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Preface 
 
 

ASReml is a statistical package that fits linear mixed models using Residual Maximum Likelihood 
(REML). It has been under development since 1993 and arose out of collaboration between Arthur 
Gilmour and Brian Cullis (NSW Department of Primary Industries) and Robin Thompson and Sue 
Welham (Rothamsted Research) to research into the analysis of mixed models and to develop 
appropriate software, building on their wide expertise in relevant areas including the development 
of methods that are both statistically and computationally efficient, the analysis of animal and plant 
breeding data, the analysis of spatial and longitudinal data and the production of widely used 
statistical software. More recently, VSN International acquired the right to ASReml from these 
sponsoring organizations and now directly supports Arthur Gilmour and Sue Welham for further 
computational developments and research on the analysis of mixed models. Release 4 of ASReml 
was first distributed in 2014. A major enhancement in this release is the introduction of an 
alternative, functional, specification of linear mixed models. For the convenience of users, three 
documents have been prepared, i. a guide to Release 4 using the original, still supported, model 
specification, ii. this document which is a guide using the new functional model specification and 
iii a document ASReml Update: What’s new in Release 4.1, which highlights the changes from 
Release 3. 
 
Linear mixed effects models provide a rich and flexible tool for the analysis of many data sets 
commonly arising in the agricultural, biological, medical and environmental sciences. Typical 
applications include the analysis of (un)balanced longitudinal data, repeated measures analysis, 
the analysis of (un)balanced designed experiments, the analysis of multi-environment trials, the 
analysis of both univariate and multivariate animal breeding and genetics data and the analysis of 
regular or irregular spatial data. 
 
ASReml provides a stable platform for delivering well established procedures while also delivering 
current research in the application of linear mixed models. The strength of ASReml is the use of 
the Average Information (AI) algorithm and sparse matrix methods for fitting the linear mixed 
model. This enables it to analyse large and complex data sets quite efficiently. 
 
One of the strengths of ASReml is the wide range of variance models for the random effects in the 
linear mixed model that are available. There is a potential cost for this wide choice. Users should 
be aware of the dangers of either overfitting or attempting to fit inappropriate variance models to 
small or highly unbalanced data sets.  
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We stress the importance of using data-driven diagnostics and encourage the user to read the 
examples chapter, in which we have attempted to not only present the syntax of ASReml in the 
context of real analyses but also to indicate some of the modelling approaches we have found 
useful. 
 
There are several interfaces to the core functionality of ASReml. The program name ASReml relates 
to the primary program. ASReml-W refers to the user interface program developed by VSNi and 
distributed with ASReml. ASReml-R refers to the S language interface to a DLL of the core ASReml 
routines. Genstat uses the same core routines for its REML directive. Both of these have good data 
manipulation and graphical facilities. 
 
The focus in developing ASReml has been on the core engine and it is freely acknowledged that 
its user interface is not to the level of these other packages. Nevertheless, as the developer’s 
interface, it is functional, it gives access to everything that the core can do and is especially suited 
to batch processing and running of large models without the overheads of other systems. 
 
This guide has 16 chapters. Chapter 1 introduces ASReml and describes the conventions used in 
this guide. Chapter 2 outlines some basic theory while Chapter 3 presents an overview of the syntax 
of ASReml through a simple example. Data file preparation is described in Chapter 4 and Chapter 
5 describes how to input data into ASReml. Chapters 6 and  7 are key chapters which present the 
syntax for specifying the linear model and the variance models for the random effects in the linear 
mixed model. Chapters 8 and 9 describe special commands for multivariate and genetic analyses 
respectively. Chapter 10 deals with prediction of linear functions of fixed and random effects in the 
linear mixed model, Chapter 11 demonstrates running an ASReml job, Chapter 12 describes the 
merging of data files and Chapter 13 presents the syntax for forming functions of variance 
components. Chapter 14 gives a detailed explanation of the output files. Chapter 15 gives an 
overview of the error messages generated in ASReml and some guidance as to their probable cause. 
Chapter 16 presents the analysis of a range of data examples. 
 
In brief, the improvements in Release 4 include developments associated with input include 
generating initial values, generating a template to allow an alternative way of presenting parametric 
information associated with variance structures, new facilities for reading in data files and defining 
factor names and improved facilities for reading relationship matrices and better explanation of a 
simpler way of constructing variances of functions of parameters. Among the developments 
associated with analysis are making it easier to specify functions of variance parameters using 
names rather than numbers, fitting factor effects with large random regression models, such as 
commonly used with marker data, fitting linear relationships among variance structure parameters 
and calculating information criteria. The developments associated with output include writing out 
design matrices. A major development in Release 4 is an alternative model specification using a 
functional approach. Prior to Release 4 a structural specification was used in which variance 
models were applied by imposing variance structures on random model terms and/or the residual 
error term after the mixed model had been specified. In this case, the variance models were 
presented in a separate part of the input file.  
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The functional specification offers an alternative to the structural specification in which the 
variance structures for random model terms and the residual error term are specified in the linear 
mixed model definition by wrapping terms with the required variance model function. This 
approach is more concise, less error-prone and more automatic for specifying multi-section 
residual variances. 
 
The document “ASReml Update: What’s New in Release 4.2” details the new features, 
improvements and updates in this release. You can find this document in the docs directory of 
your ASReml installation. The most significant changes are an increase in available memory of up 
to 96 GB (Section 11.3.6) and a reorganization of some core routines (Section 11.5.1), which 
enables ASReml 4.2 to run substantially faster (up to 50% in some cases). Throughout this 
document the text New R4.2 indicates new features and improvements. 
 
The data sets and ASReml input used in this guide are available from the examples directory 
created under the standard installation. They remain the property of the authors or of the original 
source but may be freely distributed provided the source is acknowledged. The authors would 
appreciate feedback and suggestions for improvements to the program and this guide. Proceeds 
from the licensing of ASReml are used to support continued development to implement new 
developments in the application of linear mixed models. The developmental version is available 
to supported licensees via a website upon request to VSNi. Most users will not need to access the 
developmental version unless they are actively involved in testing a new development. 
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1 Introduction 
 
 
1.1 What ASReml can do 

 
ASReml (pronounced A S Rem el) is used to fit linear mixed models to quite large data sets with 
complex variance models. It extends the range of variance models available for the analysis of 
experimental data. ASReml has application in the analysis of 

 
• (un)balanced longitudinal data, 

• repeated measures data (multivariate analysis of variance and spline type models), 

• (un)balanced designed experiments, 

• multi-environment trials and meta analysis, 

• univariate and multivariate animal breeding and genetics data (involving a relationship matrix 
for correlated effects), 

• regular or irregular spatial data. 

The engine of ASReml underpins the REML procedure in Genstat. An interface for R called 
ASReml-R is available and runs under the same license as the ASReml program. While these 
interfaces will be adequate for many analyses, some large problems will need to use ASReml. The 
ASReml user interface is terse. Most effort has been directed towards efficiency of the engine. It 
normally operates in a batch mode. 

 
Problem size depends on the sparsity of the mixed model equations and the size of your computer. 
However, models with 500,000 effects have been fitted successfully. The computational efficiency 
of ASReml arises from using the Average Information REML procedure (giving quadratic 
convergence) and sparse matrix operations. ASReml has been operational since March 1996 and is 
updated periodically. 
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1.2 Installation 
 

Installation instructions are distributed with the program. ASReml 4.2 has migrated to a new 
license system underpinned by Reprise technology. This system is widely used by software 
vendors and allows for much more robust license management. It allows delivery and management 
of your license entitlements via the cloud without installing license server software on your 
systems. Further details about the licensing can be found on the ASReml knowledgebase: 
https://asreml.kb.vsni.co.uk/knowledge-base/vsni-new-licensing/. If you require help with 
installation or licensing, please email support@asreml.co.uk. 

 
1.3 User Interface 

 
ASReml is essentially a batch program with some optional interactive features. The typical 
sequence of operations when using ASReml is 

 
• Prepare the data (typically using a spreadsheet or database program) 

• Export that data as an ASCII file (for example export it as a .csv (COMMA separated values) 
file from Excel) 

• Prepare a job file with filename extension .as 

• Run the job file with ASReml 

• Review the various output files 

• Revise the job and re-run it, or 

• Extract pertinent results for your report. 

You need an ASCII editor to prepare input files and review and print output files. Two commonly 
used editors are: 

 
1.3.1 ASReml-W 

 
The ASReml-W interface is a graphical tool allowing the user to edit programs, run and then view 
the output, before saving results. It is available on Windows 64 bit platform only. 

 
ASReml-W has a built-in help system explaining its use. 

 
1.3.2 ConTEXT 

 
ConTEXT is a third-party freeware text editor, with programming extensions which make it a 
suitable environment for running ASReml under Windows. The ConTEXT directory includes 
installation files and instructions for configuring it for use in ASReml. Full details of ConTEXT 
are available from http://www.contexteditor.org/. 

  

https://asreml.kb.vsni.co.uk/knowledge-base/vsni-new-licensing/
mailto:support@asreml.co.uk
http://www.contexteditor.org/
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1.4 How to use this guide 
 

The guide consists of 16 chapters. Chapter 1 introduces ASReml and describes the conventions 
used in the guide. Chapter 2 outlines some basic theory which you may need to come back to. 

 
New ASReml users are advised to read Chapter 3 before attempting to code their first job. It 
presents an overview of basic ASReml coding demonstrated on a real data example. Chapter 16 
presents a range of examples to assist users further. When coding your first job, look for an 
example to use as a model. 

 
Data file preparation is described in Chapter 4, and Chapter 5 describes how to input data into 
ASReml. Chapters 6 and 7 are key chapters which present the syntax for specifying the linear 
model and the variance models for the random effects in the linear mixed model. Variance 
modelling is a complex aspect of analysis. We introduce variance modelling in ASReml by 
example in Chapter 16. 

