance-covariance form.

Cfixed if Cfixed=TRUE is specified on the call to asreml, the matrix partition of
C-inverse for the fixed (dense) component of the model.

coef.fixed a numeric matrix of E-solutions to the mixed model equations for fixed
(dense) effects and their standard errors.

coef.random a numeric matrix of E-BLUPs and standard errors for effects in the randoml
model.

coef.sparse a numeric matrix of E-solutions to the mixed model equations for fixed
(sparse) effects and their standard errors.

distribution a character string giving the error distribution.

link a character string giving the link function

deviance the component from object

heterogeneity variance heterogeneity = deviance/nedf.

7.4.15 svc.asreml

Description

A method to compute the approximate stratum variances for simple variance component mod-
els.

Usage

svc.asreml(object, order = "user")

Arguments

object an object of class asreml

order the sequence in which to consider the random terms: may be one of ”user”,
”R” or ”noef” for the order as specified in the random model formula, the
order as determined by terms(random,keep.order=FALSE) or ordered by
increasing number of effects, respectively.
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Details

Approximate stratum variances and degrees of freedom for simple variance components models
are returned. For the linear mixed-effects model, it is often possible to consider a natural
ordering of the variance component parameters, including the residual. Based on an idea due
to Thompson (1980), asreml computes approximate stratum degrees of freedom and stratum
variances by a modified Cholesky diagonalisation of the average information matrix.

Value

A matrix of approximate stratum variances, degrees of freedom and component coefficients.

References

Thompson, R. (1980). Maximum likelihood estimation of variance components, Math. Opera-
tionsforsch Statistics, 11, 545-561.

7.4.16 tr.asreml

Description

Plots the updated values of nominated components from an asreml convergence sequence.

Usage

tr.asreml(obj, gammas = seq(along = obj$gammas),

iter = seq(1,length(obj$monitor) - 1), loglik = FALSE,

S2 = FALSE, Rvariance = FALSE)

Arguments

obj an asreml object.

gammas An optional integer vector of which components to include in the plots.

iter An optional integer vector of iteration numbers to include.

loglik If TRUE, include the loglikelihood.

S2 If TRUE, plot the residual variance ratio.

Rvariance If TRUE, plot the residual variance component.

Details

tr extracts the monitor component from the object and plots a trace of the nominated com-
ponents for the nominated iterations. Note that for some models the residual scale parameter
may be a ratio constrained to 1.0 while for others it may be on the component scale.

7.4.17 update.asreml

Description

update extracts the call from the fitted object and evaluates that call, replacing any arguments
with changed values. In particular, G.param and R.param are automatically replaced with those
stored in the object.
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Usage

update.asreml(object, fixed., random., sparse., rcov., ...,

evaluate = TRUE)

Arguments

object a valid asreml object with a component named call, the expression used
to create itself.

fixed. changes to the fixed formula. This is a two sided formula where "." is sub-
stituted for existing components in the fixed component of object$call.

random. changes to the random formula. This is a one sided formula where "." is
substituted for existing components in the right hand side of the random

component of object$call.

sparse. changes to the sparse formula. This is a one sided formula where "." is
substituted for existing components in the right hand side of the sparse

component of object$call.

rcov. changes to the error formula. This is a one sided formula where "." is substi-
tuted for existing components in the right hand side of the rcov component
of object$call.

... additional arguments to the call, or arguments with changed values.

evaluate if TRUE (the default) the new call is evaluated; otherwise the call is returned
as an unevaluated expression.

Details

In addition to any other changes, update.asreml replaces the arguments R.param and G.param

with object$R.param and object$G.param, respectively, creating a new fitted object using the
values from a previous model as starting values.

Value

either a new updated asreml object, or else an unevaluated expression for creating such an
object.

Warning

If a call to asreml.control exists as the value of the control argument in object$call, the
control argument (and consequently the call to asreml.control) must be given in full in the
call to update.asreml if existing arguments to asreml.control are to be changed or new ones
added.

7.4.18 variogram.asreml

Description

A method to calculate the empirical variogram from an asreml object.
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Usage

variogram.asreml(object, formula = ~NULL, composite = TRUE,

model=c("empirical"), metric = c("euclidean",

"manhattan"), angle = 0, angle.tol = 180, nlag = 20,

maxdist = 0.5, xlag = NA, lag.tol = 0.5, grid = TRUE)

Arguments

object an object of class asreml

formula an optional model formula designed to extract ”residuals” from the random
(G) component of the model rather than the residual (R) component. This
is a two sided formula where the response is a pattern in the style required
by the pattern argument of coef.asreml.

composite the argument to asreml.variogram

model the argument to asreml.variogram

metric the argument to asreml.variogram

angle the argument to asreml.variogram

angle.tol the argument to asreml.variogram

nlag the argument to asreml.variogram

maxdist the argument to asreml.variogram

xlag the argument to asreml.variogram

lag.tol the argument to asreml.variogram

grid the argument to asreml.variogram

Details

Calls asreml.variogram to calculate the empirical semi-variogram.

Value

An object of class asrVariogram that includes all components returned from asreml.variogram

plus the following:

group A character vector identifying any grouping structure, for example, that
which would arise as a result of fitting independent error sections in asreml.

names A list with components x, y and groups, each of which is a character string
identifying the associated component of the dataframe.

7.4.19 wald.asreml
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wald.asreml Wald tests for Asreml Models

Description

Compute either an incremental pseudo analysis of variance table using Wald statistics or con-
ditional F-tests that respect marginality.

Usage

wald.asreml(object, Ftest = formula("~NULL"),

denDF = ("none", "default", "numeric", "algebraic"),

ssType = c("incremental", "conditional"), ...)

Arguments

object an asreml object.

Ftest a formula object of the form ~ test-term | background-terms specifying
a conditional Wald test of the contribution of test-term conditional on
those listed in background-terms, and the those in the random and sparse

model formulae.

denDF compute approximate denominator degrees of freedom. Can be "none", the
default, to suppress the computations, "numeric" for numerical methods,
"algebraic" for algebraic methods or "default" to autommatically choose
numeric or algebraic computations depending on problem size. The denom-
inator degrees of freedom are calculated according to Kenward and Roger
(1997) for fixed terms in the dense part of the model.

ssType can be "incremental" for incremental sum of squares, the default, or "conditional"
for F-tests that respect both structural and intrinsic marginality.

... arguments to asreml can be passed through update.asreml if ssType is not
”incremental”.

Details

wald.asreml() produces two styles of analysis of variance table depending on the settings of
denDF and ssType. If denDF = "none" and ssType = "incremental" (the defaults), a pseudo
analysis of variance table is returned based on incremental sums of squares with rows corre-
sponding to each of the fixed terms in the object, plus an additional row for the residual. The
model sum of squares is partitioned into its fixed term components, and the sum of squares
for each term listed in the table of Wald statistics is adjusted for the terms listed in the rows
above. The denominator degrees of freedom are not computed and consequently Wald tests
are provided.

If either denDF or ssType are not set at their default values, a data frame is returned that
will include columns for the approximate denominator degrees of freedom and incremental and
conditional F statistics depending on the combination of options chosen. update.asreml is
called to complete the calculations.

The principle used in determining the conditional tests is that a term cannot be adjusted for
another term which encompasses it explicitly (for example, A:C cannot be adjusted for A:B:C)
or implicitly (for example, REGION cannot be adjusted for LOCATION when locations are
nested in regions although coded independently). Users should consult the Users Guide for
further information.
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The numerator degrees of freedom for each term is determinaed as the number of non-singular
equations involved in the term. However, the calculation of the denominator df is in general
not trivial and is computationally expensive. Numerical derivatives require an extra evalu-
ation of the mixed model equations for every variance parameter while algebraic derivatives
require a large dense matrix, potentially of order the number of equations plus the number of
observations. The calculations are supressed by default.

Value

A list with the following components:

wald an anova object if denDF = none and ssType = "incremental", or a data
frame otherwise.

stratumVariances

If denDF is not "none", a matrix of approximate stratum variances, de-
grees of freedom and component coefficients is returned for simple variance
component models.

Author(s)

David Butler

References

Kenward, M.G. and Roger, J.H. (1997). The precision of fixed effects estimates from restricted
maximum likelihood, Biometrics, 53, 983-997.

See Also

svc.asreml

Examples

data(oats, package="asreml")

oats.asr <- asreml(yield ~ Variety*Nitrogen,

random = ~ Blocks/Wplots, data=oats)

wald(oats.asr)

wald(oats.asr, denDF="default")



8
Examples

8.1 Introduction

This section considers the analysis of several examples to illustrate the capabilities of asreml() in
the context of analysing real data-sets. We discuss some of the components returned from asreml()
and indicate when potential problems may occur. Statistical concepts and issues are discussed as
necessary but we stress that the analyses are only illustrative.

8.2 Split Plot Design

The first example is the analysis of a split plot design originally presented by Yates [1935]. The
experiment was conducted to assess the effects on yield of three oat varieties (Golden Rain, Mar-
vellous and Victory) with four levels of nitrogen application (0, 0.2, 0.4 and 0.6 cwt/acre). The
field layout consisted of six blocks (labelled I, II, III, IV, V and VI) with three whole-plots per block
each split into four sub-plots. The three varieties were randomly allocated to the three whole-plots
while the four levels of nitrogen application were randomly assigned to the four sub-plots within
each whole-plot. The data is in Table 8.1.

Table 8.1: A split-plot field trial of oat varieties and nitrogen application

Nitrogen
Block Variety 0.0cwt 0.2cwt 0.4cwt 0.6cwt

GR 111 130 157 174
I M 117 114 161 141

V 105 140 118 156
GR 61 91 97 100

II M 70 108 126 149
V 96 124 121 144
GR 68 64 112 86

III M 60 102 89 96
V 89 129 132 124
GR 74 89 81 122

IV M 64 103 132 133
V 70 89 104 117
GR 62 90 100 116

V M 80 82 94 126
V 63 70 109 99
GR 53 74 118 113

VI M 89 82 86 104
V 97 99 119 121

A standard analysis of these data recognises the two basic elements inherent in the experiment:

1. the stratification of the experiment units, that is the blocks, whole-plots and sub-plots, and

95
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2. the treatment structure that is superimposed on the experimental material.

The latter is of prime interest in the presence of stratification. The aim of the analysis is to
examine the importance of the treatment effects while accounting for the stratification and restricted
randomisation of the treatments to the experimental units.

The function calls to initially create a data frame and perform the standard split-plot analysis in
asreml() are given below. The variate/factor names are specified in the header line of oats.txt,
with factor names beginning with a capital letter. The function asreml.read.table() recognises
this convention and automatically creates the factors in the data frame.

> oats <- asreml.read.table(”oats.asd”,header=T)
> oats.asr <- asreml(fixed = yield ∼ Variety+Nitrogen+Variety:Nitrogen,
+ random = ∼ Blocks + Blocks:Wplots, data = oats)

The fields in the oats data frame are:

> names(oats)

[1] "Blocks" "Nitrogen" "Subplots" "Variety" "Wplots" "yield"}

The first five are factors describing the stratification, or experiment design, and applied treatments.
The standard split plot analysis is achieved by fitting terms Blocks and Blocks:Wplots as random
effects. It is not necessary to specify the residual term, which is equivalent to Blocks:Wplots:Subplots,
as the experimental units are uniquely defined by these three factors. The fixed effects include the
main effects of both Variety and Nitrogen and their interaction.

The variance components are:

> summary(oats.asr)$varcomp

gamma component std.error z.ratio constraint

Blocks 1.2111646 214.4808 168.78653 1.270722 Positive

Blocks:Wplots 0.5989373 106.0637 67.87730 1.562579 Positive

R!variance 1.0000000 177.0864 37.33342 4.743375 Positive

For simple variance component models such as the above, the default parameterisation for the
variance parameters is as the ratio to the residual variance. Thus asreml() returns the gamma and
component values for each term in the random model, which are the variance ratio and component,
respectively.

The default synopsis for testing fixed effects in asreml() is a table of incremental Wald tests (see
Section 3.14):

> wald(oats.asr)

Wald tests for fixed effects

Response: yield

Terms added sequentially; adjusted for those above

Df Sum of Sq Wald statistic Pr(Chisq)

(Intercept) 1 43419 245 <2e-16 ***

Variety 2 526 3 0.2264

Nitrogen 3 20020 113 <2e-16 ***

Variety:Nitrogen 6 322 2 0.9357

residual (MS) 177

In this example there are four terms included in the summary. The overall mean (Intercept)

is included though it is of no interest for these data. The tests are sequential, that is the effect
of each term is assessed by the change in sums of squares achieved by adding the term to the
current model, given those terms appearing above the current term are already included. For
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example, the effect of Nitrogen is assessed by calculating the change in sums of squares for the
two models (Intercept)+Variety+Nitrogen and (Intercept)+Variety. No refitting occurs, that
is the variance parameters are held constant at the REML estimates obtained from the currently
specified fixed model.