 
Chapters 8 and 9 describe special commands for multivariate and genetic analyses respectively. 
Chapter 10 deals with prediction of fixed and random effects from the linear mixed model and 
Chapter 13 presents the syntax for forming functions of variance components such as heritability. 

 
Chapter 11 discusses the operating system level command for running an ASReml job. Chapter 12 
describes a new data merging facility. Chapter 14 gives a detailed explanation of the output files. 
Chapter 15 gives an overview of the error messages generated in ASReml and some guidance as 
to their probable cause. 

 
1.5 Getting assistance 

 
The ASReml help accessible through ASReml-W can also be linked to ConTEXT or accessed 
directly (ASReml.chm). 

 
Users with a support contract with VSNi should email support@asreml.co.uk for assistance with 
installation and running ASReml. When requesting help, please send the input command file, the 
data file and the corresponding primary output file along with a description of the problem.  

 

  

mailto:support@asreml.co.uk
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1.6 Typographic conventions 
 

A hands-on approach is the best way to develop a working understanding of a new computing 
package. We therefore begin by presenting a guided tour of ASReml using a sample data set for 
demonstration (see Chapter 3). Throughout the guide new concepts are demonstrated by example 
wherever possible. 

 
In this guide you will find framed sample boxes 
to the right of the page as shown here. These 
contain ASReml command file (sample) code. 
Note that: 
- the code under discussion is highlighted in 

bold type for easy identification, 

- the continuation symbol (  ) is used to 
indicate that some of the original code is 
omitted. 

Data examples are displayed in larger boxes in the body of the text. 
Other conventions are as follows: 

 
• keyboard key names appear in SMALLCAPS, for example, TAB, COMMA and ESC, 

• example code within the body of the text is in this size and font, 

• in the presentation of general ASReml syntax, for example 
[path] asreml basename[.as] [arguments] 
- typewriter font is used for text that must be typed verbatim, for example, asreml 

and .as after basename in the example, 

- italic font is used to name information to be supplied by the user, for example, basename 
stands for the name of a file with an .as filename extension, 

- square brackets indicate that the enclosed text and/or arguments are not always required. Do 
not enter these square brackets. 

• ASReml output is in this size and font,  

this font is used for all other code. 

An example ASReml code box 

bold type highlights sections of 
code currently under discussion 

remaining code is not highlighted 

⋮ indicates that some of the 
original code is omitted from 
the display 
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2 Some theory 
 
 
2.1 The general linear mixed model 

 
If 𝒚𝒚 (𝑛𝑛 × 1) denotes the vector of observations, the general linear mixed model can be written as 

𝒚𝒚 = 𝑿𝑿𝑿𝑿 + 𝒁𝒁𝒁𝒁 + 𝒆𝒆  (2.1) 

where 𝝉𝝉 (𝑝𝑝 × 1) is a vector of fixed effects, 𝑿𝑿 (𝑛𝑛 × 𝑝𝑝) is the design matrix of full column rank 
that associates observations with the appropriate combination of fixed effects, 𝒖𝒖 (𝑞𝑞 × 1) is a vector 
of random effects, 𝒁𝒁 (𝑛𝑛 × 𝑞𝑞) is the design matrix that associates observations with the appropriate 
combination of random effects, and 𝒆𝒆 (𝑛𝑛 × 1) is the vector of residual errors. 

2.1.1 Sigma parameterization of the linear mixed model 
 

Model (2.1) is called a linear mixed model or linear mixed effects model. It is assumed 

�
𝒖𝒖
𝒆𝒆
�  ~ 𝑁𝑁 ��𝟎𝟎𝟎𝟎�  , �𝑮𝑮�𝝈𝝈𝑔𝑔�

𝟎𝟎
 𝟎𝟎
𝑹𝑹𝑣𝑣(𝝈𝝈𝑟𝑟) ��  (2.2) 

where the matrices G and 𝑹𝑹𝑣𝑣 are variance matrices for u and e and are functions of parameters 𝝈𝝈𝑔𝑔 
and 𝝈𝝈𝑟𝑟. This requires that the random effects u and residual errors e are uncorrelated. The variance 
matrix for 𝒚𝒚 is then of the form 

var (𝒚𝒚) = 𝒁𝒁𝒁𝒁�𝝈𝝈𝑔𝑔�𝒁𝒁⊤ +  𝑹𝑹𝑣𝑣(𝝈𝝈𝑟𝑟)  (2.3) 

which we will refer to as the sigma parameterization of the G and R variance structures, and the 
individual variance structure parameters in 𝝈𝝈𝑔𝑔 and 𝝈𝝈𝑟𝑟 will be referred to as sigmas. The variance 
models given by G and 𝑹𝑹𝑣𝑣 are referred to as G structures and R structures respectively. 

 
We illustrate these concepts using the simplest linear mixed model, that is, the one-way 
classification. 

 
Example 2.1 A simple example  
Consider a one-way classification comprising a single random effect u, and a residual error term 
e.  
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The two random components of this model, namely u and e, are each assumed to be independent 
and identically distributed (IID) and to follow a normal distribution such that 𝒖𝒖 ~ 𝑁𝑁 (𝟎𝟎,𝜎𝜎𝑢𝑢2 𝑰𝑰𝑞𝑞) and 
e ∼ N (0, 𝜎𝜎𝑒𝑒2In). Hence the variance of 𝒚𝒚 has the form 
 

var (𝒚𝒚) = 𝜎𝜎𝑢𝑢2𝒁𝒁𝒁𝒁T +𝜎𝜎𝑒𝑒2 𝑰𝑰𝑛𝑛  (2.4) 
 
This model has two variance structure parameters or sigmas: the variance component 𝜎𝜎𝑢𝑢2 
associated with u, and the variance component 𝜎𝜎𝑒𝑒2associated with e. Mapping this equation back 
to (2.3), we have 𝝈𝝈𝑔𝑔 = 𝜎𝜎𝑢𝑢2,𝑮𝑮�𝝈𝝈𝑔𝑔� =  𝜎𝜎𝑢𝑢2 𝑰𝑰𝑞𝑞 ,𝝈𝝈𝑟𝑟 = 𝜎𝜎𝑒𝑒2 and 𝑹𝑹𝑣𝑣(𝝈𝝈𝑟𝑟) = 𝜎𝜎𝑒𝑒2 𝑰𝑰𝑛𝑛. 

2.1.2 Partitioning the fixed and random model terms 
 

Typically, τ and u are composed of several model terms, that is, τ can be partitioned as 
𝝉𝝉 = [𝝉𝝉1⊤. . . 𝝉𝝉𝑡𝑡⊤]⊤ and u can be partitioned as 𝒖𝒖 = [𝒖𝒖1⊤. . .𝒖𝒖𝑏𝑏⊤]⊤, with X and Z partitioned 
conformably as 𝑿𝑿 = [𝑿𝑿1. . .𝑿𝑿𝑡𝑡] and 𝒁𝒁 = [𝒁𝒁1. . .𝒁𝒁𝑏𝑏]. 

 
2.1.3 G structure for the random model terms 

 
For u partitioned as 𝒖𝒖 = [𝒖𝒖1⊤. . .𝒖𝒖𝑏𝑏⊤]⊤, we impose a direct sum structure on the matrix G, written 

𝑮𝑮 = ⊕𝑖𝑖=1 
𝑏𝑏′ 𝑮𝑮𝑖𝑖 = 

⎣
⎢
⎢
⎢
⎡
𝑮𝑮1 0 ⋯ 0 0
0 𝑮𝑮2 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 𝑮𝑮𝑏𝑏′−1 0
0 0 ⋯ 0 𝑮𝑮𝑏𝑏′⎦

⎥
⎥
⎥
⎤

 

where ⊕ is the direct sum operator, each 𝑮𝑮𝑖𝑖 is of size 𝑞𝑞𝑖𝑖 and 𝑞𝑞 =  ∑ 𝑞𝑞𝑖𝑖𝑖𝑖 . 

The default assumption is that each random model term generates one component of this direct 
sum (then 𝑏𝑏′ = 𝑏𝑏 and var (𝑢𝑢𝑖𝑖) = 𝑮𝑮𝑖𝑖 for 𝑖𝑖 =  1 . . . 𝑏𝑏). This means that the random effects from any 
two distinct model terms are uncorrelated. However, in some models, one component of G may 
apply across several model terms, for example, in random coefficient regression where the random 
intercepts and slopes for subjects are correlated. To accommodate these cases, one component of 
G may apply across several model terms (then 𝑏𝑏′ <  𝑏𝑏). In some other (less likely but possible) 
cases, we may wish to separate one model term over several independent parts (then 𝑏𝑏′ >  𝑏𝑏), see 
Section 7.2.1. 

 
Example 2.2 Variance components mixed models 

 
Building example 2.1 to a linear mixed model with more than one (𝑏𝑏 > 1) random effect 
(typically known as a variance components mixed model), the random effects 𝒖𝒖𝑖𝑖 in u, and the 
residual errors e, are assumed pairwise uncorrelated and to each be normally distributed with mean 
zero and variance given by 

 
var (𝒖𝒖𝑖𝑖) = 𝜎𝜎𝑢𝑢𝑖𝑖

2 𝑰𝑰𝑞𝑞𝑖𝑖 
and  

var (𝒆𝒆) = 𝜎𝜎𝑒𝑒2𝑰𝑰𝑛𝑛  
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where 𝑰𝑰𝑞𝑞𝑖𝑖  and 𝑰𝑰𝑛𝑛 are identity matrices of dimension qi and n, respectively. In this case 

var (𝒚𝒚) = �𝜎𝜎𝑢𝑢𝑖𝑖
2 𝒁𝒁𝑖𝑖𝒁𝒁𝑖𝑖 ⊤ +  𝜎𝜎𝑒𝑒2𝑰𝑰𝑛𝑛

𝑏𝑏

𝑖𝑖=1

 (2.5) 

2.1.4 Partitioning the residual error term 
 

As for the fixed and random model terms, it is often useful or appropriate to consider a partitioning 
of the vector of residual errors e according to some conditioning factor. We use the term section 
to describe this partitioning and the most common example of the use of sections in e is when we 
wish to allow sections in the data to have different variance structures. For example, in the analysis 
of multi-environment trials (METs) it is natural to expect that each trial will require a separate 
(possibly spatial) error structure. In this case, for 𝑠𝑠 sections we have  
𝒆𝒆 = [𝒆𝒆1 

⊤ , 𝒆𝒆2⊤, . . . 𝒆𝒆𝑠𝑠⊤]⊤ assuming that the data vector is ordered by section, and where 𝒆𝒆𝑗𝑗 represents 
the vector of errors for the 𝑗𝑗𝑡𝑡ℎ section. 