The usual ANOVA divides into three strata, with treatment effects separating into different strata
as a consequence of the balanced design and the confounding of main effects of Variety with whole-
plots. It is straightforward to derive the ANOVA estimates of the stratum variances from the above
REML estimates. That is,

blocks = 12σ̃2
b + 4σ̃2

w + σ̃2 = 3175.1

blocks.wplots = 4σ̃2
w + σ̃2 = 601.3

residual = σ̃2 = 177.1

The incremental Wald tests have an asymptotic χ2 distribution, with degrees of freedom (df) given
by the number of estimable effects (the number in the df column). The denominator degrees of
freedom for testing fixed effects and approximate stratumm variances are returned by:

> wald(oats.asr, denDF="default")

$WaldTests

Df denDF F inc Pr

(Intercept) 1 5 245.1000 0.000000e+00

Variety 2 10 1.4850 2.723869e-01

Nitrogen 3 45 37.6900 4.034452e-08

Variety:Nitrogen 6 45 0.3028 9.321988e-01

$stratumVariances

df Variance Blocks Blocks:Wplots R!variance

Blocks 5 3175.0556 12 4 1

Blocks:Wplots 10 601.3306 0 4 1

R!variance 45 177.0833 0 0 1

This is a simple problem for balanced designs, such as the split plot design, but it is not straight-
forward to determine the relevant denominator df in unbalanced designs, such as the rat data set
described in the next section.

Tables of predicted means for the Variety, Nitrogen and Variety:Nitrogen effects can be obtained
from the predict method:

> oats.pv <- predict(oats.asr,classify=list(”Nitrogen”,”Variety”,”Variety:Nitrogen”),
+ sed=list(”Variety:Nitrogen”=T))

This returns the usual asreml object in oats.pv with an additional component named predictions

that has components for the predicted means for each member of the classify list as well as the full
matrix of SEDs for the Variety:Nitrogen table.

> oats.pv$predictions

$Nitrogen

$Nitrogen$pvals

Notes:

- Variety is averaged over fixed levels

- Blocks terms are ignored unless specifically included

- Wplots terms are ignored unless specifically included

- The cells of the hypertable are calculated from all model terms constructed

solely from factors in the averaging and classify sets.
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Nitrogen predicted.value standard.error est.status

1 0.2_cwt 98.88889 7.17471 Estimable

2 0.4_cwt 114.22222 7.17471 Estimable

3 0.6_cwt 123.38889 7.17471 Estimable

4 0_cwt 79.38889 7.17471 Estimable

$Nitrogen$avsed

[1] 4.435755

$Variety

$Variety$pvals

Notes:

- Nitrogen is averaged over fixed levels

- Blocks terms are ignored unless specifically included

- Wplots terms are ignored unless specifically included

- The cells of the hypertable are calculated from all model terms constructed

solely from factors in the averaging and classify sets.

Variety predicted.value standard.error est.status

1 Golden_rain 104.5000 7.797539 Estimable

2 Marvellous 109.7917 7.797539 Estimable

3 Victory 97.6250 7.797539 Estimable

$Variety$avsed

[1] 7.078904

$`Variety:Nitrogen`

$`Variety:Nitrogen`$pvals

Notes:

Variety Nitrogen predicted.value standard.error est.status

1 Golden_rain 0.2_cwt 98.50000 9.106977 Estimable

2 Golden_rain 0.4_cwt 114.66667 9.106977 Estimable

3 Golden_rain 0.6_cwt 124.83333 9.106977 Estimable

4 Golden_rain 0_cwt 80.00000 9.106977 Estimable

5 Marvellous 0.2_cwt 108.50000 9.106977 Estimable

6 Marvellous 0.4_cwt 117.16667 9.106977 Estimable

7 Marvellous 0.6_cwt 126.83333 9.106977 Estimable

8 Marvellous 0_cwt 86.66667 9.106977 Estimable

9 Victory 0.2_cwt 89.66667 9.106977 Estimable

10 Victory 0.4_cwt 110.83333 9.106977 Estimable

11 Victory 0.6_cwt 118.50000 9.106977 Estimable

12 Victory 0_cwt 71.50000 9.106977 Estimable

$`Variety:Nitrogen`$sed

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

[1,] NA 7.682954 7.682954 7.682954 9.715025 9.715025 9.715025 9.715025

[2,] 7.682954 NA 7.682954 7.682954 9.715025 9.715025 9.715025 9.715025

[3,] 7.682954 7.682954 NA 7.682954 9.715025 9.715025 9.715025 9.715025

[4,] 7.682954 7.682954 7.682954 NA 9.715025 9.715025 9.715025 9.715025

[5,] 9.715025 9.715025 9.715025 9.715025 NA 7.682954 7.682954 7.682954

[6,] 9.715025 9.715025 9.715025 9.715025 7.682954 NA 7.682954 7.682954

[7,] 9.715025 9.715025 9.715025 9.715025 7.682954 7.682954 NA 7.682954

[8,] 9.715025 9.715025 9.715025 9.715025 7.682954 7.682954 7.682954 NA



8.3. Unbalanced nested design 99

[9,] 9.715025 9.715025 9.715025 9.715025 9.715025 9.715025 9.715025 9.715025

[10,] 9.715025 9.715025 9.715025 9.715025 9.715025 9.715025 9.715025 9.715025

[11,] 9.715025 9.715025 9.715025 9.715025 9.715025 9.715025 9.715025 9.715025

[12,] 9.715025 9.715025 9.715025 9.715025 9.715025 9.715025 9.715025 9.715025

[,9] [,10] [,11] [,12]

[1,] 9.715025 9.715025 9.715025 9.715025

[2,] 9.715025 9.715025 9.715025 9.715025

[3,] 9.715025 9.715025 9.715025 9.715025

[4,] 9.715025 9.715025 9.715025 9.715025

[5,] 9.715025 9.715025 9.715025 9.715025

[6,] 9.715025 9.715025 9.715025 9.715025

[7,] 9.715025 9.715025 9.715025 9.715025

[8,] 9.715025 9.715025 9.715025 9.715025

[9,] NA 7.682954 7.682954 7.682954

[10,] 7.682954 NA 7.682954 7.682954

[11,] 7.682954 7.682954 NA 7.682954

[12,] 7.682954 7.682954 7.682954 NA

$`Variety:Nitrogen`$avsed

min mean max

7.682954 9.160824 9.715025

For the first two predictions, the average SED is calculated from the average variance of differences.

8.3 Unbalanced nested design

This example illustrates some further aspects of testing fixed effects in linear mixed models. It
differs from the previous split plot example in that it is unbalanced, so more care is required in
assessing the significance of fixed effects.

The experiment was reported by Dempster et al. [1984] and was designed to compare the effect of
three doses of an experimental compound (control, low and high) on the maternal performance of
rats. Thirty female rats (Dams) were randomly split into three groups of 10 and each group randomly
assigned to the three different doses. All pups in each litter were weighed. The litters differed both
in total size and composition of males and females. Thus the additional covariate littersize was
included in the analysis. The differential effect of the compound on male and female pups was also
of interest.

Three litters had to be dropped from the experiment, which meant that one dose had only 7 dams.
The analysis must account for the presence of between dam variation, but must also recognise the
stratification of the experimental units (pups within litters) and the restricted randomisation of the
doses to the dams. An indicative ANOVA decomposition for this experiment is given in Table 8.2.

The Dose and littersize effects are implicitly tested against the residual dam variation, while the
remaining effects are tested against the residual within litter variation. The asreml() call is:

> rats.asr <- asreml(weight ∼ littersize+Dose+Sex+Dose:Sex, random = ∼ Dam, data = rats)

The abbreviated output from asreml() convergence monitoring, followed by variance component
(from summary()) and Wald tests (from wald()) tables are:

> rats.asr$monitor[,(-2:-5)]

1 6 7 final constraint

loglik 74.2174175 87.2397736 87.2397915 87.2397915 <NA>

S2 0.1967003 0.1653213 0.1652993 0.1652993 <NA>

df 315.0000000 315.0000000 315.0000000 315.0000000 <NA>

Dam 0.1000000 0.5854392 0.5866881 0.5866742 Positive

R!variance 1.0000000 1.0000000 1.0000000 1.0000000 Positive

>
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Table 8.2: Rat data: ANOVA decomposition

stratum decomposition type df or ne

(Intercept) fixed 1
dams

Dose fixed 2
littersize fixed 1
Dam random 27

dams:pups
Sex fixed 1
Dose:Sex fixed 2

error random

> summary(rats.asr)$varcomp

gamma component std.error z.ratio constraint

Dam 0.5866742 0.09697687 0.03318527 2.922287 Positive

R!variance 1.0000000 0.16529935 0.01367005 12.092083 Positive

> wald(rats.asr,denDF="default",ssType="conditional")

$Wald

Df denDF F_inc F_con Margin Pr

(Intercept) 1 32.0 9049.0000 1099.0000 0.000000e+00

littersize 1 31.5 27.9900 46.2500 B 1.690248e-07

Dose 2 23.9 12.1500 11.5100 A 3.132302e-04

Sex 1 299.8 57.9600 57.9600 A 0.000000e+00

Dose:Sex 2 302.1 0.3984 0.3984 B 6.733474e-01

$stratumVariances

df Variance Dam R!variance

Dam 22.56348 1.2776214 11.46995 1

R!variance 292.43652 0.1652996 0.00000 1

>

The incremental Wald tests indicate that the interaction between Dose and Sex is not significant.
Since these tests are sequential then the test for the Dose:Sex term is appropriate as it respects
marginality with both the main effects of dose and sex fitted before the inclusion of the interaction.

The conditional F-test helps assess the significance of the other terms in the model. It confirms
littersize is significant after the other terms, that dose is significant when adjusted for littersize
and sex but ignoring dose.sex, and that sex is significant when adjusted for littersize and dose

but ignoring dose.sex. These tests respect marginality to the dose.sex interaction.

A plot of residuals vs fitted values

> plot(rats.asr, formula=resid(.) fitted(.), fun=”xyplot”)

is shown in Figure 8.1. Before proceeding we note the possibility of several outliers, in particular
unit 66. The weight of this female rat, within litter 9 is only 3.68, compared to weights of 7.26 and
6.58 for two other female sibling pups. This weight appears erroneous, but without knowledge of
the actual experiment we retain the observation.
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Figure 8.1: Residual plot for the rat data

We refit the model without the Dose:Sex term.

> rats2.asr <- asreml(weight ∼ littersize+Sex+Dose, random = ∼ Dam, data = rats)

> summary(rats2.asr)$varcomp

gamma component std.error z.ratio constraint

Dam 0.595157 0.09791776 0.03341462 2.930386 Positive

R!variance 1.000000 0.16452427 0.01356057 12.132547 Positive

> wald(rats2.asr,denDF="default",ssType="conditional")

$Wald

Df denDF F_inc F_con Margin Pr

(Intercept) 1 32.0 8981.00 1093.00 0.000000e+00

littersize 1 31.4 27.85 46.43 A 1.643469e-07

Dose 2 24.0 12.05 11.42 A 3.278549e-04

Sex 1 301.7 58.27 58.27 A 0.000000e+00

$stratumVariances

df Variance Dam R!variance

Dam 22.60301 1.2878697 11.47231 1

R!variance 294.39699 0.1645245 0.00000 1

>

Note that the variance parameters are re-estimated, though there is little change from the previous
analysis.
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The impact of (wrongly) dropping dam from this model is shown below:

> rats3.asr <- asreml(weight littersize+Dose+Sex,data = rats)

> wald(rats3.asr,denDF="default",ssType="conditional")

$Wald

Df denDF F_inc F_con Margin Pr

(Intercept) 1 317 47080.00 3309.00 0.000000e+00

littersize 1 317 68.48 146.50 A 0.000000e+00

Dose 2 317 60.99 58.43 A 0.000000e+00

Sex 1 317 24.52 24.52 A 2.328158e-06

$stratumVariances

NULL

>

Even if a random term is not ’significant’, it should not be dropped from the model if it represents a
strata of the design as in this case. The impact of deleting Dam on the significance tests for the fixed
effects is substantial and not surprising. This reinforces the importance of preserving the strata of
the design when assessing the significance of fixed effects.

8.4 Sources of variability in unbalanced data

This example illustrates an approach to the analysis of unbalanced data where the main aim is to
determine the sources of variation rather than assess the significance of imposed treatments. The
data are taken from Cox and Snell [1981] and involve an experiment to examine the variability in
the production of car voltage regulators. Standard production of regulators involves two steps:
1) Regulators are taken from the production line and passed to a setting station which adjusts
the regulator to operate within a specified range of voltages, and, 2) from the setting station the
regulator is then passed to a testing station where it is tested and returned if outside the required
range.

A total of 64 regulators was tested at four testing stations (Teststat). The voltage for individual
regulators was set at a total of 10 setting stations (Setstat). A variable number of regulators
(between 4 to 8) were set at each station, however each regulator was tested at every testing
station. The asreml() function call is:

> voltage.asr <- asreml(voltage ∼ 1,
+ random = ∼ Setstat+Setstat:Regulatr+ Teststat+Setstat:Teststat, data = voltage)

The factor Regulatr numbers the regulators within each setting station. Thus the term Setstat:Regulatr

allows for differential effects of each regulator, while the other terms examine the effects of the set-
ting and testing stations and possible interaction.

The estimated components of variance are:

> summary(voltage.asr)$varcomp

gamma component std.error z.ratio constraint

Setstat 2.334163e-01 1.193692e-02 8.814339e-03 1.354262 Positive

Setstat:Regulatr 6.018174e-01 3.077697e-02 8.453330e-03 3.640810 Positive

Teststat 6.427520e-02 3.287037e-03 3.337300e-03 0.984939 Positive

Setstat:Teststat 1.011929e-07 5.175009e-09 5.323475e-10 9.721111 Boundary

R!variance 1.000000e+00 5.114004e-02 5.260720e-03 9.721111 Positive

The convergence criterion was satisfied, however, the variance component estimate for the Setstat:Teststat
term has been fixed at the boundary. The default constraint for variance components is to ensure
that the REML estimate remains positive. If an update for any variance component results in a
negative value then asreml() sets that variance component to a small positive value. If this occurs
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in subsequent iterations the parameter is fixed at the boundary. The default parameter constraints
(Positive for variance components) can be altered (to Unconstrained, for example) by changing the
constraint code in the initial value list object(s) for random parameters, that is, the R.param and
G.param arguments to asreml(). These lists are returned in the asreml object and are best accessed
via the function asreml.gammas.ed(). In this example, the following sequence would achieve this:

> temp <- asreml.gammas.ed(voltage.asr)
#
# Edit appropriate parameter code
#
> voltage.asr <- asreml(voltage ∼ 1,
+ random = ∼ Setstat+Setstat:Regulatr+ Teststat+Setstat:Teststat,
+ G.param = temp$G.param, data = voltage)

though it would not generally be recommended for standard analyses.

> plot(voltage.asr)

includes a residual plot which indicates two unusual data values (Figure 8.2). These values are
successive observations, 210 and 211, respectively, being testing stations 2 and 3 for setting station
J, regulator 2. These observations will be retained for consistency with other analyses conducted
by Cox and Snell [1981].
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Figure 8.2: Residuals vs fitted values for the voltage data

The model omitting the Setstat:Teststat term:

> voltage2.asr <- asreml(voltage ∼ 1,
+ random = ∼ Setstat+Setstat:Regulatr+Teststat, data = voltage)

returns a REML log-likelihood of 203.242 - the same as the REML log-likelihood for the previous
model. The summary of the variance components for this model are

> summary(voltage2.asr)$varcomp
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gamma component std.error z.ratio constraint

Setstat 0.23341667 0.011936975 0.008813969 1.3543246 Positive

Setstat:Regulatr 0.60181723 0.030777054 0.008453248 3.6408553 Positive

Teststat 0.06427521 0.003287047 0.003337314 0.9849378 Positive

R!variance 1.00000000 0.051140201 0.005260744 9.7210963 Positive

The column labelled z.ratio is calculated to give a guide as to the significance of the variance
components. The statistic is simply the REML estimate of the variance component divided by the
square root of the diagonal element (for each component) of the inverse of the average information
matrix. The diagonal elements of the expected information matrix are the asymptotic variances
of the REML estimates of the variance parameters. These statistics cannot be used to test the
null hypothesis that the variance component is zero. The conclusions using this crude measure are
inconsistent with the conclusions obtained from the REML log-likelihood ratio (Table 8.3).

Table 8.3: REML log-likelihood ratio test for each variance component in the voltage
data

term loglikelihood −2× difference P-value

− Setstat 200.31 5.864 .0077
− Setstat:Regulatr 184.15 38.19 .0000
− Teststat 199.71 7.064 .0039

8.5 Balanced repeated measures

The data for this example comes from an experiment conducted at Rothamstead Experimental
Station, UK, by J. Lamptey. It consists of a total of 5 measurements of height (cm) taken on
14 plants. The 14 plants were either diseased or healthy and were arranged in a glasshouse in a
completely random design. Plant heights were measured 1, 3, 5, 7 and 10 weeks after the plants
were placed in the glasshouse. There were 7 plants in each treatment. The data are illustrated in
Figure 8.3.

The following illustrates several repeated measures analyses. For some of these it is convenient to
arrange the data in a multivariate form, with 7 columns containing the plant number, treatment
identification and the 5 heights, respectively, while for other analyses, in particular power models,
it is necessary to expand the data frame in a relational sense so that the response, response names
and a variate for the time of measurement occupy one column each.

The data frame grass is in multivariate form:

> grass

Tmt Plant y1 y3 y5 y7 y10

MAV 1 21.0 39.7 47.0 53.0 55.0

MAV 2 32.0 59.5 63.5 65.0 67.6

MAV 3 35.5 54.6 58.0 61.5 61.5

MAV 4 33.5 41.0 48.0 57.0 58.0

MAV 5 31.5 45.3 62.0 104.0 104.0

MAV 6 27.0 43.3 56.4 74.5 62.0

MAV 7 37.0 53.0 63.0 70.3 75.9

HC 8 28.5 47.0 54.7 55.5 57.0

HC 9 48.0 62.7 106.0 125.5 123.5
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Figure 8.3: Trellis plot of plant height for each of 14 plants

HC 10 37.5 55.3 63.0 67.3 66.0

HC 11 42.0 58.0 102.0 130.5 130.0

HC 12 36.5 56.3 97.0 104.0 114.0

HC 13 42.0 53.4 102.0 108.0 107.5

HC 14 31.5 59.6 106.0 113.5 110.5

while grassUV is in univariate form:

> grassUV

Tmt Plant Time HeightID y

MAV 1 1 y1 21.0

MAV 1 3 y3 39.7

MAV 1 5 y5 47.0

MAV 1 7 y7 53.0

MAV 1 10 y10 55.0

MAV 2 1 y1 32.0

MAV 2 3 y3 59.5

...

HC 13 10 y10 107.5

HC 14 1 y1 31.5

HC 14 3 y3 59.6

HC 14 5 y5 106.0

HC 14 7 y7 113.5

HC 14 10 y10 110.5

The focus is on modelling the error variance for the data. Specifically we fit the multivariate
regression model given by

Y = DT +E (8.1)
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where Y 14×5 is the matrix of heights, D14×2 is the design matrix, T 2×5 is the matrix of fixed effects
and E14×5 is the matrix of errors. The heights taken on the same plants will be correlated and so
we assume that

var (vec(E)) = I14 ⊗Σ (8.2)

where Σ5×5 is a symmetric positive definite matrix.

The variance models used for Σ are summarised in Table 8.4. These represent some commonly used
models for the analysis of repeated measures data [Wolfinger, 1996]. The variance models are fitted
by specifying the appropriate special function in the asreml() call.

The sequence of models given below illustrate some important issues regarding the sort order of the
data. In a standard multivariate analysis(data frame grass) the response is specified as a matrix
and asreml() automatically expands the data frame internally to a univariate form in the order trait
nested within units. The factor units is created before this expansion. The data frame grassUV

has been expanded outside asreml() in the same order, that is trait nested within experimental
units. In this case asreml() cannot sensibly create a correct units factor so a factor defining the
experimental units must already exist - in this case the factor Plant can be used. Note that the
sort order of the data must correspond to the order of appearance of the factors in the rcov formula
that define the experimental units. In the case of the one dimensional power model, the data must
be sorted in the order returned by unique(x) where x is the column in the data frame containing
the distances. In this case asreml() checks the sort order and reports an error if incorrect.

Uniform
> grass.asr <- asreml(cbind(y1,y3,y5,y7,y10) ∼ trait+Tmt+trait:Tmt,
+ random = ∼ units, rcov = ∼ units:trait, data = grass)

Power
> grass2.asr <- asreml(y ∼ Tmt+Time+Tmt:Time,
+ rcov = ∼ Plant:exp(Time), data = grassUV)

Heterogeneous power
> grass3.asr <- asreml(y ∼ Tmt+Time+Tmt:Time,
+ rcov = ∼ Plant:exph(Time), data = grassUV)

Antedependence
> grass4.asr <- asreml(cbind(y1,y3,y5,y7,y10) ∼ trait+Tmt+trait:Tmt,
+ rcov = ∼ units:ante(trait), data = grass)

Unstructured
> grass5.asr <- asreml(cbind(y1,y3,y5,y7,y10) ∼ trait+Tmt+trait:Tmt,
+ rcov = ∼ units:us(trait), data = grass)

Table 8.4: Summary of variance models fitted to the plant data

number of REML
model parameters loglikelihood BIC

uniform 2 -196.88 401.95
power 2 -182.98 374.15
heterogeneous power 6 -171.50 367.57
antedependence (order 1) 9 -160.37 357.51
unstructured 15 -158.04 377.50

The split plot in time model can be fitted four ways:

1. by fitting a random units term plus an independent residual using the multivariate data
frame,
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2. by specifying a cor() variance model for the R-structure, again using the multivariate data
frame,

> grass1.asr <- asreml(cbind(y1,y3,y5,y7,y10) ∼ trait+Tmt+trait:Tmt,
+ rcov = ∼ units:cor(trait), data = grass)

3. by fitting Plant as a random term plus an independent residual (Time:Plant) using the
univariate data frame,

4. by specifying a cor() variance model for the Time:Plant residual term using the univariate
data.

where 1 and 3 are equivalent as are 2 and 4. The two forms for Σ are given by

Σ = σ2
1J + σ2

2I, units (8.3)

Σ = σ2
eI + σ2

eρ(J − I), cor() (8.4)

It follows that

σ2
e = σ2

1 + σ2
2 (8.5)

ρ =
σ2
1

σ2
1 + σ2

2

(8.6)

Summaries of the outputs from 1 and 2 (the asreml() calls labelled Uniform and Correlation, re-
spectively) are given below. The REML log-likelihood is the same for both models and it is easy to
verify that the REML estimates of the variance parameters satisfy (8.6).

> summary(grass.asr)$loglik

[1] -196.8768

> summary(grass.asr)$varcomp

gamma component std.error z.ratio constraint

units 1.263422 159.8157 75.74879 2.109812 Positive

R!variance 1.000000 126.4943 25.82054 4.898979 Positive

> summary(grass1.asr)$loglik

[1] -196.8768

> summary(grass1.asr)$varcomp

gamma component std.error z.ratio constraint

R!variance 1.0000000 286.3098952 78.3448584 3.654482 Positive

R!trait.cor 0.5581911 0.5581911 0.1303821 4.281196 Unconstrained

A more plausible model for repeated measures data would allow the correlations to decrease as the
lag increases. The simplest model often used which accommodates this is the first order autoregres-
sive model, however since the heights are not measured at equally spaced time points we use the
exp() power model. The correlation function is given by:

ρ(u) = φu

where u is the time lag is weeks. The variance parameters from this model are:

> summary(grass2.asr)$varcomp

gamma component std.error z.ratio constraint

R!variance 1.0000000 301.3581311 96.67407884 3.117259 Positive

R!Time.pow 0.9190129 0.9190129 0.03117151 29.482466 Unconstrained
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Figure 8.4: residual ∼ Plant | Time for the exp() variance model for the plant
data

When fitting such models be careful to ensure the scale of the defining variate, here time, does not
result in an estimate of φ too close to 1. For example, use of days in this example would result in
an estimate for φ of about 0.993.

> plot(grass2.asr, formula = resid(.) Plant — Time, fun=”xyplot”)

creates a trend plot (Figure 8.4) of residuals against the factors that index the experimental units.

The residual plot suggests increasing variance over time. This can be modelled via the exph()

variance function, which models Σ by

Σ = D
0.5

CD
0.5

where D is a diagonal matrix of variances and C is a correlation matrix with elements given by
cij = φ|ti−tj |. Parameter estimates for the Heterogeneous power model are:

> summary(grass3.asr)$varcomp

gamma component std.error z.ratio constraint

R!variance 1.000000 1.000000 NA NA Fixed

R!Time.pow 0.906702 0.906702 0.04156582 21.813643 Unconstrained

R!Time.1 60.716256 60.716256 28.40226409 2.137726 Positive

R!Time.3 73.266300 73.266300 36.98538578 1.980953 Positive

R!Time.5 308.521040 308.521040 138.29720253 2.230855 Positive

R!Time.7 435.122455 435.122455 172.05226788 2.529013 Positive

R!Time.10 381.527027 381.527027 138.94461658 2.745893 Positive

Note that asreml() fixes the scale parameter to 1 to ensure that the elements of D are identifiable.
The final two models considered are the antedependence model of order 1 and the unstructured
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model. Both require as starting values the lower triangle of the full variance matrix. By default,
asreml() generates starting gammas of 0.15 for variances and 0.10 for covariances and scales these
by 1/2 of the simple variance of the response. This is adequate in many cases (including this
example) but we would generally recommend using the REML estimate of Σ from a previous model.
For example, suitable starting values could be generated from the heterogeneous power model
(grass3.asr) by:

> r <- matrix(resid(grass3.asr),nrow=14,byrow=T)
> vcov <- (t(r)%*% r)/12

where 12 is the degrees of freedom in this case.

The antedependence form models Σ by the inverse cholesky decomposition

Σ = UDU
′

where D is a diagonal matrix and U is a unit upper triangular matrix. For an antedependence
model of order q, then lij = 0 for j > i + q − 1. The antedependence model of order 1 has 9
parameters for these data, 5 in D and 4 in U . The call using the default starting values is shown
above.