2.1.5 R structure for the residual error term 

 
For 𝒆𝒆 partitioned as 𝒆𝒆 = [𝒆𝒆1 

⊤ , 𝒆𝒆2⊤, . . . 𝒆𝒆𝑠𝑠⊤]⊤ we allow the matrix Rv to have a similar direct sum 
structure, with 

𝑹𝑹𝒗𝒗 = ⊕𝑗𝑗=1 
𝑠𝑠 𝑹𝑹𝑣𝑣𝑗𝑗 = 

⎣
⎢
⎢
⎢
⎡
𝑹𝑹𝑣𝑣1 0 ⋯ 0 0

0 𝑹𝑹𝑣𝑣2 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 𝑹𝑹𝑣𝑣𝑠𝑠−1 0
0 0 ⋯ 0 𝑹𝑹𝑣𝑣𝑠𝑠⎦

⎥
⎥
⎥
⎤

 

for 𝑠𝑠 ≥ 1 sections and the data ordered by section. Note that it may be necessary to re-order  
(re-number) the data units in order to achieve this structure. In ASReml it is now straightforward 
to apply possibly different variance structures to each component of Rv. 
 
In many cases, the residual errors (e) can be expected to share a common variance structure. In 
this case there is only one section (𝑠𝑠 = 1). 
 
Typically a variance structure is specified for each random model term and often more complex 
models than the simple IID model are specified. ASReml offers a wide range of variance models 
to choose from. A full listing is in Table 7.6 and details are provided in Chapter 7. 
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2.1.6 Gamma parameterization for the linear mixed model 
 

The sigma parameterization of model (2.3) is one possible parameterization of var (y). In this 
parameterization both G(σg) and Rv(σr) are variance matrices and the variance structure parameters 
in σg and σr are referred to as sigmas, see above. Other parameterizations are possible and are 
sometimes useful. For example, in some of the early development of REML for the traditional 
mixed model of (2.5), the variance matrix was parameterized as the equivalent model  
 

var (𝒚𝒚) = 𝜎𝜎𝑒𝑒2 ��𝛾𝛾𝑔𝑔𝑖𝑖  𝒁𝒁𝑖𝑖𝒁𝒁𝑖𝑖 
⊤ +  𝑰𝑰𝑛𝑛

𝑏𝑏

𝑖𝑖

� (2.6) 

 
for 𝛾𝛾𝑔𝑔𝑖𝑖 being the ratio of the variance component for the random term ui relative to error variance, 
that is, 𝛾𝛾𝑔𝑔𝑖𝑖 = 𝜎𝜎𝑢𝑢𝑖𝑖

2 /𝜎𝜎𝑒𝑒2. In this case ASReml calculated a simple estimate of 𝜎𝜎𝑒𝑒2 and initial values for 
the iterative process were specified in terms of the ratios 𝛾𝛾𝑔𝑔𝑖𝑖 rather than in terms of the variance 
components 𝜎𝜎𝑢𝑢𝑖𝑖

2 . It was often easier to specify initial values in terms of these ratios rather than the 
variance components which is why this approach was adopted. Where 𝑹𝑹𝒗𝒗(𝝈𝝈𝒓𝒓) can be written as a 
scaled correlation matrix, that is, 𝑹𝑹𝑣𝑣(𝝈𝝈𝑟𝑟) = 𝜎𝜎𝑒𝑒2 𝑹𝑹𝑐𝑐(𝛾𝛾𝑟𝑟), this suggests the alternative specification 
of (2.2) 

� 𝒖𝒖𝒆𝒆 �  ~ 𝑁𝑁�� 
𝟎𝟎
𝟎𝟎

 �  , 𝜎𝜎𝑒𝑒2  � 𝑮𝑮�𝛾𝛾𝑔𝑔� 
𝟎𝟎 

0
𝑹𝑹𝑐𝑐�𝛾𝛾𝑟𝑟� 

� � (2.7) 

where 𝛾𝛾𝑔𝑔  and 𝛾𝛾𝑟𝑟  represent the variance structure parameters associated with scaled (by 𝜎𝜎𝑒𝑒2) 
variance matrices. In this case 

var (𝒚𝒚) = 𝜎𝜎𝑒𝑒2 �𝒁𝒁𝒁𝒁�𝛾𝛾𝑔𝑔�𝒁𝒁⊤ + 𝑹𝑹𝑐𝑐(𝛾𝛾𝑟𝑟)�, (2.8) 

which we will refer to as the gamma parameterization, and the individual variance structure 
parameters in 𝛾𝛾𝑔𝑔  and 𝛾𝛾𝑟𝑟  will be referred to as gammas. ASReml switches between the sigma and 
gamma parameterizations for estimation. This is discussed in Section 7.6. 

 
2.1.7 Parameter types 

 
Each sigma in 𝝈𝝈𝑔𝑔 and 𝝈𝝈𝑟𝑟 and each gamma in 𝛾𝛾𝑔𝑔  and 𝛾𝛾𝑟𝑟  has a parameter type, for example, variance 
components, variance component ratios, autocorrelation parameters, factor loadings. Furthermore, 
the parameters in 𝝈𝝈𝑔𝑔,𝝈𝝈𝑟𝑟 , 𝛾𝛾𝑔𝑔  and 𝛾𝛾𝑟𝑟  can span multiple types. For example, the spatial analysis of a 
simple column trial would involve variance components (sigma parameterization) or variance 
component ratios (gamma parameterization) and spatial autocorrelation parameters. 

 
2.1.8 Variance structures for the random model terms 

 
The random model terms 𝒖𝒖𝑖𝑖 in u define the random effects and associated design matrices, 
𝒁𝒁𝑖𝑖  ∈  𝒁𝒁, but additional information is required before the model can be fitted.  
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This extra step involves defining the G structure for each term. In Release 4, this is achieved by 
using functions to directly apply variance models to the individual component factors in a random 
model term to define 𝑮𝑮𝑖𝑖. This produces a consolidated model term that simultaneously defines 
both the design matrix (𝒁𝒁𝑖𝑖) and variance model (𝑮𝑮𝑖𝑖). This process is described in detail in Chapter 
7 with examples. 

 
2.1.9 Variance models for terms with several factors 

 
A random model term may comprise either a single factor or several component factors to give a 
compound model term. Consider a compound model term represented by A.B, where the 
component factors A and B have m and n levels respectively and the “.” operator forms a term with 
levels corresponding to the combinations of all levels of A with all levels of B. The effects 𝑎𝑎𝑏𝑏𝑖𝑖𝑖𝑖  for 
A.B are generated with the levels of B nested in the levels of A, i.e. the levels of B cycling fastest: 

(𝒂𝒂𝒂𝒂) = (𝑎𝑎𝑏𝑏11,𝑎𝑎𝑏𝑏12, … 𝑎𝑎𝑏𝑏1𝑛𝑛,𝑎𝑎𝑏𝑏21, 𝑎𝑎𝑏𝑏22, … 𝑎𝑎𝑏𝑏2𝑛𝑛, … 𝑎𝑎𝑏𝑏𝑚𝑚1,𝑎𝑎𝑏𝑏𝑚𝑚2, … 𝑎𝑎𝑏𝑏𝑚𝑚𝑚𝑚)⊤  

Now consider the variance model for the term A.B. If we specify our variance model generically 
as 
vmodel1(A).vmodel2(B) 

where vmodel1 is a variance model function with variance matrix A = [𝐴𝐴𝑖𝑖𝑖𝑖] and vmodel2 is a 
variance model function with variance matrix B = [𝐵𝐵𝑘𝑘𝑘𝑘], then the G structure for this term is 
defined by 

cov (𝑎𝑎𝑏𝑏𝑖𝑖𝑖𝑖,𝑎𝑎𝑏𝑏𝑗𝑗𝑗𝑗)  =  𝐴𝐴𝑖𝑖𝑖𝑖  ×  𝐵𝐵𝑘𝑘𝑘𝑘 (2.9) 

This means that the covariance between two effects 𝑎𝑎𝑏𝑏𝑖𝑖𝑖𝑖 and 𝑎𝑎𝑏𝑏𝑗𝑗𝑗𝑗 in (ab) is constructed as the 
product of the covariance between 𝑎𝑎𝑖𝑖 and 𝑎𝑎𝑗𝑗 in model A i.e. its (i, j)th element 𝐴𝐴𝑖𝑖𝑖𝑖, and the 
covariance between 𝑏𝑏𝑘𝑘  and 𝑏𝑏𝑙𝑙 in model B i.e. its (k, l)th element 𝐵𝐵𝑘𝑘𝑘𝑘. 

 
Example 2.3 A simple direct product structure 

 
If A has 3 levels and B has 2 levels, then the term A.B would have the 6 levels: 

(𝒂𝒂𝒂𝒂) = (𝑎𝑎𝑏𝑏11,𝑎𝑎𝑏𝑏12,𝑎𝑎𝑏𝑏21,𝑎𝑎𝑏𝑏22,𝑎𝑎𝑏𝑏31,𝑎𝑎𝑏𝑏32)⊤  

Using magenta and blue to highlight terms associated with A and B respectively in cov (𝑎𝑎𝑏𝑏21,𝑎𝑎𝑏𝑏32 ), 
if 

var(A) = �
𝐴𝐴11 𝐴𝐴12 𝐴𝐴13
𝐴𝐴21 𝐴𝐴22 𝐴𝐴23
𝐴𝐴31 𝐴𝐴32 𝐴𝐴33

� and var(B) �𝐵𝐵11 𝐵𝐵12
𝐵𝐵21 𝐵𝐵22

� then 

cov (𝑎𝑎𝑏𝑏21 
,𝑎𝑎𝑏𝑏 32 

)  =  𝐴𝐴23  ×  𝐵𝐵12. 
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2.1.10 Direct product structures 
Mathematically, the result (2.9) is known as a direct product structure and is written in full as 
 var ((𝒂𝒂𝒂𝒂)) = 𝑨𝑨⊕𝑩𝑩 

= �

𝑨𝑨11𝑩𝑩 ⋯ 𝑨𝑨1𝑝𝑝𝑩𝑩

⋮ ⋱ ⋮

𝑨𝑨𝑚𝑚1𝑩𝑩 ⋱ 𝑨𝑨𝑚𝑚𝑚𝑚𝑩𝑩
� 

Structures associated with direct product construction are known as separable variance structures 
and we call the assumption that a separable variance structure is plausible the assumption of 
separability. 

 
2.1.11 Direct products in R structures 

 
Separable structures occur naturally in many practical situations. Consider a vector of common 
errors associated with an experiment. The usual least squares assumption (and the default in 
ASReml) is that these are independently and identically distributed (IID). However, if e was from 
a field experiment laid out in a rectangular array of r rows by c columns, we could arrange the 
residuals as a matrix and might consider that they were autocorrelated within rows and columns. 
Writing the residuals as a vector in field order, that is, by sorting the residuals rows within columns 
(plots within blocks) the variance of the residuals might then be 

𝜎𝜎𝑒𝑒2 ∑𝑐𝑐 (𝜌𝜌𝑐𝑐) ⊕∑𝑟𝑟 (𝜌𝜌𝑟𝑟) 

where ∑𝑐𝑐 (𝜌𝜌𝑐𝑐) and ∑𝑟𝑟 (𝜌𝜌𝑟𝑟) are correlation matrices for the row model (order r, autocorrelation 
parameter 𝜌𝜌𝑟𝑟) and column model (order c, autocorrelation parameter 𝜌𝜌𝑐𝑐) respectively. More 
specifically, a two-dimensional separable autoregressive spatial structure (AR1 ⊕ AR1) is 
sometimes assumed for the common errors in a field trial analysis (see Gogel (1997) and Cullis et 
al. (1998) for examples). In this case 

∑𝑟𝑟 = 

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 1

𝜌𝜌𝑟𝑟 1

𝜌𝜌𝑟𝑟2 𝜌𝜌𝑟𝑟 1

⋮ ⋮ ⋮ ⋱

 𝜌𝜌𝑟𝑟𝑟𝑟−1 𝜌𝜌𝑟𝑟𝑟𝑟−2 𝜌𝜌𝑟𝑟𝑟𝑟−3 ⋯ 1 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

  and ∑𝑐𝑐 = 

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 1

𝜌𝜌𝑐𝑐 1

𝜌𝜌𝑐𝑐2 𝜌𝜌𝑐𝑐 1

⋮ ⋮ ⋮ ⋱

 𝜌𝜌𝑐𝑐𝑐𝑐−1 𝜌𝜌𝑐𝑐𝑐𝑐−2 𝜌𝜌𝑐𝑐𝑐𝑐−3 ⋯ 1 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

Alternatively, the residuals might relate to a multivariate analysis with 𝑛𝑛𝑡𝑡 traits and n units and be 
ordered traits within units. In this case an appropriate variance structure might be 

𝑰𝑰𝑛𝑛  ⊗∑ 

where ∑(𝑛𝑛𝑡𝑡×𝑛𝑛𝑡𝑡) is a general or unstructured variance matrix. See Chapter 7 for details on specifying 
separable R structures in ASReml.  
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2.1.12 Direct products in G structures 
 

Likewise, the random model terms in u may have a direct product variance structure. For example, 
for a field trial with s sites, g varieties and the effects ordered varieties within sites, the random 
model term site.variety may have the variance structure 

∑⊗ 𝑰𝑰𝑔𝑔  

where 𝚺𝚺 is the variance matrix for sites. This would imply that the varieties are independent random 
effects within each site, have different variances at each site, and are correlated across sites. 
Important Whenever a random term is formed as the interaction of two factors you should 
consider whether the IID assumption is sufficient or if a direct product structure might be more 
appropriate. See Chapter 7 for details on specifying separable G structures in ASReml. 

 
2.1.13 Range of variance models for R and G structures 

 
A range of models are available for the components of both R and G structures. They include 
correlation (C) models (that is, where the diagonals are 1), or covariance (V) models and are 
discussed in detail in Chapter 7. Among the range of correlation models are: 

 
• identity (that is, independent and identically distributed with variance 1) 

• autoregressive (order 1 or 2) 

• moving average (order 1 or 2) 

• ARMA(1,1) 

• uniform 

• banded 

• general correlation. 

Among the range of covariance models are: 
 
• scaled identity (that is, independent and identically distributed with homogenous variances) 

• diagonal (that is, independent with heterogeneous variances) 

• antedependence 

• unstructured 

• factor analytic. 

There is also the facility to define models based on relationship matrices, including additive 
relationship matrices generated by pedigrees and using user specified variance matrices.  
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2.1.14 Combining variance models in R and G structures 
 

The combination of variance models in separable G and R structures is a difficult and important 
concept. This is discussed in detail in Chapter 7. 

 
2.2 Estimation 

 
Consider the sigma parameterization of Section 2.1.1. Estimation involves two processes that are 
closely linked. They are performed within the ‘engine’ of ASReml. One process involves 
estimation of τ and prediction of u (although the latter may not always be of interest) for given 𝝈𝝈𝑔𝑔 
and 𝝈𝝈𝑟𝑟. The other process involves estimation of these variance parameters. 

 
2.2.1 Estimation of the variance parameters 
 
Estimation of the variance parameters is carried out using residual or restricted maximum 
likelihood (REML), developed by Patterson and Thompson (1971). An historical development of 
the theory can be found in Searle et al. (1992). Note firstly that 

𝒚𝒚 ∼  𝑁𝑁 (𝑿𝑿𝜏𝜏 ,𝑯𝑯), (2.10) 

where 𝑯𝑯 =  𝒁𝒁𝒁𝒁�𝝈𝝈𝑔𝑔�𝒁𝒁𝑇𝑇  +  𝑹𝑹𝑣𝑣(𝝈𝝈𝑟𝑟). REML does not use (2.10) for estimation of variance 
parameters, but rather uses a distribution free of τ , essentially based on error contrasts or residuals. 
The derivation given below is presented in Verbyla (1990). 

We transform y using a non-singular matrix 𝑳𝑳 =  [𝑳𝑳1 𝑳𝑳2] such that 

𝑳𝑳1⊤𝑿𝑿 = 𝐼𝐼𝑝𝑝,  𝑳𝑳1⊤𝑿𝑿 = 𝟎𝟎. 

If 𝒚𝒚𝑗𝑗 =  𝑳𝑳𝑗𝑗⊤𝒚𝒚, 𝑗𝑗 = 1, 2,  

� 
𝒚𝒚1
𝒚𝒚2 �  ~ 𝑁𝑁�� 

𝝉𝝉
𝟎𝟎

 �  , �𝑳𝑳1
⊤ 𝑯𝑯𝑳𝑳1 

 𝑳𝑳2
⊤ 𝑯𝑯𝑳𝑳1 

𝑳𝑳1
⊤ 𝑯𝑯𝑳𝑳2

𝑳𝑳2
⊤ 𝑯𝑯𝑳𝑳2 

� � 

The full distribution of 𝑳𝑳⊤𝒚𝒚 can be partitioned into a conditional distribution, namely 𝒚𝒚1|𝒚𝒚2, for 
estimation of τ, and a marginal distribution based on y2 for estimation of 𝝈𝝈𝑔𝑔 and 𝝈𝝈𝑟𝑟; the latter is 
the basis of the residual likelihood. 

The estimate of τ is found by equating 𝒚𝒚1 to its conditional expectation, and after some algebra we 
find, 

𝝉𝝉� =  (𝑿𝑿⊤𝑯𝑯−1
  𝑿𝑿)−1𝑿𝑿⊤𝑯𝑯−1

 𝒚𝒚 
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Estimation of 𝜿𝜿 = �𝝈𝝈𝑔𝑔⊤𝝈𝝈𝑟𝑟⊤�
⊤

is based on the log residual likelihood, 

ℓ𝑅𝑅 =  −
1
2

 (log det 𝑳𝑳2⊤ 𝑯𝑯−1𝑳𝑳2 + 𝒚𝒚2⊤ (𝑳𝑳2⊤ 𝑯𝑯𝑳𝑳2)−1𝒚𝒚2)   

=  −1
2

 (log det𝑿𝑿⊤ 𝑯𝑯−1𝑿𝑿 + log det  𝑯𝑯 + 𝒚𝒚⊤ 𝑷𝑷𝒚𝒚2)  (2.11) 

where 
𝑷𝑷 = 𝑯𝑯−1 − 𝑯𝑯−1𝑿𝑿 (𝑿𝑿⊤𝑯𝑯−1𝑿𝑿)−1𝑿𝑿⊤𝑯𝑯−1 

Note that 𝒚𝒚⊤𝑷𝑷𝑷𝑷 = (𝒚𝒚 − 𝑿𝑿𝝉𝝉�)⊤𝑯𝑯−1(𝒚𝒚 − 𝑿𝑿𝝉𝝉�). The log-likelihood (2.11) depends on 𝑿𝑿 and not on 
the particular non-unique transformation defined by 𝑳𝑳. 