The antedependence parameter estimates are given below and appear successively for each time,
that is, the element of D and then the row of U :

> summary(grass4.asr)$varcomp

gamma component std.error z.ratio constraint

R!variance 1.000000000 1.000000000 NA NA Fixed

R!trait.y1:y1 0.026862013 0.026862013 0.011023470 2.436802 Unconstrained

R!trait.y3:y1 -0.628357272 -0.628357272 0.246074475 -2.553525 Unconstrained

R!trait.y3:y3 0.037296080 0.037296080 0.015467150 2.411309 Unconstrained

R!trait.y5:y3 -1.490928182 -1.490928182 0.586337948 -2.542780 Unconstrained

R!trait.y5:y5 0.005994700 0.005994700 0.002468106 2.428867 Unconstrained

R!trait.y7:y5 -1.280440740 -1.280440740 0.206796644 -6.191787 Unconstrained

R!trait.y7:y7 0.007896965 0.007896965 0.003232797 2.442765 Unconstrained

R!trait.y10:y7 -0.967801877 -0.967801877 0.062806208 -15.409335 Unconstrained

R!trait.y10:y10 0.039063461 0.039063461 0.015947584 2.449491 Unconstrained

Finally, the estimated components for the unstructured model using default starting values.

> summary(grass5.asr)$varcomp

gamma component std.error z.ratio constraint

R!variance 1.00000 1.00000 NA NA Fixed

R!trait.y1:y1 37.22619 37.22619 15.19745 2.449503 Unconstrained

R!trait.y3:y1 23.39345 23.39345 13.20621 1.771398 Unconstrained

R!trait.y3:y3 41.51952 41.51952 16.95023 2.449496 Unconstrained

R!trait.y5:y1 51.65238 51.65238 32.03335 1.612456 Unconstrained

R!trait.y5:y3 61.91690 61.91690 34.87103 1.775597 Unconstrained

R!trait.y5:y5 259.12143 259.12143 105.78295 2.449558 Unconstrained

R!trait.y7:y1 70.81131 70.81131 46.13709 1.534802 Unconstrained

R!trait.y7:y3 57.61452 57.61452 46.74100 1.232634 Unconstrained

R!trait.y7:y5 331.80679 331.80679 145.19689 2.285220 Unconstrained

R!trait.y7:y7 551.50690 551.50690 225.14337 2.449581 Unconstrained

R!trait.y10:y1 73.78571 73.78571 46.21175 1.596687 Unconstrained

R!trait.y10:y3 62.56905 62.56905 46.92608 1.333353 Unconstrained

R!trait.y10:y5 330.85060 330.85060 144.31864 2.292501 Unconstrained

R!trait.y10:y7 533.75583 533.75583 220.57976 2.419786 Unconstrained

R!trait.y10:y10 542.17548 542.17548 221.33410 2.449580 Unconstrained

The antedependence model of order 1 is clearly the more parsimonious model (Table 8.4). There is
a surprising level of discrepancy between models for the Wald tests (Table 8.5). The main effect of
treatment is significant for the uniform, power and antedependence models.
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Table 8.5: Summary of Wald statistics for fixed effects for the models fitted to the
plant data

model Tmt (df=1) trait:Tmt (df=4)

uniform 9.42 20.40
power 6.85 24.53
heterogeneous power 0.00 19.28
antedependence (order 1) 4.19 15.63
unstructured 1.72 17.86

8.6 Spatial analysis of a field experiment

This section illustrates spatial and incomplete block analyses of a field experiment using asreml() .
There has been a large amount of interest in developing techniques for the analysis of spatial data
both in the context of field experiments and geostatistical data [Cullis and Gleeson, 1991, Cressie,
1991, Gilmour et al., 1997, for example]. This example illustrates the analysis of so-called regular
spatial data, in which the data is observed on a lattice or regular grid. This is typical of most
small plot designed field experiments. Spatial data is often irregularly spaced, either by design or
because of the observational nature of the study. The techniques we present in the following can
be extended for the analysis of irregularly spaced spatial data, though, larger spatial data-sets may
be computationally challenging, depending on the degree of irregularity or models fitted.

The data appears in Gilmour et al. [1995] and is from a field experiment designed to compare the
performance of 25 varieties of barley. The experiment was conducted at Slate Hall Farm, UK, in
1976 and was designed as a balanced lattice square with 6 replicates laid out in a 10× 15 rectangu-
lar grid. Table 8.6 shows the layout of the experiment and the coding of the replicates and lattice
blocks. The columns in the data frame are:

> shf <- asreml.read.table("barley.csv", header=T, sep=",")

> names(shf)

[1] "Rep" "RowBlk" "ColBlk" "Row" "Column" "Variety" "yield"

Lattice block numbering is typically coded within replicates, however, in this example the lattice
row and column blocks were both numbered from 1 to 30. The terms in the linear model are
therefore simply RowBlk and ColBlk. The factorsRow and Column indicate the spatial layout of the
plots.

Three models are considered: two spatial and the traditional lattice analysis for comparative pur-
poses. In the first model we fit a separable first order autoregressive process to the variance structure
of the plot errors. Gilmour et al. [1997] suggest this is often a useful model to commence the spatial
modelling process. The form of the variance matrix for the plot errors (R-structure) is given by

σ2
Σ = σ2(Σc ⊗Σr) (8.7)

where Σc and Σr are 15 × 15 and 10 × 10 matrix functions of the column (φc) and row (φr)
autoregressive parameters respectively.

Gilmour et al. [1997] recommend revision of the current spatial model based on the use of diagnostics
such as the sample variogram of the residuals. This diagnostic and a summary of row and column
residual trends are produced by the variogram() and plot() methods.

The separable autoregressive error model is fitted by:

> barley1.asr <- asreml(yield ∼ Variety, rcov = ∼ ar1(Row):ar1(Column),data=shf)
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Table 8.6: Field layout of Slate Hall Farm experiment

Column - Replicate levels
Row 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3
2 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3
3 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3
4 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3
5 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3
6 4 4 4 4 4 5 5 5 5 5 6 6 6 6 6
7 4 4 4 4 4 5 5 5 5 5 6 6 6 6 6
8 4 4 4 4 4 5 5 5 5 5 6 6 6 6 6
9 4 4 4 4 4 5 5 5 5 5 6 6 6 6 6
10 4 4 4 4 4 5 5 5 5 5 6 6 6 6 6

Column - Rowblk levels
Row 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 1 1 1 1 11 11 11 11 11 21 21 21 21 21
2 2 2 2 2 2 12 12 12 12 12 22 22 22 22 22
3 3 3 3 3 3 13 13 13 13 13 23 23 23 23 23
4 4 4 4 4 4 14 14 14 14 14 24 24 24 24 24
5 5 5 5 5 5 15 15 15 15 15 25 25 25 25 25
6 6 6 6 6 6 16 16 16 16 16 26 26 26 26 26
7 7 7 7 7 7 17 17 17 17 17 27 27 27 27 27
8 8 8 8 8 8 18 18 18 18 18 28 28 28 28 28
9 9 9 9 9 9 19 19 19 19 19 29 29 29 29 29
10 10 10 10 10 10 20 20 20 20 20 30 30 30 30 30

Column - Colblk levels
Row 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
6 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
7 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
8 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
9 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
10 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

The REML log-likelihood, random components and Wald statistics from the fit are:

> summary(barley1.asr)$loglik

[1] -700.3225

> summary(barley1.asr)$varcomp

gamma component std.error z.ratio constraint

R!variance 1.0000000 3.873880e+04 7.747479e+03 5.000181 Positive

R!Row.ar1 0.4585092 4.585092e-01 8.259184e-02 5.551507 Unconstrained

R!Column.ar1 0.6837766 6.837766e-01 6.329681e-02 10.802701 Unconstrained

> wald(barley1.asr)

Wald tests for fixed effects

Response: yield

Terms added sequentially; adjusted for those above

Df Sum of Sq Wald statistic Pr(Chisq)

(Intercept) 1 33004556 852 < 2.2e-16 ***
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Variety 24 12119586 313 < 2.2e-16 ***

residual (MS) 38739

> plot(variogram(barley1.asr))

plots the sample variogram shown in Figure 8.5.
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Figure 8.5: Sample variogram of the AR1×AR1 model for the Slate Hall data

The iterative sequence has converged to column and row correlation parameters of 0.68378 and
0.45851, respectively. The plot size and orientation is not known and so it is not possible to ascertain
whether these values are spatially sensible. It is generally found that the closer the plot centroids,
the higher the spatial correlation. This is not always the case and if the highest between plot
correlation relates to the larger spatial distance then this may suggest the presence of extraneous
variation [Gilmour et al., 1997, for example]. The plot of the sample variogram of the residuals
is not trimmed and, ignoring the unreliable contribution from extreme lags, appears in reasonable
agreement with the model.

An extension to this model includes a measurement error or nugget effect term:

> barley2.asr <- asreml(yield ∼ Variety, random = ∼ units,
+ rcov = ∼ ar1(Row):ar1(Column),data=shf)

That is, the variance model for the plot errors is now given by

σ2
Σ = σ2(Σc ⊗Σr) + ψI150 (8.8)

where ψ is the ratio of nugget variance to error variance (σ2). The results show a significant im-
provement in the REML log-likelihood with the inclusion of the nugget effect (Table 8.7).

> summary(barley2.asr)$loglik

[1] -696.8227

> summary(barley2.asr)$varcomp
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gamma component std.error z.ratio constraint

units 0.1061724 4.859930e+03 1.787849e+03 2.718311 Positive

R!variance 1.0000000 4.577396e+04 1.667323e+04 2.745357 Positive

R!Row.ar1 0.6826403 6.826403e-01 1.022940e-01 6.673317 Unconstrained

R!Column.ar1 0.8437888 8.437888e-01 6.848144e-02 12.321425 Unconstrained

> wald(barley2.asr)

Wald tests for fixed effects

Response: yield

Terms added sequentially; adjusted for those above

Df Sum of Sq Wald statistic Pr(Chisq)

(Intercept) 1 11918530 260 < 2.2e-16 ***

Variety 24 11237959 246 < 2.2e-16 ***

residual (MS) 45774

The lattice analysis (with recovery of inter-block information) is:

> barley3.asr <- asreml(yield ∼ Variety, random = ∼ Rep + RowBlk + ColBlk, data=shf)

> summary(barley3.asr)$$loglik

[1] -707.7857

> summary(barley3.asr)$$varcomp

gamma component std.error z.ratio constraint

Rep 0.5287136 4262.361 6886.823 0.6189155 Positive

RowBlk 1.9344361 15594.957 5090.787 3.0633685 Positive

ColBlk 1.8372487 14811.456 4865.667 3.0440754 Positive

R!variance 1.0000000 8061.759 1340.449 6.0142228 Positive

> wald(barley3.asr)

Wald tests for fixed effects

Response: yield

Terms added sequentially; adjusted for those above

Df Sum of Sq Wald statistic Pr(Chisq)

(Intercept) 1 9808702 1217 < 2.2e-16 ***

Variety 24 1711179 212 < 2.2e-16 ***

residual (MS) 8062

This variance model is not competitive with the preceding spatial models. The models can be
formally compared using the BIC values, for example.

The Wald statistics for the spatial models are greater than that for the lattice analysis (Table 8.7).
We note that the Wald statistic for the spatial model including the nugget effect is smaller than
that for the AR1×AR1 model.

Finally, we predict Variety means for each model using the predict() method. Only the first five and
final three means are reproduced here. The overall SED is the square root of the average variance
of difference between the variety means. The two spatial analyses have a range of SEDs which may
be obtained in matrix form from the sed argument of predict(). Note that all variety comparisons
have the same SED for the balanced lattice square analysis.

> barley1.pv <- predict(barley1.asr, classify=”Variety”)

> barley1.pv$predictions$Variety$pvals
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Table 8.7: Summary of models fitted to the Slate Hall data

model REML log-likelihood parameters Wald statistic sed

AR1×AR1 -700.32 3 312.82 59.0
AR1×AR1 + units -696.82 4 245.49 60.5
incomplete block -707.79 4 212.26 62.0

Variety predicted.value standard.error estStatus

1 1 1257.981 64.61878 Estimable

2 2 1501.442 64.98267 Estimable

3 3 1404.987 64.63038 Estimable

4 4 1412.569 64.90703 Estimable

5 5 1514.480 65.59318 Estimable

...

23 23 1311.490 64.07718 Estimable

24 24 1586.785 64.70481 Estimable

25 25 1592.021 63.59445 Estimable

> barley1.pv$predictions$Variety$avsed

[1] 59.05192

> barley2.pv <- predict(barley2.asr, classify=”Variety”)

> barley2.pv$predictions$Variety$pvals

Variety predicted.value standard.error estStatus

1 1 1245.582 97.87621 Estimable

2 2 1516.234 97.86434 Estimable

3 3 1403.984 98.25699 Estimable

4 4 1404.918 98.00456 Estimable

5 5 1471.612 98.37778 Estimable

...