 
The log residual likelihood (ignoring constants) can be written as 

ℓ𝑅𝑅 =  −1
2

 (log det 𝑪𝑪 + log det 𝑹𝑹𝑣𝑣 + log det 𝑮𝑮 + 𝒚𝒚⊤ 𝑷𝑷𝑷𝑷)  (2.12) 

We can also write 

𝑷𝑷 = 𝑹𝑹𝑣𝑣−1 −  𝑹𝑹𝑣𝑣−1𝑾𝑾𝑪𝑪−1𝑾𝑾⊤𝑹𝑹𝑣𝑣−1 

with 𝑾𝑾 =  [𝑿𝑿 𝒁𝒁] . Letting 𝜿𝜿 =  �𝝈𝝈𝑔𝑔⊤  𝝈𝝈𝑟𝑟⊤ �
⊤

, the REML estimates of 𝜅𝜅𝑖𝑖 are found by calculating the 
score 

𝑈𝑈(𝜅𝜅𝑖𝑖) = 𝜕𝜕ℓ𝑅𝑅/𝜕𝜕𝜅𝜅𝑖𝑖 =  −1
2

 [tr (𝑷𝑷𝑯𝑯𝑖𝑖) − 𝒚𝒚⊤ 𝑷𝑷𝑯𝑯𝑖𝑖𝑷𝑷𝑷𝑷]  (2.13) 
 

and equating to zero. Note that 𝑯𝑯𝑖𝑖  =  𝜕𝜕𝑯𝑯/𝜕𝜕𝜅𝜅𝑖𝑖. 
 

The elements of the observed information matrix are 

− 𝜕𝜕2ℓ𝑅𝑅
𝜕𝜕𝜅𝜅𝑖𝑖𝜕𝜕𝜅𝜅𝑗𝑗

=  1
2

 tr �𝑷𝑷𝑯𝑯𝑖𝑖𝑖𝑖� −  1
2

 tr�𝑷𝑷𝑯𝑯𝑖𝑖𝑷𝑷𝑯𝑯𝑗𝑗�   

+ 𝒚𝒚⊤ 𝑷𝑷𝑯𝑯𝑖𝑖𝑷𝑷𝑯𝑯𝑗𝑗 𝑷𝑷𝑷𝑷 − 1
2
𝒚𝒚⊤ 𝑷𝑷𝑯𝑯𝑖𝑖𝑖𝑖  𝑷𝑷𝑷𝑷  (2.14) 

Where 𝑯𝑯𝑖𝑖𝑖𝑖 =  𝜕𝜕2𝑯𝑯/ 𝜕𝜕𝜅𝜅𝑖𝑖𝜕𝜕𝜅𝜅𝑗𝑗 .  

The elements of the expected information matrix are 

E �−
𝜕𝜕2ℓ𝑅𝑅
𝜕𝜕𝜅𝜅𝑖𝑖𝜕𝜕𝜅𝜅𝑗𝑗

� =  
1
2

 tr �𝑷𝑷𝑯𝑯𝑖𝑖𝑷𝑷𝑯𝑯𝑗𝑗�. (2.15) 

 
Given an initial estimate 𝜿𝜿(0), an update of κ, 𝜿𝜿(1) using the Fisher-scoring (FS) algorithm is 

𝜿𝜿(1)  =  𝜿𝜿(0)  +  𝑰𝑰�𝜿𝜿(0),𝜿𝜿((0)�
−1
𝑼𝑼 �𝜿𝜿((0)� (2.16) 

where U (𝜿𝜿(0)) is the score vector (2.13) and 𝑰𝑰(𝜿𝜿𝟎𝟎,𝜿𝜿𝟎𝟎) is the expected information matrix (2.15) 
of κ evaluated at 𝜿𝜿(0).  
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For large models or large data sets, the evaluation of the trace terms in either (2.14) or (2.15) is 
either not feasible or is very computer intensive. To overcome this problem ASReml uses the AI 
algorithm (Gilmour, Thompson and Cullis, 1995). The matrix denoted by 𝛪𝛪𝐴𝐴 is obtained by 
averaging (2.14) and (2.15) and approximating 𝒚𝒚⊤ 𝑷𝑷𝑯𝑯𝑖𝑖𝑖𝑖𝑷𝑷𝑷𝑷 by its expectation, tr (𝑷𝑷𝑯𝑯𝑖𝑖𝑖𝑖) in those 
cases when 𝑯𝑯𝑖𝑖𝑖𝑖  ≠  0. For variance components models (that is t hose linear with respect to 
variances in H), the terms in 𝛪𝛪𝐴𝐴 are exact averages of those in (2.14) and (2.15). The basic idea is 
to use 𝛪𝛪𝐴𝐴(𝜅𝜅𝑖𝑖, 𝜅𝜅𝑗𝑗) in place of the expected information matrix in (2.16) to update κ. 
 

The elements of 𝛪𝛪𝐴𝐴 are 

𝛪𝛪𝐴𝐴 �𝜅𝜅𝑖𝑖, 𝜅𝜅𝑗𝑗�  = 1
2

 𝒚𝒚⊤𝑷𝑷𝑯𝑯𝑖𝑖𝑷𝑷𝑯𝑯𝑗𝑗𝑷𝑷𝑷𝑷.  (2.17) 

The 𝛪𝛪𝐴𝐴 matrix is the (scaled) residual sums of squares and products matrix of 

𝒚𝒚 =  [𝒚𝒚1, . . . ,𝒚𝒚𝑘𝑘 ]  

where 𝒚𝒚𝑖𝑖 is the ‘working’ variate for 𝜿𝜿𝑖𝑖 and is given by 

𝒚𝒚𝑖𝑖 =  𝑯𝑯𝑖𝑖𝑷𝑷𝑷𝑷  
 =  𝑯𝑯𝑖𝑖𝑹𝑹𝑣𝑣−1𝒆𝒆�   
 =  𝑹𝑹𝒗𝒗𝑖𝑖𝑹𝑹𝑣𝑣

−1𝒆𝒆� , 𝜅𝜅𝑖𝑖 ∈ 𝝈𝝈𝑟𝑟 
 =  𝒁𝒁𝒁𝒁𝑖𝑖𝑮𝑮−𝟏𝟏𝒖𝒖�, 𝜅𝜅𝑖𝑖 ∈ 𝝈𝝈𝑟𝑟 

where 𝒆𝒆�  =  𝒚𝒚 −  𝑿𝑿𝝉𝝉�  −  𝒁𝒁𝒖𝒖�, 𝝉𝝉� and 𝒖𝒖� are solutions to (2.18). In this form the AI matrix is 
relatively straightforward to calculate. 
 
The combination of the AI algorithm with sparse matrix methods, in which only non-zero values 
are stored, gives an efficient algorithm in terms of both computing time and workspace. 

 
2.2.2 Estimation/prediction of the fixed and random effects 
To estimate 𝝉𝝉 and predict u the objective function 

log 𝑓𝑓𝒀𝒀 (𝒚𝒚 | 𝒖𝒖 ;  𝝉𝝉 ,𝑹𝑹𝑣𝑣)  +  log 𝑓𝑓𝑼𝑼  (𝒖𝒖 ;  𝑮𝑮) 

is used. This is the log-joint distribution of (Y, u). 

Differentiating with respect to τ and u leads to the mixed model equations (Henderson et al., 1959, 
Robinson, 1991) which are given by 

� 𝑿𝑿
⊤𝑹𝑹𝑣𝑣−1𝑿𝑿                  𝑿𝑿⊤𝑹𝑹𝑣𝑣−1𝒁𝒁

 𝒁𝒁⊤𝑹𝑹𝑣𝑣−1𝑿𝑿      𝒁𝒁⊤𝑹𝑹𝑣𝑣−1𝒁𝒁 + 𝑮𝑮−1 
�  �  𝝉𝝉� 

 𝒖𝒖� � = � 𝑿𝑿
⊤𝑹𝑹𝑣𝑣−1𝒚𝒚 

 𝒁𝒁⊤𝑹𝑹𝑣𝑣−1𝒚𝒚  
�   (2.18) 

These can be written as 

𝑪𝑪𝜷𝜷�  = 𝑾𝑾𝑹𝑹𝒗𝒗−1𝒚𝒚 
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Where 𝑪𝑪 = 𝑾𝑾⊤ 𝑹𝑹𝑣𝑣−1 𝑾𝑾 + 𝑮𝑮∗,𝜷𝜷 = [𝝉𝝉⊤ 𝒖𝒖⊤]⊤ and 

𝑮𝑮∗ = � 𝟎𝟎 𝟎𝟎 
𝟎𝟎 𝑮𝑮−1 � 

 

The solution of (2.18) requires values for 𝝈𝝈𝑔𝑔 and 𝝈𝝈𝑟𝑟. In practice we replace 𝝈𝝈𝑔𝑔 and 𝝈𝝈𝑟𝑟 by their 
REML estimates 𝝈𝝈�𝑔𝑔 and 𝝈𝝈�𝑟𝑟. 

Note that 𝝉𝝉� is the best linear unbiased estimator (BLUE) of τ , while 𝒖𝒖� is the best linear unbiased 
predictor (BLUP) of u for known 𝝈𝝈𝑔𝑔 and 𝝈𝝈𝑟𝑟. We also note that 

 

𝜷𝜷� − 𝜷𝜷 �  𝝉𝝉� − 𝝉𝝉
 𝒖𝒖� − 𝒖𝒖 �  ~ 𝑁𝑁 �� 𝟎𝟎𝟎𝟎 �  ,𝑪𝑪−1 �. 

 

2.2.3 Use of the gamma parameterization 
 

ASReml uses either the gamma or sigma parameterization for estimation depending on the residual 
specification. The current default for univariate, single section data sets is the gamma 
parameterization. In this case, all scale parameters are estimated as a ratio with respect to the 
residual variance, 𝜎𝜎𝑒𝑒2 and any parameters that measure only correlation are unchanged. See Chapter 
7 for more detail. 

 
2.3 What are BLUPs? 
Consider a balanced one-way classification. For data records ordered r repeats within b treatments 
regarded as random effects, the linear mixed model is 𝒚𝒚 =  𝑿𝑿𝑿𝑿 +  𝒁𝒁𝒁𝒁 +  𝒆𝒆 where 
𝑿𝑿 =  𝟏𝟏𝑏𝑏  ⊗  𝟏𝟏𝑟𝑟 is the design matrix for τ (the overall mean), 𝒁𝒁 =  𝑰𝑰𝑏𝑏  ⊗  𝟏𝟏𝑟𝑟 is the design matrix 
for the b (random) treatment effects 𝑢𝑢𝑖𝑖 and e is the error vector. Assuming that the treatment effects 
are random implies that 𝒖𝒖 ~ 𝑁𝑁 (𝑨𝑨𝑨𝑨,𝜎𝜎𝑏𝑏2𝑰𝑰𝑏𝑏), for some design matrix A and parameter vector 𝝍𝝍. It 
can be shown that 

𝒖𝒖� =  
𝑟𝑟𝜎𝜎𝑏𝑏2

𝑟𝑟𝜎𝜎𝑏𝑏 
2 +  𝜎𝜎2

(𝒚𝒚� − 𝟏𝟏𝑦𝑦�. . ) + 
𝜎𝜎2

𝑟𝑟𝜎𝜎𝑏𝑏 
2 +  𝜎𝜎2

 𝑨𝑨𝑨𝑨 (2.19) 

where 𝒚𝒚� is the vector of treatment means, 𝑦𝑦�·· is the grand mean. The differences of the treatment 
means and the grand mean are the estimates of treatment effects if treatment effects are fixed. The 
BLUP is therefore a weighted mean of the data-based estimate and the ‘prior’ mean Aψ. If ψ = 0, 
the BLUP in (2.19) becomes 

𝒖𝒖� =  
𝑟𝑟𝜎𝜎𝑏𝑏2

𝑟𝑟𝜎𝜎𝑏𝑏 
2 +  𝜎𝜎2

(𝒚𝒚� − 𝟏𝟏𝑦𝑦�. . ) (2.20) 

and the BLUP is a so-called shrinkage estimate. As 𝑟𝑟𝜎𝜎𝑏𝑏2 becomes large relative to 𝜎𝜎2, the BLUP 
tends to the fixed effect solution, while for small 𝑟𝑟𝜎𝜎𝑏𝑏2 relative to 𝜎𝜎2 the BLUP tends towards zero, 
the assumed initial mean. Thus (2.20) represents a weighted mean which involves the prior 
assumption that the 𝑢𝑢𝑖𝑖 have zero mean. 
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Note also that the BLUPs in this simple case are constrained to sum to zero. This is essentially 
because the unit vector defining X can be found by summing the columns of the Z matrix. This 
linear dependence of the matrices translates to dependence of the BLUPs and hence constraints. 
This aspect occurs whenever the column space of X is contained in the column space of Z. The 
dependence is slightly more complex with correlated random effects. 

 
2.4 Inference: Random effects 

 
2.4.1 Tests of hypotheses: variance parameters 
Inference concerning variance parameters of a linear mixed effects model usually relies on 
approximate distributions for the (RE)ML estimates derived from asymptotic results. 

 
It can be shown that the approximate variance matrix for the REML estimates is given by the inverse 
of the expected information matrix (Cox and Hinkley, 1974, Section 4.8). Since this matrix is not 
available in ASReml we replace the expected information matrix by the AI matrix. Furthermore, 
the REML estimates are consistent and asymptotically normal, though in small samples this 
approximation appears to be unreliable (see later). 

 
A general method for comparing the fit of nested models fitted by REML is the REML likelihood 
ratio test, or REMLRT. The REMLRT is only valid if the fixed effects are the same for both models. 
In ASReml this requires not only the same fixed effects model, but also the same parameterisation. 

 
If ℓ𝑅𝑅2 is the REML log-likelihood of the more general model and 𝜕𝜕𝑅𝑅1 is the REML log-likelihood 
of the restricted model (that is, the REML log-likelihood under the null hypothesis), then the 
REMLRT is given by 

𝐷𝐷 = 2 log (ℓ𝑅𝑅2 / ℓ𝑅𝑅1)  =  2 [log (ℓ𝑅𝑅2) −(ℓ𝑅𝑅1)]  (2.21) 

which is strictly positive. If 𝑟𝑟𝑖𝑖 is the number of parameters estimated in model i, then the 
asymptotic distribution of the REMLRT, under the restricted model is 𝜒𝜒𝑟𝑟2−𝑟𝑟1

2  
 
The REMLRT is implicitly two-sided, and must be adjusted when the test involves a hypothesis 
with the parameter on the boundary of the parameter space. It can be shown that for a single 
variance component, the theoretical asymptotic distribution of the REMLRT is a mixture of 𝜒𝜒2 
variates, where the mixing probabilities are 0.5, one with 0 degrees of freedom (spike at 0) and the 
other with 1 degree of freedom. The approximate P-value for the REMLRT statistic (D),  
is 0.5(1 − Pr(𝜒𝜒12 ≤ 𝑑𝑑)) where d is the observed value of D. This has a 5% critical value of 2.71 
in contrast to the 3.84 critical value for a 𝜒𝜒2 variate with 1 degree of freedom. The distribution of 
the REMLRT for the test that k variance components are zero, or tests involved in random 
regressions, which involve both variance and covariance components, involves a mixture of 𝜒𝜒2 
variates from 0 to k degrees of freedom. See Self and Liang (1987) for details. 

 
Tests concerning variance components in generally balanced designs, such as the balanced one-
way classification, can be derived from the usual analysis of variance.   
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It can be shown that the REMLRT for a variance component being zero is a monotone function of 
the F statistic for the associated term. 

 
To compare two (or more) non-nested models we can evaluate the Akaike Information Criteria 
(AIC) or the Bayesian Information Criteria (BIC) for each model. These are given by 

AIC =  − 2ℓ𝑅𝑅𝑅𝑅 + 2𝑡𝑡𝑖𝑖   
BIC =  − 2ℓ𝑅𝑅𝑅𝑅 + 𝑡𝑡𝑖𝑖 log 𝑣𝑣  (2.22) 

where 𝑡𝑡𝑖𝑖 is the number of variance parameters in model i and 𝜈𝜈 =  𝑛𝑛 −  𝑝𝑝 is the residual degrees 
of freedom. AIC and BIC are calculated for each model and the model with the smallest value is 
chosen as the preferred model. 

 
2.4.2 Diagnostics 
In this section we will briefly review some of the diagnostics that have been implemented in 
ASReml for examining the adequacy of the assumed variance matrix for either R or G structures, 
or for examining the distributional assumptions regarding e or u. Firstly we note that the BLUP of 
the residual vector is given by 

𝒆𝒆�  =  𝒚𝒚 −𝑾𝑾𝜷𝜷�   

=  𝑹𝑹𝑣𝑣𝑷𝑷𝑷𝑷  (2.23) 

It follows that 

E(𝒆𝒆�) = 𝟎𝟎   

var (𝒆𝒆�) = 𝑹𝑹𝑣𝑣 −𝑾𝑾𝑪𝑪−1𝑾𝑾⊤   

The matrix 𝑾𝑾𝑪𝑪−1𝑾𝑾⊤ (under the sigma parameterization) is the so-called ‘extended hat’ matrix. 
ASReml includes the 𝜎𝜎2 in the hat matrix under the gamma parameterization. It is the linear mixed 
effects model analogue of 𝜎𝜎2𝑿𝑿(𝑿𝑿⊤𝑿𝑿)−1𝑿𝑿⊤ for ordinary linear models. The diagonal elements are 
returned in the fourth field of the .yht file. 

 
The !OUTLIER qualifier invokes a partial implementation of research by Alison Smith, Ari 
Verbyla and Brian Cullis. With this qualifier, ASReml writes 
 
• 𝑮𝑮−1𝒖𝒖 and 𝑮𝑮−1𝒖𝒖/diag√𝑮𝑮−1−𝑮𝑮−1𝑪𝑪𝑍𝑍𝑍𝑍𝑮𝑮−1 to the .sln file,  

• 𝑹𝑹𝑣𝑣−1𝒆𝒆 and 𝑹𝑹𝑣𝑣−1𝒆𝒆/diag�𝑹𝑹𝑣𝑣−1−𝑹𝑹𝑣𝑣−1𝑾𝑾𝑾𝑾𝑾𝑾−1𝑾𝑾⊤𝑹𝑹𝑣𝑣−1 to the .yht file, 

• and copies lines where the last ratio exceeds 3 in magnitude to the .res file 

• and reports the number of such lines to the .asr file. 

• It has not been validated for multivariate models or XFA models with zero ψs.  
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The variogram has been suggested as a useful diagnostic for assisting with the identification of 
appropriate variance models for spatial data (Cressie, 1991). Gilmour et al. (1997) demonstrate its 
usefulness for the identification of the sources of variation in the analysis of field experiments. If 
the elements of the data vector (and hence the residual vector) are indexed by a vector of spatial 
coordinates, 𝒔𝒔𝑖𝑖 , 𝑖𝑖 =  1, . . . ,𝑛𝑛, then the ordinates of the sample variogram are given by 

𝑣𝑣𝑖𝑖𝑖𝑖 =
1
2

 
�𝑒̃𝑒𝑖𝑖 (𝒔𝒔𝑖𝑖) −  𝑒̃𝑒𝑗𝑗  �𝒔𝒔𝑗𝑗��

2
 , 𝑖𝑖, 𝑗𝑗 =  1, . . . ,𝑛𝑛;  𝑖𝑖 ≠  𝑗𝑗 

The sample variogram reported by ASReml has two forms depending on whether the spatial 
coordinates represent a complete rectangular lattice (as typical of a field trial) or not. In the lattice 
case, the sample variogram is calculated from the triple (𝑙𝑙𝑖𝑖𝑖𝑖1, 𝑙𝑙𝑖𝑖𝑖𝑖2,𝑣𝑣𝑖𝑖𝑖𝑖) where 𝑙𝑙𝑖𝑖𝑖𝑖1 = 𝑠𝑠𝑖𝑖1  −  𝑠𝑠𝑗𝑗1 and 
𝑙𝑙𝑖𝑖𝑖𝑖2  =  𝑠𝑠𝑖𝑖2  −  𝑠𝑠𝑗𝑗2 are the displacements. As there will be many 𝑣𝑣𝑖𝑖𝑖𝑖  with the same displacements, 
ASReml calculates the means for each displacement pair 𝑙𝑙𝑖𝑖𝑖𝑖1, 𝑙𝑙𝑖𝑖𝑖𝑖2 either ignoring the signs (default) 
or separately for same sign and opposite sign (!TWOWAY), after grouping the larger 
displacements: 9-10, 11-14, 15-20, ....The result is displayed as a perspective plot (see Figure 14.2) 
of the one or two surfaces indexed by absolute displacement group. In this case, the two directions 
may be on different scales. 