23 23 1316.874 98.05743 Estimable

24 24 1557.522 98.14444 Estimable

25 25 1573.888 97.99763 Estimable

> barley2.pv$predictions$Variety$avsed

[1] 60.51085

> barley3.pv <- predict(barley3.asr, classify=”Variety”)

> barley3.pv$predictions$Variety$pvals

Variety predicted.value standard.error estStatus

1 1 1283.587 60.1994 Estimable

2 2 1549.013 60.1994 Estimable

3 3 1420.931 60.1994 Estimable

4 4 1451.855 60.1994 Estimable

5 5 1533.275 60.1994 Estimable

...

23 23 1329.109 60.1994 Estimable
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24 24 1546.470 60.1994 Estimable

25 25 1630.629 60.1994 Estimable

> barley3.pv$predictions$Variety$avsed

[1] 62.01934

Notice the differences in SEs and SEDs associated with the various models. Choosing a model on
the basis of smallest SE or SED is not recommended because the model is not necessarily fitting the
variability present in the data.

8.7 Unreplicated early generation variety trial

This example is a further illustration of the approach to the analysis of field trials presented in the
previous section. The data are from an unreplicated field experiment conducted at Tullibigeal in
south-western NSW. The trial was an S1 (early stage) wheat variety evaluation trial and consisted
of 525 test lines which were randomly assigned to plots in a 67 row × 10 column array. There
was a check plot variety every 6 plots within each column. That is, the check variety was sown
on rows 1,7,13,. . . ,67 of each column. This variety was numbered 526. A further 6 replicated
commercially available varieties (numbered 527 to 532) were also randomly assigned to plots with
between 3 to 5 plots of each. The aim of these trials is to identify and retain the top, say 20%,
lines for further testing. Cullis et al. [1989] considered the analysis of early generation variety trials
and presented a one-dimensional spatial analysis which was an extension of the approach developed
by Gleeson and Cullis [1987]. The test line effects are assumed random, while the check variety
effects are considered fixed. This may not be sensible or justifiable for most trials and can lead
to inconsistent comparisons between check varieties and test lines. Given the large amount of
replication afforded to check varieties there will be very little shrinkage irrespective of the realised
heritability.

In the following we assume that the variety effect (including both check, replicated and unreplicated
lines) is random. In addition to a one dimensional analysis we consider three further spatial models
for comparison.

> wheat <- asreml.read.table(”wheat.csv”, header=T, sep=”,”)
> names(wheat)

[1] "yield" "weed" "Column" "Row" "Variety"

where Variety, Row and Column are factors, yield is the response variate and weed is a covariate.
Note that the data frame is sorted as Column nested within Row.

We begin with a one-dimensional spatial model, which assumes the variance model for the plot
effects within columns is described by a first order autoregressive process.

> wheat1.asr <- asreml(yield ∼ weed, random = ∼ Variety,
+ rcov = ∼ ar1(Row):Column, data = wheat)

> summary(wheat1.asr)$loglik

[1] -4239.88

> summary(wheat1.asr)$varcomp

gamma component std.error z.ratio constraint

Variety 0.9594791 8.279572e+04 9.217376e+03 8.982569 Positive

R!variance 1.0000000 8.629236e+04 9.462026e+03 9.119861 Positive

R!Row.ar1 0.6723405 6.723405e-01 4.184392e-02 16.067817 Unconstrained

The REML estimate of the autoregressive parameter indicates substantial within column hetero-
geneity.
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A two dimensional spatial model is fitted with:

> wheat2.asr <- asreml(yield ∼ weed, random = ∼ Variety,
+ rcov = ∼ ar1(Row):ar1(Column), data = wheat)

> summary(wheat2.asr)$loglik

[1] -4233.647

> summary(wheat2.asr)$varcomp

gamma component std.error z.ratio constraint

Variety 1.0603771 8.811748e+04 8.884899e+03 9.917669 Positive

R!variance 1.0000000 8.310014e+04 9.340520e+03 8.896736 Positive

R!Row.ar1 0.6853871 6.853871e-01 4.115303e-02 16.654595 Unconstrained

R!Column.ar1 0.2859093 2.859093e-01 7.390416e-02 3.868650 Unconstrained

The change in REML log-likelihood is significant (χ2
1 = 12.46, P < 0.001) with the inclusion of the

autoregressive parameter for Column. The sample variogram of the residuals for the ar1×ar1 model,
Figure 8.6, indicates a linear drift from column 1 to column 10. We include a linear regression
coefficient pol(Column,-1) in the model to account for this.
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Figure 8.6: Sample variogram of the AR1×AR1 model for the Tullibigeal data

> wheat3.asr <- asreml(yield ∼ weed + pol(Column,-1), random = ∼ Variety,
+ rcov = ∼ ar1(Row):ar1(Column), data = wheat)

Note we use the ’-1’ option in the pol() function to exclude the overall constant in the regression,
as it is already fitted.

> summary(wheat3.asr)$loglik

[1] -4225.631
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> summary(wheat3.asr)$varcomp

gamma component std.error z.ratio constraint

Variety 1.1436952 8.898632e+04 8.976677e+03 9.913058 Positive

R!variance 1.0000000 7.780597e+04 8.854452e+03 8.787215 Positive

R!Row.ar1 0.6714360 6.714360e-01 4.287844e-02 15.659058 Unconstrained

R!Column.ar1 0.2660882 2.660882e-01 7.541536e-02 3.528303 Unconstrained

> wald(wheat3.asr)

Wald tests for fixed effects

Response: yield

Terms added sequentially; adjusted for those above

Df Sum of Sq Wald statistic Pr(Chisq)

(Intercept) 1 551060049 7082 < 2.2e-16 ***

weed 1 7155306 92 < 2.2e-16 ***

pol(Column, -1) 1 679668 9 0.003121 **

residual (MS) 77806

> summary(wheat3.asr)$coef.fixed

solution std error z ratio

pol(Column, -1) -139.5638 47.22053 -2.955575

weed -182.7066 21.83804 -8.366439

(Intercept) 2872.7366 34.82716 82.485524

The linear regression of column number on yield is significant (Wald statistic = 8.74). The sample
variogram (Figure 8.7) seems more satisfactory, though interpretation of variograms is often difficult,
particularly for unreplicated trials. This is an issue for further research.

The final model includes a nugget effect:

> wheat4.asr <- asreml(yield ∼ pol(Column,-1), random = ∼ Variety + units, sparse = ∼ weed,
+ rcov = ∼ ar1(Row):ar1(Column), data = wheat)

> summary(wheat4.asr)$loglik

[1] -4220.261

> summary(wheat4.asr)$varcomp

gamma component std.error z.ratio constraint

Variety 1.3482286 7.377148e+04 1.041705e+04 7.081800 Positive

units 0.5563897 3.044417e+04 8.074917e+03 3.770214 Positive

R!variance 1.0000000 5.471734e+04 1.062709e+04 5.148857 Positive

R!Row.ar1 0.8374999 8.374999e-01 4.486909e-02 18.665407 Unconstrained

R!Column.ar1 0.3753791 3.753791e-01 1.152641e-01 3.256687 Unconstrained

The increase in REML log-likelihood from adding the units term is significant. Predicted variety
means can be obtained from this model using

> wheat4.pv <- predict(wheat4.asr, classify=”Variety:Column”,
+ levels=list(”Variety:Column”=list(”Column”=5.5)))

At present asreml() cannot average over pol() terms so we must specify the value of Column at which
the predictions are to be formed; in this case we choose to form varietal predictions at the average
value of Column, that is, 5.5.
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Figure 8.7: Sample variogram of the AR1×AR1 + pol(column,-1) model for the
Tullibigeal data

> wheat4.pv$predictions

$"Variety:Column":

$"Variety:Column"$pvals:

Column Variety predicted.value standard.error estStatus

1 5.5 1 2917.178 179.28821 Estimable

2 5.5 2 2957.741 178.76889 Estimable

3 5.5 3 2872.762 176.98813 Estimable

4 5.5 4 2986.473 178.74259 Estimable

...

522 5.5 522 2784.768 179.15427 Estimable

523 5.5 523 2904.942 179.53841 Estimable

524 5.5 524 2740.034 178.84664 Estimable

525 5.5 525 2669.956 179.24457 Estimable

526 5.5 526 2385.981 44.21617 Estimable

527 5.5 527 2697.068 133.44066 Estimable

528 5.5 528 2727.032 112.26513 Estimable

529 5.5 529 2699.824 103.90633 Estimable

530 5.5 530 3010.391 112.30814 Estimable

531 5.5 531 3020.072 112.25543 Estimable

532 5.5 532 3067.448 112.66467 Estimable

$"Variety:Column"$avsed:

[1] 245.8018

Note that the replicated check lines have lower SEs than the unreplicated test lines. There will also
be large differences in SEDs. Rather than obtaining the large table of all SEDs, the prediction could
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be done in parts if the interest was to to examine the matrix of pairwise prediction errors of check
varieties, for example.

> wheat5.pv <- predict(wheat4.asr, classify=”Variety:Column”,
+ levels=list(”Variety:Column”=list(”Variety” = seq(1,525), ”Column”=5.5)))

> wheat6.pv <- predict(wheat4.asr, classify=”Variety:Column”,
+ levels=list(”Variety:Column”=list(”Variety” = seq(526,532), ”Column”=5.5)),
+ sed = list(”Variety:Column”=T))

> wheat6.pv$predictions

$"Variety:Column":

$"Variety:Column"$pvals:

Notes:

- weed evaluated at average value of 0.459701

- pol(Column, -1) evaluated at 5.500000

- units terms are ignored unless specifically included

- mv is averaged over fixed levels

- pol(Column, -1) is included in the prediction

- weed is included in the prediction

- (Intercept) is included in the prediction

- units is ignored in this prediction

- mv is ignored in this prediction

Column Variety predicted.value standard.error est.status

1 5.5 526 2385.981 44.21617 Estimable

2 5.5 527 2697.068 133.44066 Estimable

3 5.5 528 2727.032 112.26513 Estimable

4 5.5 529 2699.824 103.90633 Estimable

5 5.5 530 3010.391 112.30814 Estimable

6 5.5 531 3020.072 112.25543 Estimable

7 5.5 532 3067.448 112.66467 Estimable

$"Variety:Column"$sed:

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] NA 129.1900 107.2885 98.20983 107.4884 107.0353 107.4493

[2,] 129.18995 NA 165.5508 159.10100 165.5290 165.4920 165.9755

[3,] 107.28848 165.5508 NA 141.34763 148.5679 149.5352 148.2006

[4,] 98.20983 159.1010 141.3476 NA 143.0536 142.1024 143.3973

[5,] 107.48844 165.5290 148.5679 143.05365 NA 144.3514 149.5803

[6,] 107.03532 165.4920 149.5352 142.10244 144.3514 NA 149.5490

[7,] 107.44926 165.9755 148.2006 143.39734 149.5803 149.5490 NA

$"Variety:Column"$avsed:

min mean max

98.20983 139.90452 165.97553

8.8 Paired Case-Control Study

These data are from an experiment conducted to investigate the tolerance of rice varieties to attack
by the larvae of bloodworms. The data have been kindly provided by Dr. Mark Stevens, Yanco
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Agricultural Institute. A full description of the experiment is given by Stevens et al. [1999]. Blood-
worms are a significant pest of rice in the Murray and Murrumbidgee irrigation areas and damage
can result in poor establishment and substantial yield loss.

The experiment commenced with the transplanting of rice seedlings into trays. Each tray contained
a total of 32 seedlings and the trays were paired so that a control tray (no bloodworms) and a
treated tray (bloodworms added) were grown in a controlled environment room for the duration
of the experiment. After this, rice plants were carefully extracted, the root system washed and
root area determined for the tray using an image analysis system described by Stevens et al. [1999].
Two pairs of trays, each pair corresponding to a different variety, were included in each run. A
new batch of bloodworm larvae was used for each run. A total of 44 varieties was investigated with
three replicates of each. Unfortunately the variety concurrence within runs was less than optimal.
Eight varieties occurred with only one other variety, 22 with two other varieties and the remaining
14 with three different varieties.

The following subsections present an exhaustive analysis of these data using equivalent univariate
and multivariate techniques. It is convenient to use two data frames, one for each approach. The
univariate data frame

> rice <- asreml.read.table(”rice.txt”, header=T)
> names(rice)

[1] "Pair" "rootwt" "Run" "sqrtroot" "Tmt" "Variety"

has factors Pair, Run, Variety, Tmt and variates rootwt and sqrtroot. The factor Pair labels
pairs of trays (to which varieties are allocated) and Tmt is the two level bloodworm treatment factor
(control/treated).

The multivariate data frame

> riceMV <- asreml.read.table(”riceMV.csv”, header=T, sep=”,”)
> names(riceMV)

[1] "Pair" "Run" "Variety" "yc" "ye" "syc" "sye"

contains factors Variety and Run and variates for root weight and square root of root weight for
both the control and exposed treatments (yc, ye, syc, sye respectively).