 
Otherwise ASReml forms a variogram based on polar coordinates. It calculates the distance between 

points 𝑑𝑑𝑖𝑖𝑖𝑖 =  �𝑙𝑙𝑖𝑖𝑖𝑖12 +  𝑙𝑙𝑖𝑖𝑖𝑖22  and angle 𝜃𝜃𝑖𝑖𝑖𝑖(−180 < 𝜃𝜃𝑖𝑖𝑖𝑖 < 180) subtended by the line from (0, 0) to 

(𝑙𝑙𝑖𝑖𝑖𝑖1, 𝑙𝑙𝑖𝑖𝑖𝑖2) with the x-axis. The angle can be calculated as 𝜃𝜃𝑖𝑖𝑖𝑖 = tan−1 (𝑙𝑙𝑖𝑖𝑖𝑖1, 𝑙𝑙𝑖𝑖𝑖𝑖2) choosing  
(0 <  𝜃𝜃𝑖𝑖𝑖𝑖  <  180) if 𝑙𝑙𝑖𝑖𝑖𝑖2  >  0 and (−180 <  𝜃𝜃𝑖𝑖𝑖𝑖  <  0) if 𝑙𝑙𝑖𝑖𝑖𝑖2  <  0. Note that the variogram has 
angular symmetry in that 𝑣𝑣𝑖𝑖𝑖𝑖  =  𝑣𝑣𝑗𝑗𝑗𝑗 ,𝑑𝑑𝑖𝑖𝑖𝑖  =  𝑑𝑑𝑗𝑗𝑗𝑗 and |𝜃𝜃𝑖𝑖𝑖𝑖  −  𝜃𝜃𝑗𝑗𝑗𝑗|  =  180. The variogram presented 
averages the 𝑣𝑣𝑖𝑖𝑖𝑖 within 12 distance classes and 4, 6 or 8 sectors (selected using a !VGSECTORS 
qualifier) centred on an angle of (𝑖𝑖 −  1)  ∗  180/𝑠𝑠 (𝑖𝑖 =  1, . . . 𝑠𝑠). A figure is produced which 
reports the trends in 𝑣̅𝑣𝑖𝑖𝑖𝑖 with increasing distance for each sector. 

 
ASReml also computes the variogram from predictors of random effects which appear to have a 
variance structures defined in terms of distance. The variogram details are reported in the .res 
file. 

 
2.5 Inference: Fixed effects 

 
2.5.1 Introduction 
Inference for fixed effects in linear mixed models introduces some difficulties. In general, the 
methods used to construct F-tests in analysis of variance and regression cannot be used for the 
diversity of applications of the general linear mixed model available in ASReml. One approach 
would be to use likelihood ratio methods (see Welham and Thompson, 1997) although their 
approach is not easily implemented.  
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Wald-type test procedures are generally favoured for conducting tests concerning 𝝉𝝉 . The 
traditional Wald statistic to test the hypothesis 𝐻𝐻0 ∶  𝑳𝑳𝑳𝑳 =  𝒍𝒍 for given 𝑳𝑳, 𝑟𝑟 × 𝑝𝑝, and 𝒍𝒍, 𝑟𝑟 × 1, is 
given by 

𝑊𝑊 = (𝑳𝑳𝝉𝝉� − 𝒍𝒍)⊤{𝑳𝑳(𝑿𝑿⊤𝑯𝑯−1𝑿𝑿)−1𝑳𝑳⊤}−1(𝑳𝑳𝝉𝝉� − 𝒍𝒍)  (2.24) 

and asymptotically, this statistic has a chi-square distribution on r degrees of freedom. These are 
marginal tests, so that there is an adjustment for all other terms in the fixed part of the model. It is 
also anti-conservative if p-values are constructed because it assumes the variance parameters are 
known. 
 
The small sample behaviour of such statistics has been considered by Kenward and Roger (1997) 
in some detail. They presented a scaled Wald statistic, together with an F-approximation to its 
sampling distribution which they showed performed well in a range (though limited in terms of 
the range of variance models available in ASReml) of settings. 

 
In the following we describe the facilities now available in ASReml for conducting inference 
concerning terms which are the in dense fixed effects model component of the general linear mixed 
model. These facilities are not available for any terms in the sparse model. These include facilities 
for computing two types of Wald F statistics and partial implementation of the Kenward and Roger 
adjustments. 

 
2.5.2 Incremental and conditional Wald F Statistics 
The basic tool for inference is the Wald statistic defined in equation 2.17. ASReml produces a test 
of fixed effects, that reduces to an F statistic in special cases, by dividing the Wald statistic, 
constructed with l = 0, by r, the numerator degrees of freedom. In this form it is possible to perform 
an approximate F test if we can deduce the denominator degrees of freedom. However, there are 
several ways L can be defined to construct a test for a particular model term, two of which are 
available in ASReml. These Wald F statistics are labelled F-inc (for incremental) and F-con 
(for conditional) respectively. For balanced designs, these Wald F statistics are numerically 
identical to the F statistics obtained from the standard analysis of variance. 

 
The first method for computing Wald statistics (for each term) is the so-called ‘incremental’ form. 
For this method, Wald statistics are computed from an incremental sum of squares in the spirit of 
the approach used in classical regression analysis (see Searle, 1971). For example, if we consider 
a very simple model with terms relating to the main effects of two qualitative factors A and B, 
given symbolically by 

y ∼ 1 + A + B 

where the 1 represents the constant term (𝜇𝜇), then the incremental sums of squares for this model 
can be written as the sequence 

R(1) 
R(A|1) = R(1, A) − R(1)  

R(B|1, A) = R(1, A, B) − R(1, A)  
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where the R(·) operator denotes the residual sums of squares due to a model containing its 
argument and R(·|·) denotes the difference between the residual sums of squares for any pair of 
(nested) models. Thus R(B|1, A) represents the difference between the reduction in sums of squares 
between the so-called maximal ‘model’ 

y ∼ 1 + A + B 
and 

y ∼ 1 + A 

Implicit in these calculations is that 
 
• we only compute Wald statistics for estimable functions (Searle, 1971, page 408), 

• all variance parameters are held fixed at the current REML estimates from the maximal model 

In this example, it is clear that the incremental Wald statistics may not produce the desired test for 
the main effect of A, as in many cases we would like to produce a Wald statistic for A based on 

R(A|1, B) = R(1, A, B) − R(1, B) 

The issue is further complicated when we invoke ‘marginality’ considerations. The issue of 
marginality between terms in a linear (mixed) model has been discussed in much detail by Nelder 
(1977). In this paper Nelder defines marginality for terms in a factorial linear model with 
qualitative factors, but later Nelder (1994) extended this concept to functional marginality for 
terms involving quantitative covariates and for mixed terms which involve an interaction between 
quantitative covariates and qualitative factors. Referring to our simple illustrative example above, 
with a full factorial linear model given symbolically by 

y ∼ 1 + A + B + A.B 

then A and B are said to be marginal to A.B, and 1 is marginal to A and B. In a three-way factorial 
model given by 

y ∼ 1 + A + B + C + A.B + A.C + B.C + A.B.C 

the terms A, B, C, A.B, A.C and B.C are marginal to A.B.C. Nelder (1977, 1994) argues that 
meaningful and interesting tests for terms in such models can only be conducted for those tests 
which respect marginality relations. This philosophy underpins the following description of the 
second Wald statistic available in ASReml, the so-called ‘conditional’ Wald statistic. This method 
is invoked by placing !FCON on the datafile line. ASReml attempts to construct conditional Wald 
statistics for each term in the fixed dense linear model so that marginality relations are respected.   
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As a simple example, for the three-way factorial model the conditional Wald statistics would be 
computed as 

Term Sums of Squares  M code 
1 R(1)   
A R(A |  1,B,C,B.C) = R(1,A,B,C,B.C) -  R(1,B,C,B.C) A 
B R(B  |  1,A,C,A.C) = R(1,A,B,C,A.C) -  R(1,A,C,A.C) A 
C R(C |  1,A,B,A.B) = R(1,A,B,C,A.B)  -  R(1,A,B,A.B) A 

A.B R(A.B | 1,A,B,C,A.C,B.C) = R(1,A,B,C,A.B,A.C,B.C) - R(1,A,B,C,A.C,B.C) B 
A.C R(A.C | 1,A,B,C,A.B,B.C) = R(1,A,B,C,A.B,A.C,B.C) - R(1,A,B,C,A.B,B.C) B 
B.C R(B.C  | 1,A,B,C,A.B,A.C) = R(1,A,B,C,A.B,A.C,B.C) - R(1,A,B,C,A.B,A.C) B 

A.B.C R(A.B.C | 1,A,B,C,A.B,A.C,B.C) = R(1,A,B,C,A.B,A.C,B.C,A.B.C) -  
     R(1,A,B,C,A.B,A.C,B.C) C 

Of these the conditional Wald statistic for the 1, B.C and A.B.C terms would be the same as the 
incremental Wald statistics produced using the linear model 

y ∼ 1 + A + B + C + A.B + A.C + B.C + A.B.C 

The preceding table includes a so-called M (marginality) code reported by ASReml when 
conditional Wald statistics are presented. All terms with the highest M code letter are tested 
conditionally on all other terms in the model, i.e. by dropping the term from the maximum model. 
All terms with the preceding M code letter, are marginal to at least one term in a higher group, and 
so forth. For example, in the table, model term A.B has M code B because it is marginal to model 
term A.B.C and model term A has M code A because it is marginal to A.B, A.C and A.B.C. Model 
term mu (M code .) is a special case in that its test is conditional on all covariates but no factors. 
Following is some ASReml output from the .aov file which reports the terms in the conditional 
statistics. 