A plot of the treated vs the control root area (on the square root scale) for each variety is shown in
Figure 8.8. There is a strong dependence between the treated and control root area, which is not
surprising. The aim of the experiment was to determine the tolerance of varieties to bloodworms
and identify the most tolerant varieties. The definition of tolerance should allow for the fact that
varieties differ in their inherent seedling vigour (Figure 8.8). The initial approach was to regress
the treated root area against the control root area and define the index of vigour as the residual
from this regression. This is clearly inefficient since there is error in both variables. We seek to
determine an index of tolerance from the joint analysis of treated and control root area.

Standard analysis

Preliminary analyses indicated variance heterogeneity so that subsequent analyses were conducted
on the square root scale. The allocation of bloodworm treatments within varieties and varieties
within runs defines a nested block structure of the form

Run/Variety/Tmt = Run + Run:Variety + Run:Variety:Tmt

( = Run + Pair + Pair:Tmt )

( = Run + Run:Variety + units )

There is an additional blocking term, however, due to the fact that the bloodworms within a run are
derived from the same batch of larvae whereas between runs the bloodworms come from different
sources. This defines a block structure of the form

Run/Tmt/Variety = Run + Run:Tmt + Run:Tmt:Variety

( = Run + Run:Tmt + Pair:Tmt )
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Figure 8.8: Rice bloodworm data: Plot of square root of root weight for treated
versus control

Combining the two provides the full block structure for the design:

Run + Run:Variety + Run:Tmt + Run:Tmt:Variety

= Run + Run:Variety + Run:Tmt + units

= Run + Pair + Run:Tmt + Pair:Tmt

In line with the aims of the experiment the treatment structure comprises variety and treatment
main effects and treatment by variety interactions.

In the traditional approach the terms in the block structure are regarded as random and the
treatment terms as fixed. The choice of treatment terms as fixed or random depends largely on the
aims of the experiment. The aim of this example is to select the best varieties. The definition of best
is somewhat more complex since it does not involve the single trait sqrt(rootwt) but rather two
traits, namely sqrt(rootwt) in the presence/absence of bloodworms. To minimize selection bias the
variety main effects and Tmt:Variety interactions are taken as random. The main effect of treatment
is fitted as fixed to allow for the likely scenario that rather than a single population of treatment
by variety effects there are in fact two populations (control and treated) with a different mean for
each. There is evidence of this prior to analysis with the large difference in mean sqrt(rootwt)

for the two groups (14.93 and 8.23 for control and treated respectively). The inclusion of Tmt as a
fixed effect ensures that BLUPs of Tmt:Variety effects are shrunk to the correct mean (treatment
means rather than an overall mean).

The model for the data is given by

y = Xτ +Z1u1 +Z2u2 +Z3u3 +Z4u4 +Z5u5 + e (8.9)

where y is a vector of length n = 264 containing the sqrtroot values, τ corresponds to a constant
term and the fixed treatment contrast and u1 . . .u5 correspond to random Variety, Tmt:Variety,
Run, Tmt:Run and Variety:Run effects. The random effects and error are assumed to be independent
Gaussian variables with zero means and variance structures var (ui) = σ2

i Ibi (where bi is the length
of ui, i = 1 . . . 5) and var (e) = σ2In.

The asreml() call is:
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> rice1.asr <- asreml(sqrtroot ∼ Tmt, random = ∼ Variety+Variety:Tmt+Run+Pair+Run:Tmt,
+ data = rice)

> summary(rice1.asr)$loglik

[1] -345.2559

> summary(rice1.asr)$varcomp

gamma component std.error z.ratio constraint

Variety 1.8085661 2.3782170 0.7914703 3.004809 Positive

Variety:Tmt 0.3743885 0.4923110 0.2764182 1.781037 Positive

Run 0.2444393 0.3214312 0.5482284 0.586309 Positive

Pair 0.7421389 0.9758932 0.3883409 2.512981 Positive

Tmt:Run 1.3291572 1.7478068 0.4793480 3.646217 Positive

R!variance 1.0000000 1.3149738 0.2974417 4.420946 Positive

> wald(rice1.asr)

Wald tests for fixed effects

Response: sqrtroot

Terms added sequentially; adjusted for those above

Df Sum of Sq Wald statistic Pr(Chisq)

(Intercept) 1 1953.17 1485.33 < 2.2e-16 ***

Tmt 1 617.16 469.33 < 2.2e-16 ***

residual (MS) 1.31

The estimated variance components from this analysis also appear in column (a) of Table 8.8. The
variance component for the Variety main effects is large. There is evidence of Variety:Tmt interac-
tions so we may expect some discrimination between varieties in terms of tolerance to bloodworms.

Given the large difference (p < 0.001) between Tmt means we may wish to allow for heterogeneity
of variance associated with Tmt. Thus we fit a separate Variety:Tmt variance for each level of Tmt
so that instead of assuming var (u2) = σ2

2I88 we assume

var (u2) =

[

σ2
2c 0
0 σ2

2t

]

⊗ I44

where σ2
2c and σ2

2t are the Variety:Tmt interaction variances for control and treated respectively.
This model can be fitted using a diagonal variance structure for the treatment part of the interaction.
We also fit a separate Run:Tmt variance for each level of Tmt and heterogeneity at the residual level,
by including an extra at(Tmt,2):units term. We have chosen level 2 of Tmt as we expect more
variation for the exposed treatment and thus the extra variance component for this term should be
positive.

By default, asreml() sets the parameter constraint for variance components to Positive. To allow
for negative components, which may have meaning in this particular example, we must set the
parameter constraints to Unconstrained. The following sequence of calls

• creates default R and G parameter list objects (start.values=T) in temp

• opens the default text editor where the parameter constraints can be changed to U and the
result saved to RG.rice

• fits the model using theG level parameter settings in RG.rice through the G.param argument.

> temp <- asreml(sqrtroot ∼ Tmt,
+ random = ∼ Variety+Variety:diag(Tmt)+Run+Pair+ Run:diag(Tmt)+at(Tmt,2):units,
+ data = rice, start.values=”gammas.csv”)
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# set variance constraint codes to U

> rice2.asr <- asreml(sqrtroot ∼ Tmt,
+ random = ∼ Variety+Variety:diag(Tmt)+Run+Pair+ Run:diag(Tmt)+at(Tmt,2):units,
+ G.param = ”gammas.csv, data = rice)

> summary(rice2.asr)$loglik

[1] -343.2199

> summary(worm2.asr)$varcomp

gamma component std.error z.ratio constraint

Variety 2.018113 2.333895 0.776098 3.007 Positive

Variety:Tmt!Tmt.Control.var 1.302060 1.505799 0.665177 2.263 Unconstrained

Variety:Tmt!Tmt.Exposed.var -0.321861 -0.372224 0.456151 -0.816 Unconstrained

Run 0.276148 0.319358 0.543446 0.587 Positive

Pair 0.853857 0.987463 0.381194 2.590 Positive

Tmt:Run!Tmt.Control.var 1.200871 1.388777 0.635834 2.184 Unconstrained

Tmt:Run!Tmt.Exposed.var 1.923409 2.224372 0.723924 3.072 Unconstrained

at(Tmt, Exposed):units 0.176145 0.203707 0.631838 0.322 Positive

R!variance 1.000000 1.156474 0.417382 2.770 Positive

> wald(rice2.asr)

Wald tests for fixed effects

Response: sqrtroot

Terms added sequentially; adjusted for those above

Df Sum of Sq Wald statistic Pr(Chisq)

(Intercept) 1 1476.86 1277.03 < 2.2e-16 ***

Tmt 1 519.01 448.78 < 2.2e-16 ***

residual (MS) 1.16

The estimated variance components from this analysis are given in column (b) of Table 8.8. There
is no significant variance heterogeneity at the residual or Run:Tmt level. This indicates that the
square root transformation of the data has successfully stabilised the error variance. There is,
however, significant variance heterogeneity for Variety:Tmt interactions with the variance being
much greater for the control group. This reflects the fact that in the absence of bloodworms
the potential maximum root area is greater. Note that the Variety:Tmt interaction variance for
the treated group is negative. The negative component is meaningful (and in fact necessary and
obtained by changing the constraint codes for variance parameters to U as described above) in this
context since it should be considered as part of the variance structure for the combined variety main
effects and treatment by variety interactions. That is,

var (12 ⊗ u1 + u2) =

[

σ2
1 + σ2

2c σ2
1

σ2
1 σ2

1 + σ2
2t

]

⊗ I44 (8.10)

Using the estimates from Table 8.8 this structure is estimated as
[

3.84 2.33
2.33 1.96

]

⊗ I44

Thus the variance of the variety effects in the control group (also known as the genetic variance
for this group) is 3.84. The genetic variance for the treated group is much lower (1.96). The
genetic correlation is 2.33/

√
3.84 × 1.96 = 0.85 which is strong, supporting earlier indications of the

dependence between the treated and control root area (Figure 8.8).
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Table 8.8: Estimated variance components from univariate analyses of bloodworm
data. (a) Model with homogeneous variance for all terms and (b) model with het-
erogeneous variance for interactions involving tmt

(a) (b)
homogeneous heterogeneous

source control treated

Variety 2.378 2.333
Variety:Tmt 0.492 1.505 -0.372
Run 0.321 0.319
Run:Tmt 1.748 1.389 2.224
Variety:Run (Pair) 0.976 0.987
Tmt:Pair 1.315 1.156 1.360

REML log-likelihood -345.256 -343.22

A multivariate approach

In this simple case in which the variance heterogeneity is associated with the two level factor Tmt,
the analysis is equivalent to a bivariate analysis in which the two traits correspond to the two levels
of Tmt, namely sqrtroot for control and treated. The model for each trait is given by

yj = Xτ j +Zvuvj +Zrurj + ej (j = c, t) (8.11)

where yj is a vector of length n = 132 containing the sqrtroot values for variate j (j = c for
control and j = t for treated), τ j corresponds to a constant term and uvj and urj correspond to
random variety and run effects. The design matrices are the same for both traits. The random
effects and error are assumed to be independent Gaussian variables with zero means and variance
structures var

(

uvj

)

= σ2
vj
I44, var

(

urj

)

= σ2
rj
I66 and var (ej) = σ2

jI132. The bivariate model
can be written as a direct extension of (8.11), namely

y = (I2 ⊗X) τ + (I2 ⊗Zv)uv + (I2 ⊗Zr)ur + e
∗ (8.12)

where y = (y′
c,y

′
t)

′
, uv = (u′

vc ,u
′
vt)

′
, ur = (u′

rc ,u
′
rt)

′
and e∗ = (e′

c,e
′
t)

′
.

There is an equivalence between the effects in this bivariate model and the univariate model of
(8.9). The variety effects for each trait (uv in the bivariate model) are partitioned in (8.9) into
variety main effects and tmt.variety interactions so that uv = 12 ⊗ u1 + u2. There is a similar
partitioning for the run effects and the errors (Table 8.9).

In addition to the assumptions in the models for individual traits (8.11), the bivariate analysis
involves the assumptions cov (uvc)u

′
vt = σvctI44, cov (urc)u

′
rt = σrctI66 and cov (ec) e

′
t = σctI132.

Thus random effects and errors are correlated between traits. So, for example, the variance matrix
for the variety effects for each trait is given by

var (uv) =

[

σ2
vc σvct

σvct σ2
vt

]

⊗ I44

This unstructured form for trait:Variety in the bivariate analysis is equivalent to the Variety

main effect plus heterogeneous Variety:Tmt interaction variance structure (8.10) in the univari-
ate analysis. Similarly the unstructured form for trait:Run is equivalent to the Run main effect
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Table 8.9: Equivalence of random effects in bivariate and univariate analyses

bivariate univariate
effects (model 8.12) (model 8.9)

trait:Variety uv 12 ⊗ u1 + u2

trait:Run ur 12 ⊗ u3 + u4

Pair:trait e∗ 12 ⊗ u5 + e

plus heterogeneous Run:Tmt interaction variance structure. The unstructured form for the errors
(Pair:trait) in the bivariate analysis is equivalent to the Pair plus heterogeneous error (Pair:Tmt)
variance in the univariate analysis.

The asreml() call is:

> riceMV.asr <- asreml(cbind(syc,sye) ∼ trait, + random = ∼ us(trait):Variety + us(trait):Run,
+ rcov = ∼ units:us(trait), data = riceMV)

> summary(riceMV.asr)$loglik

[1] -343.2199

> summary(wormm.asr)$varcomp

gamma component std.error z.ratio constraint

trait:Variety!trait.syc:syc 3.8386404 3.8386404 1.1059311 3.4709 Unconstrained

trait:Variety!trait.sye:syc 2.3332757 2.3332757 0.7755975 3.0083 Unconstrained

trait:Variety!trait.sye:sye 1.9612537 1.9612537 0.7281807 2.6933 Unconstrained

trait:Run!trait.syc:syc 1.7083269 1.7083269 0.6534826 2.6141 Unconstrained

trait:Run!trait.sye:syc 0.3196590 0.3196590 0.5437117 0.5879 Unconstrained

trait:Run!trait.sye:sye 2.5436703 2.5436703 0.7957811 3.1964 Unconstrained

R!variance 1.0000000 1.0000000 NA NA Fixed

R!trait.syc:syc 2.1436774 2.1436774 0.4822556 4.4451 Unconstrained

R!trait.sye:syc 0.9873042 0.9873042 0.3811844 2.5900 Unconstrained

R!trait.sye:sye 2.3474190 2.3474190 0.5076600 4.6239 Unconstrained

The resultant REML log-likelihood is identical to that of the heterogeneous univariate analysis
(column (b) of Table 8.8). The estimated variance parameters are summarised in Table 8.10.

Table 8.10: Estimated variance components from bivariate analysis of bloodworm
data

control treated
source variance variance covariance

us(trait):Variety 3.84 1.96 2.33
us(trait):Run 1.71 2.54 0.32
Pair:us(trait) 2.14 2.35 0.99

Predicted variety means are obtained from:
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> riceMV.pv <- predict(riceMV.asr, classify=”trait:Variety”)

> riceMV.pv$predictions

$"trait:Variety":

$"trait:Variety"$pvals:

trait Variety predicted.value standard.error est.status

1 syc AliCombo 14.953229 0.9180964 Estimable

2 syc Amaroo 16.161198 0.9180985 Estimable

3 syc Balilla 14.420236 0.9185701 Estimable

4 syc Bluebelle 13.103132 0.9309747 Estimable

5 syc Bogan 15.768223 0.9548522 Estimable

...

84 sye TKM6 9.807568 0.8056834 Estimable

85 sye WC1403 9.287950 0.8057545 Estimable

86 sye WC140311 8.923817 0.8056858 Estimable

87 sye YRK1 8.335681 0.8190248 Estimable

88 sye YRK3 8.113448 0.8190248 Estimable

$"trait:Variety"$avsed:

[1] 1.214741

These predictions are on the square root scale; it is straightforward to back-transform the predicted
means to the original scale of measurement. Approximate standard errors on th eoriginal scale can
be calculated from a Taylor series approximation. That is, if x is a random variable with E(x) = θ,
and y = g(x) is some function of x, then var(y) = (dy/dx)2θvar(x). See Kendall and Stuart [1969]
pp 231, for example. In this case, g(x) = x2 and g′(x) = dy/dx = 2x. The following code calculates
the transformed predictions and approximate standard errors:

> pv <- riceMV.pv$predictions$”trait:Variety”$pvals
> pv$rootwt <- pv$predicted.value2̂
> pv$approxSE <- sqrt(4*pv$predicted.value2̂ * pv$standard.error2̂)
> pv$est.status <- NULL

> pv

trait Variety predicted.value standard.error rootwt approxSE

1 syc AliCombo 14.953229 0.9180964 223.5991 27.45701

2 syc Amaroo 16.161198 0.9180985 261.1843 29.67514

3 syc Balilla 14.420236 0.9185701 207.9432 26.49199

4 syc Bluebelle 13.103132 0.9309747 171.6921 24.39737

5 syc Bogan 15.768223 0.9548522 248.6368 30.11265

...

84 sye TKM6 9.807568 0.8056834 96.1884 15.80359

85 sye WC1403 9.287950 0.8057545 86.2660 14.96762

86 sye WC140311 8.923817 0.8056858 79.6345 14.37959

87 sye YRK1 8.335681 0.8190248 69.4836 13.65426

88 sye YRK3 8.113448 0.8190248 65.8280 13.29023

Interpretation of results

Recall that the primary interest is varietal tolerance to bloodworms. This could be defined in
various ways: One option is to consider the regression implicit in the variance structure for the trait
by variety effects. The variance structure can arise from a regression of treated variety effects on
control effects, namely

uvt = βuvc + ǫ
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Figure 8.9: BLUPs for treated plotted against BLUPs for control

where the slope β = σvct/σ
2
vc .

Tolerance can be defined in terms of the deviations from regression, ǫ. Varieties with large positive
deviations have greatest tolerance to bloodworms. Note that this is similar to the original approach
except that the regression has been conducted at the genotypic rather than the phenotypic level. In
Figure 8.9 the BLUPs for treated have been plotted against the BLUPs for control for each variety
and the fitted regression line (slope = 0.61) has been drawn. Varieties with large positive deviations
from the regression line include YRK3, Calrose, HR19 and WC1403.

An alternative definition of tolerance is the simple difference between treated and control BLUPs
for each variety, namely δ = uvc −uvt . Unless β = 1 the two measures ǫ and δ have very different
interpretations. The key difference is that ǫ is a measure which is independent of inherent vigour
whereas δ is not. To see this consider

cov (ǫ)u′
vc = cov (uvt − βuvc )u

′
vc

=

(

σvct −
σvct

σ2
vc

σ2
vc

)

I44

= 0

whereas

cov (δ)u′
vc = cov (uvc − uvt)u

′
vc

=
(

σ2
vc − σvct

)

I44

The independence of ǫ and uvc and dependence between δ and uvc is clearly illustrated in Figures
8.10 and 8.11. In this example the two measures have provided very different rankings of the
varieties. The choice of tolerance measure depends on the aim of the experiment. In this experiment
the aim was to identify tolerance which is independent of inherent vigour so the deviations from
regression is preferred.
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Figure 8.10: Estimated deviations from regression of treated on control for each
variety plotted against estimate for control
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Figure 8.11: Estimated difference between control and treated for each variety plot-
ted against estimate for control
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8.9 Balanced longitudinal data - Random coefficients

and cubic smoothing splines

This section illustrates the use of random coefficients and cubic smoothing splines for the analysis
of balanced longitudinal data.

The implementation of cubic smoothing splines in asreml() is based on the mixed model formulation
of Verbyla et al. [1999]. More recently the methodology has been extended so that the user can
specify knot points; in the original approach the knot points were taken to be the ordered set of
unique values of the explanatory variable. The specification of knot points is particularly useful if
the number of unique values in the explanatory variable is large, or if units are measured at different
times.

These data were originally reported by Draper and Smith [1998, ex24N, p559] and have recently
been reanalysed by Pinheiro and Bates [2000, p338]. The data are trunk circumferences (in mil-
limetres) of each of 5 trees taken at 7 times (Figure 8.12). All trees were measured at the same
time so that the data are balanced. The aim of the study is unclear, though both previous analyses
involved modelling the overall growth curve, accounting for the obvious variation in both level and
shape between trees.

Pinheiro and Bates [2000] used a nonlinear mixed effects modelling approach, in which they mod-
elled the growth curves by a three parameter logistic function of age:

y =
φ1

1 + exp [−(x− φ2)/φ3]
(8.13)

where y is the trunk circumference, x is the tree age in days since December 31 1968, φ1 is the
asymptotic height, φ2 is the inflection point or the time at which the tree reaches 0.5φ1, φ3 is the
time elapsed between trees reaching half and about 3/4 of φ1.

The data frame orange contains:

> orange <- asreml.read.table(”orange.csv”, header=T, sep=”,”)
> names(orange)

[1] "Tree" "x" "circ" "Season"

where Tree is a factor with 5 levels, x is tree age in days since 31 December 1968, circ is the trunk
circumference and Season is a factor with two levels, Spring and Autumn. The factor Season was
included after noting that tree age spans several years and if converted to day of year, measurements
were taken in either April/May (Spring) or September/October (Autumn).

Initially we restrict the dataset to tree 1 to demonstrate fitting cubic splines in asreml(). The model
includes the intercept and linear regression of trunk circumference on x and an additional random
term spl(x) which includes a random term with a special design matrix with 7 − 2 = 5 columns
which relate to the vector, δ whose elements δi, i = 2, . . . , 6 are the second differentials of the cubic
spline at the knot points. The second differentials of a natural cubic spline are zero at the first and
last knot points [Green and Silverman, 1994].

> orange.asr <- asreml(circ ∼ x, random = ∼ spl(x),
+ splinepoints = list(x = c(118,484,664,1004,1231,1372,1582)),
+ data = orange, subset = Tree==1)

In this example the spline knot points are specifically given in the splinepoints argument. These
extra points have no effect in this case as they are the seven ages existing in the data file. In this
instance the analysis would be the same if the splinepoints argument was omitted.

> summary(orange.asr)$varcomp

gamma component std.error z.ratio constraint

spl(x) 0.07876884 3.954159 9.950608 0.3973786 Positive

R!variance 1.00000000 50.199529 37.886791 1.3249876 Positive
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Figure 8.12: Trellis plot of trunk circumference (mm) for each tree against age in
days since 1 December 1968.

> wald(orange.asr, denDF="default")

$Wald

Df denDF F inc Pr

(Intercept) 1 3.5 1382.0 3.124431e-06

x 1 3.5 217.5 1.229875e-04

$stratumVariances

df Variance spl(x) R!variance

spl(x) 1.488944 97.64263 11.99606 1

R!variance 3.511056 50.20223 0.00000 1

Predicted values of the spline curve at nominated points can be obtained by:

> orange.pv <- predict(orange.asr, classify = ”x”, predictpoints=list(x=seq(150,1500,50)))

The predictpoints argument adds the nominated points to the design matrix for prediction pur-
poses (Figure 8.13). Note that predictpoints could have been included in the asreml() call instead
of predict and if omitted, a default set of points for prediction purposes would have been generated.
The REML estimate of the smoothing constant and the fitted cubic smoothing spline (Figure 8.13)
indicate there is some nonlinearity. The four points below the line were the spring measurements.

An analysis of variance decomposition for the full dataset is given in Table 8.11, following Verbyla et al.
[1999].
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Figure 8.13: Fitted cubic smoothing spline for tree 1

Table 8.11: ANOVA decomposition for the orange data

stratum decomposition type df or ne

(Intercept) 1 f 1
Age

x f 1
spl(x) r 5
residual r 7

Tree
Tree rc 5

Age:Tree
x:Tree rc 5
spl(x):Tree r 25

error r

An overall spline is included as well as tree deviation splines. We note that the intercept and slope
for the tree deviation splines are assumed to be random effects. This is consistent with Verbyla et al.
[1999]. In this sense the tree deviation splines play a role in modelling the conditional curves for
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each tree and variance modelling. The intercept and slope for each tree are included as random
coefficients (denoted by rc in Table 8.11). Thus, if U5×2 is the matrix of intercepts (column 1) and
slopes (column 2) for each tree, then we assume that

var (vec(U)) = Σ⊗ I5

where Σ is a 2 × 2 symmetric positive definite matrix. Non smooth variation can be modelled at
the overall mean (across trees) level and this is achieved by including the factor dev(x) as a random
term. The full model is:

> orange1.asr <- asreml(circ ∼ x,
+ random = ∼ str(∼ Tree/x, ∼ diag(2):id(5)) +spl(x)+spl(x):Tree+dev(x),
+ splinepoints = list(x = c(118,484,664,1004,1231,1372,1582)), data = orange)

Table 8.12 presents the sequence of fitted models. We stress the importance of model building in
these settings, where we generally commence with relatively simple variance models and update to
more complex variance models if appropriate. Note that the REML log-likelihoods for models 1 and
2 are comparable and likewise for models 3 to 6. The REML log-likelihoods are not comparable
between these groups because of the inclusion of the fixed Season factor.

We begin by modelling the variance matrix for the intercept and slope for each tree, Σ, as a diagonal
matrix as there is no point including a covariance component between the intercept and slope if
the variance component(s) for one (or both) is zero. Model 1 also does not include a non-smooth
component at the overall level (that is, dev(x)).

Table 8.12: Sequence of models fitted to the orange data

model
term 1 2 3 4 5 6

Tree y y y y y y
x:Tree y y y y y y
cov(Tree, x:Tree) n n n n n y
spl(x) y y y y n y
spl(x):Tree y y y n y y
dev(x) n y y n n n
Season n n y y y y

REML log-likelihood -97.78 -94.07 -87.95 -91.22 -90.18 -87.43

The asreml() call and variance components for model 1 are:

> orange1.asr <- asreml(circ ∼ x, random = ∼ str(∼ Tree/x, ∼ diag(2):id(5)) + spl(x) + spl(x):Tree,
+ splinepoints = list(x = c(118,484,664,1004,1231,1372,1582)), data = orange)

> summary(orange1.asr)$varcomp

gamma component std.error z.ratio constraint

Tree+Tree:x!diag(2).1.var 4.789034e+00 3.044970e+01 2.457813e+01 1.238894 Positive

Tree+Tree:x!diag(2).2.var 9.392257e-05 5.971797e-04 4.240625e-04 1.408235 Positive

spl(x) 1.004896e+02 6.389346e+02 4.131293e+02 1.546573 Positive

Tree:spl(x) 1.116746e+00 7.100507e+00 4.935166e+00 1.438757 Positive

R!variance 1.000000e+00 6.358213e+00 3.652341e+00 1.740860 Positive

The fitted curves from this model are shown in Figure 8.14. The fit is unacceptable because the
spline has picked up too much curvature, suggesting there may be systematic non-smooth variation
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Figure 8.14: Plot of fitted cubic smoothing spline for model 1

at the overall level. This can be formally examined by including the dev(x) term as a random
effect.

Model 2 increased the REML log-likelihood by 3.70 (P < 0.05) with the spl(x) smoothing constant
approaching the boundary. The Season factor provides a possible explanation. When included in
Model 3, Season has a Wald statistic of 107.3 (P < 0.01) and dev(x) becomes bounded. The spring
measurements are lower than the autumn measurements so growth is slower in winter. Models 4 and
5 successively examined each term, indicating that both smoothing constants are significant. Model
6 includes the covariance parameter between the intercept and slope for each tree; this ensures that
the model will be translation invariant. This model requires care in the choice of starting values.
The asreml() call, illustrating an alternative method for specifying initial values, and the fitted
components for model 6 are:

> orange6.asr <- asreml(circ ∼ x + season,
+ random = ∼ str(∼ Tree/x, ∼ us(2,init=c(5.0,-0.01,0.0001)):id(5)) + spl(x) + spl(x):Tree,
splinepoints = list(x = c(118,484,664,1004,1231,1372,1582)), data = orange)

> summary(orange6.asr)$varcomp

gamma component std.error z.ratio constraint

Tree+Tree:x!us(2).1:1 5.6011527956 31.7916580507 2.512945e+01 1.2651157 Unconstrained

Tree+Tree:x!us(2).2:1 -0.0123766915 -0.0702490288 8.234755e-02 -0.8530798 Unconstrained

Tree+Tree:x!us(2).2:2 0.0001080119 0.0006130664 4.344414e-04 1.4111604 Unconstrained

spl(x) 2.1666162231 12.2975259925 1.119901e+01 1.0980902 Positive

Tree:spl(x) 1.3751301469 7.8051195890 5.222912e+00 1.4944001 Positive

R!variance 1.0000000000 5.6759133719 3.294276e+00 1.7229622 Positive
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Figure 8.15: Fitted values adjusted for Season and approximate confidence intervals
for model 6

The fitted values for individual trees (adjusted for Season) from model 6 together with a marginal
prediction and approximate confidence intervals (2× standard error of prediction) are shown in
Figure 8.15. The conclusions from this analysis are quite different from those obtained by the
nonlinear mixed effects analysis. The individual curves for each tree are not convincingly modelled
by a logistic function. There is a distinct pattern in the residuals shown in Pinheiro and Bates
[2000, p340], which is consistent for all trees; this is modelled here by the Season term.



A
Some technical details about
model fitting in asreml()

A.1 Sparse versus dense

The terms in the linear mixed model are partitioned into two sets; a dense set and a sparse set. The
partition is defined by the fixed formula; all terms in the fixed formula are included in the dense set
while terms in the random and sparse formulae are included in the sparse set. The inverse coefficient
matrix is fully formed for the terms in the dense set which are fitted using dense equations. The
inverse coefficient matrix is only partially formed for terms in the sparse set. Typically, the sparse
set is large resulting in savings in memory and computing. A consequence is that the variance
matrix of the BLUEs and BLUPs is only available for terms in the dense portion.

A.2 Ordering of terms in asreml()

Solutions for the fixed and random effects in linear mixed model analysis using asreml() are obtained
by solving the corresponding mixed model equations in the numerical routines [Gilmour et al., 1995].
The sparse equations are processed first after being reordered to retain sparsity during solution. If
keep.order=F, the remaining equations are processed with main effects before interactions and low
order interactions before higher ones so that normal marginality of terms is achieved. The order of
effects in the solution vector(s) in the returned object reflects the order of processing.

A.3 Aliasing and singularities

[@thispage /FitH @ypos]¿¿

A singularity occurs when there is either

• a linear dependence in the model and therefore no information left to estimate
the corresponding effect, or

• no data for that fixed effect,

• no data for a simple (uncorrelated) random effect.

The REML routines handle singularities by deleting the equations in question. Since
the equations are solved from the bottom up, the first level (and hence the last level
processed) of a factor is the one that will be declared singular and dropped from
the model. The number of singularities is returned in the asreml object (nsing) and
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reported during the iterative process. Solutions that are zero and have NA for their
standard error are the singular effects.

Warning: Singularities in the sparse terms of the model may change with changes in
the random terms included in the model. If this happens it will mean that changes
in the REML log-likelihood are not valid for testing the changes made to the random
model. A likelihood ratio test is not valid if the fixed model has changed.

A.3.1 Examples of aliasing

The sequence of examples in Table A.1 are presented to facilitate an understanding
of over-parameterised models. It is assumed that Var is defined with 4 levels, Trt
with 3 levels and Rep with 3 levels and that all Var:Trt combinations are present in
the data.

Table A.1: Examples of aliasing

model number of sin-
gularities

description

fixed = y ∼ -1 + Var,
random = ∼ Rep

0 Var fully fitted

fixed = y ∼ Var,
random = ∼ Rep

1 first level of Var dropped

fixed = y ∼ -1 + Var + Trt,
random = ∼ Rep

1 Var fully specified, first level of Trt dropped
from the models

fixed = y ∼ Var + Trt + Var:Trt,
random = ∼ Rep

8 first level of both Var and Trt dropped from
the model, together with subsequent inter-
actions

fixed = ∼ Var + Trt,
random = ∼ Rep,
sparse = ∼ Var:Trt

8 Var:Trt fully specified; (Intercept), Var and
Trt completely singular and dropped from
the model



B
Available variance models

Table B.1 presents the full range of variance models available in asreml() with their
algebraic descriptions and numbers of parameters. In most cases the algebraic form is
for the correlation model (id() to agau()). However, the models from diag() onwards
are additional heterogeneous variance models.

Recall from Section 4.2 the algebraic forms of the homogeneous and heterogeneous
variance models are determined as follows. Let C (ω×ω) = [Cij] be the correlation
matrix for a particular correlation model. If Σ (ω×ω) is the corresponding homoge-
neous variance matrix then

Σ = σ2C

and has just one more parameter than the correlation model. For example, the ho-
mogeneous variance model corresponding to the id() correlation model has variance
matrix Σ = σ2Iω (specified idv() in the asreml() function call, see below) and one

parameter. Likewise, if Σ
(ω×ω)
h is the heterogeneous variance matrix corresponding

to C, then

Σh = DCD

where D (ω×ω) = diag (σi) . In this case there are an additional ω parameters. For
example, the asreml() function for the heterogeneous variance model corresponding
to id() variance model has variance matrix

Σh =













σ2
1

0 . . . 0
0 σ2

2
. . . 0

...
...

. . .
...

0 0 . . . σ2ω













(specified idh() in the asreml() command file, see below) and involves the ω parameters
σ2

1
. . . σ2ω.
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Table B.1: Details of the available variance models

function
name

description algebraic
form

number of parameters

corr hom het
variance variance

Correlation models

id() identity Cii = 1, Cij = 0, i 6= j 0 1 ω

ar1() 1
st

order
autoregressive

C
ii
= 1, C

i+1,i
= φ

1

C
ij

= φ
1
C

i−1,j
, i > j + 1

|φ
1
| < 1

1 2 1 + ω

ar2() 2
nd

order
autoregressive

C
ii
= 1,

C
i+1,i

= φ
1
/(1− φ

2
)

C
ij

= φ
1
C

i−1,j
+φ

2
C

i−2,j
, i > j+1

|φ
1
± φ

2
| < 1,

|φ
1
| < 1, |φ

2
| < 1

2 3 2 + ω

ar3() 3
rd

order
autoregressive

Cii = 1, Ω = 1− φ2 − φ3(φ1 + φ3),

Ci+1,i = (φ1 + φ2φ3)/Ω,

3 4 3 + ω

C
i+2,i

= (φ
1
(φ

1
+ φ

3
) + φ

2
(1− φ

2
))/Ω,

C
ij

= φ
1
C

i−1,j
+ φ

2
C

i−2,j
+ φ

3
C

i−3,j
, i > j + 2

|φ
1
| < (1− φ

2
), |φ

2
| < 1, |φ

3
| < 1

sar() symmetric
autoregressive

C
ii
= 1,

C
i+1,i

= φ
1
/(1 + φ2

1
/4)

C
ij

= φ
1
C

i−1,j
− φ2

1
/4 C

i−2,j
,

i > j + 1

|φ
1
| < 1

1 2 1 + ω

sar2() constrained
autoregressive 3
used for
competition

as for AR3 using

φ1 = γ1 + 2γ2 ,

φ
2
= −γ

2
(2γ

1
+ γ

2
),

φ
3
= γ

1
γ2
2
,

2 3 2 + ω

ma1() 1
st

order
moving average

Cii = 1,

Ci+1,i = −θ1/(1 + θ2
1
)

C
ji

= 0, j > i+ 2

|θ
1
| < 1

1 2 1 + ω

ma2() 2
nd

order
moving average

C
ii
= 1,

C
i+1,i

= −θ
1
(1− θ

2
)/(1 + θ2

1
+ θ2

2
)

C
i+2,i

= −θ
2
/(1 + θ2

1
+ θ2

2
)

C
ji

= 0, j > i+ 2

θ
2
± θ

1
< 1

|θ
1
| < 1, |θ

2
| < 1

2 3 2 + ω
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Details of the available variance models

function
name

description algebraic
form

number of parameters

corr hom het
variance variance

arma() autoregressive
moving average

C
ii
= 1,

C
i+1,i

= (θ − φ)(1− θφ)/(1 +

θ2 − 2θφ)

C
ji

= φC
j−1,i

, j > i+ 1

|θ| < 1, |φ| < 1

2 3 2 + ω

cor() uniform
correlation

C
ii
= 1, C

ij
= θ, i 6= j 1 2 1 + ω

corb() banded
correlation

C
ii
= 1

C
i+j,i

= φ
j
, 1 ≤ j ≤ ω − 1

|φj | < 1

ω − 1 ω 2ω − 1

corg() general
correlation
corgh() = us()

C
ii
= 1

C
ij

= φ
ij
, i 6= j

|φij | < 1

ω(ω−1)
2

ω(ω−1)
2

+1 ω(ω−1)
2

+ ω

One-dimensional equally spaced power models

exp() exponential C
ii
= 1

C
ij

= φ|xi−xj |, i 6= j

xi are coordinates
|φ| < 1

1 2 1 + ω

gau() gaussian C
ii
= 1

Cij = φ(xi−xj)
2

xi are coordinates

|φ| < 1

1 2 1 + ω

Two-dimensional irregularly spaced power models

iexp() isotropic expo-
nential

C
ii
= 1

C
ij

= φ|xi−xj |+|yi−yj|

x and y vectors of coordinates

|φ| < 1

1 2 1 + ω

igau() isotropic gaus-
sian

C
ii
= 1

C
ij

= φ(xi−xj)
2+(yi−yj)

2

x and y vectors of coordinates

|φ| < 1

1 2 1 + ω

ieuc() isotropic eu-
clidean

Cii = 1

C
ij

= φ
√

(xi−xj)
2+(yi−yj)

2

x and y vectors of coordinates

|φ| < 1

1 2 1 + ω



Available variance models 140

Details of the available variance models

function
name

description algebraic
form

number of parameters

corr hom het
variance variance

isp() spherical C
ij

= 1− 3
2
θij +

1
2
θ3ij

0 < φ1

1 2 1 + ω

cir() circular
(Webster and Oliver

[2001])

C
ij

= 1

− 2
π
(θij
√

1− θ2ij + sin−1θij)

0 < φ1

1 2 1 + ω

aexp() anisotropic ex-
ponential

C
ii
= 1

C
ij

= φ
|xi−xj |
1 φ

|yi−yj |
2

x and y vectors of coordinates

|φ
1
| < 1, |φ

2
| < 1

2 3 2+ω

agau() anisotropic
gaussian

C
ii
= 1

C
ij

= φ
(xi−xj)

2

1 φ
(yi−yj)

2

2

x and y vectors of coordinates

|φ
1
| < 1, |φ

2
| < 1

2 3 2 + ω

mtrn() Matérn with
first 1 ≤ k ≤ 5
parameters
specified by the
user

C
ij

=Matérn: see Section 4.3.3

φ > 0 range, ν shape(0.5)

δ > 0 anisotropy ratio(1),

α anisotropy angle(0),

λ(1|2) metric(2)

k k+1 k + ω

Heterogeneous variance models

diag() diagonal = idh() Σii = φi Σij = 0, i 6= j - - ω

us() unstructured
general covari-
ance matrix

Σij = φij - - ω(ω+1)
2

ante(,k) antedependence
order k

1 ≤ order ≤
ω − 1

Σ
−1

= UDU ′

D
ii
= d

i
, D

ij
= 0, i 6= j

U
ii

= 1, U
ij

= u
ij
, 1 ≤ j − i ≤

order

Uij = 0, i > j

- - (k + 1)(ω − k/2)

chol(,k) cholesky
order k
1 ≤ order ≤
ω − 1

Σ = LDL′

D
ii
= d

i
, D

ij
= 0, i 6= j

L
ii
= 1, L

ij
= l

ij
, 1 ≤ i−j ≤ order

- - (k + 1)(ω − k/2)

fa(,k) factor analytic
order k

Σ = ΓΓ′ +Ψ,
Γ contains covariance factors
Ψ contains specific variance

- - kω + ω
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Details of the available variance models

function
name

description algebraic
form

number of parameters

corr hom het
variance variance

Inverse relationship matrices

giv() generalised inverse - 1 -

ped() inverse relationship matrix derived from pedigree - 1 -

General variance models

str() variance model relating to a sequence of terms in
the model

- 1 -
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