Marginality pattern for F-con calculation 
--  Model  terms  -- 

Model Term DF 1 2 3 4 5 6 7 8 
          
1 mu 1 * . . . . . . . 
2 water 1 I * C C . . c . 
3 variety 7 I I * C . c . . 
4 sow 2 I I I * C . . . 
5 water.variety 7 I I I I * C C . 
          
6 water.sow 2 I I I I I * C . 
7 variety.sow 14 I I I I I I * . 
8 water.variety.sow 14 I I I I I I I * 

 
F-inc tests the additional variation explained when the term (*) is added to a model consisting 
of the I terms. F-con tests the additional variation explained when the term (*) is added to a model 
consisting of the I and C/c terms. Any c terms are ignored in calculating DenDF for  
F-con using numerical derivatives for computational reasons. The . terms are ignored for both 
F-inc and F-con tests. 

Consider now a nested model which might be represented symbolically by 

y ∼ 1 + REGION + REGION.SITE  
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For this model, the incremental and conditional Wald F statistics will be the same. However, it 
is not uncommon for this model to be presented to ASReml as 

y ∼ 1 + REGION + SITE 

with SITE identified across REGION rather than within REGION. Then the nested structure is 
hidden but ASReml will still detect the structure and produce a valid conditional Wald F statistic. 
This situation will be flagged in the M code field by changing the letter to lower case. Thus, in 
the nested model, the three M codes would be ., A and B because REGION.SITE is obviously an 
interaction dependent on REGION. In the second model, REGION and SITE appear to be 
independent factors so the initial M codes are ., A and A. However they are not independent 
because REGION removes additional degrees of freedom from SITE, so the M codes are changed 
from ., A and A to ., a and A. 

 
When using the conditional Wald F statistic, it is important to know what the ‘maximal 
conditional’ model (MCM) is for that particular statistic. It is given explicitly in the .aov file. 
The purpose of the conditional Wald F statistic is to facilitate inference for fixed effects. It is not 
meant to be prescriptive of the appropriate test nor is the algorithm for determining the MCM 
foolproof. 

 
The Wald statistics are collectively presented in a summary table in the .asr file. The basic 
table includes the numerator degrees of freedom (𝜈𝜈1𝑖𝑖) and the incremental Wald F statistic for 
each term. To this is added the conditional Wald F statistic and the M code if !FCON is specified. 
A conditional Wald F statistic is not reported for mu in the .asr but is in the .aov file (adjusted 
for covariates). The !FOWN qualifier (Table 5.5) allows the user to replace any/all of the 
conditional Wald F statistics with tests of the same terms but adjusted for other model terms as 
specified by the user; the !FOWN test is not performed if it implies a change in degrees of freedom 
from that obtained by the incremental model. 

 
2.5.3 Kenward and Roger adjustments 

In moderately sized analyses, ASReml will also include the denominator degrees of freedom 
(DenDF, denoted by 𝜈𝜈2𝑖𝑖, Kenward and Roger, 1997) and a probablity value if these can be 
computed. They will be for the conditional Wald F statistic if it is reported. The !DDF i (see Table 
5.3) qualifier can be used to suppress the DenDF calculation (!DDF -1) or request a particular 
algorithmic method: !DDF 1 for numerical derivatives, !DDF 2 for algebraic derivatives. The 
value in the probability column (either P_inc or P_con) is computed from an 𝐹𝐹𝐹𝐹1𝑖𝑖, 𝜈𝜈2𝑖𝑖 
reference distribution. An approximation is used for computational convenience when 
calculating the DenDF for Conditional F statistics using numerical derivatives. The DenDF 
reported then relates to a maximal conditional incremental model (MCIM) which, depending on 
the model order, may not always coincide with the maximal conditional model (MCM) under 
which the conditional F statistic is calculated. The MCIM model omits terms fitted after any 
terms ignored for the conditional test (I after . in marginality pattern).   
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In this example, MCIM ignores variety.sow when calculating DenDF for the test of water 
and ignores water.sow when calculating DenDF for the test of variety.  

When DenDF is not available, it is often possible, though anti-conservative to use the residual 
degrees of freedom for the denominator. 

 
Kenward and Roger (1997) pursued the concept of construction of Wald-type test statistics 
through an adjusted variance matrix of 𝝉𝝉�. They argued that it is useful to consider an improved 
estimator of the variance matrix of 𝝉𝝉� which has less bias and accounts for the variability in 
estimation of the variance parameters. There are two reasons for this. Firstly, the small sample 
distribution of Wald F statistics is simplified when the adjusted variance matrix is used. Secondly, 
if measures of precision are required for 𝝉𝝉� or effects therein, those obtained from the adjusted 
variance matrix will generally be preferred. Unfortunately, the Wald statistics are currently 
computed using an unadjusted variance matrix. 

 
2.5.4 Approximate stratum variances 

ASReml reports approximate stratum variances and degrees of freedom for simple variance 
components models. For the linear mixed-effects model with variance components  
(setting 𝜎𝜎𝐻𝐻2 = 1) where 𝑮𝑮 = ⊗𝑗𝑗=1

𝑞𝑞 𝛾𝛾𝑗𝑗𝑰𝑰𝑏𝑏𝑏𝑏 , it is often possible to consider a natural ordering of the 
variance component parameters including 𝜎𝜎2. Based on an idea due to Thompson (1980), ASReml 
computes approximate stratum degrees of freedom and stratum variances by a modified Cholesky 
diagonalisation of the average information matrix. That is, if 𝑭𝑭 is the average information matrix 
for 𝝈𝝈, let 𝑼𝑼 be an upper triangular matrix such that 𝑭𝑭 =  𝑼𝑼⊤𝑼𝑼. We define 

𝑼𝑼𝑐𝑐 = 𝑫𝑫𝑐𝑐𝑼𝑼 

where 𝑫𝑫𝑐𝑐 is a diagonal matrix whose elements are given by the inverse elements of the last column 
of 𝑼𝑼 i.e. 𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐  =  1/𝑢𝑢𝑖𝑖𝑖𝑖 , 𝑖𝑖 =  1, . . . , 𝑟𝑟. The matrix 𝑼𝑼𝑐𝑐 is therefore upper triangular with the elements 
in the last column equal to one. If the vector 𝝈𝝈 is ordered in the “natural” way, with 𝜎𝜎2 being the 
last element, then we can define the vector of so called “pseudo” stratum variance components by 

𝝃𝝃 =  𝑼𝑼𝑐𝑐𝝈𝝈 
 
Thence 

var (𝝃𝝃) = 𝑫𝑫𝑐𝑐
2 

 
The diagonal elements can be manipulated to produce effective stratum degrees of freedom 
Thompson (1980) viz 

𝑣𝑣𝑖𝑖 = 2𝜉𝜉𝑖𝑖2/ 𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐2  
 
In this way the closeness to an orthogonal block structure can be assessed. 
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3 A guided tour 
 
 
3.1 Introduction 

 
This chapter presents a guided tour of ASReml, from data file preparation and basic aspects of the 
ASReml command file, to running an ASReml job and interpreting the output files. You are 
encouraged to read this chapter before moving to the later chapters; 

 
• A real data example is used in this chapter for demonstration, see below, 

• The same data are also used in later chapters, 

• Links to the formal discussion of topics are clearly signposted by margin notes. 

This example is of a randomised block analysis of a field trial, and is only one of many forms of 
analysis that ASReml can perform. It is chosen because it allows an introduction to the main ideas 
involved in running ASReml. However some aspects of ASReml, in particular, pedigree files (see 
Chapter 9) and multivariate analysis (see Chapter 8) are only covered in later chapters. 

 
ASReml is essentially a batch program with some optional interactive features. The typical 
sequence of operations when using ASReml is 

 
• Prepare the data (typically using a spreadsheet or database program) 

• Export that data as an ASCII file (for example export it as a .csv (COMMA separated values) 
file from Excel) 

• Prepare a job file with filename extension .as. 

• Run the job file with ASReml 

• Review the various output files 

• Revise the job and re-run it, or 

• Extract pertinent results for your report.  
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You will need a file editor to create the command file and to view the various output files. On Unix 
systems, vi and emacs are commonly used. Under Windows, there are several suitable program 
editors available such as ASReml-W and ConTEXT mentioned in User Interface. 

 
3.2 Nebraska Intrastate Nursery (NIN) field experiment 

 
The yield data from an advanced Nebraska Intrastate Nursery (NIN) breeding trial conducted at 
Alliance in 1988/89 will be used for demonstration, see Stroup et al. (1994) for details. Four 
replicates of 19 released cultivars, 35 experimental wheat lines and 2 additional triticale lines were 
laid out in a 22 row by 11 column rectangular array of plots; the varieties were allocated to the 
plots using a randomised complete block (RCB) design. In field trials, complete replicates are 
typically allocated to consecutive groups of whole columns or rows. In this trial the replicates were 
not allocated to groups of whole columns, but rather, overlapped columns. Table 3.1 gives the 
allocation of varieties to plots in field plan order with replicates 1 and 3 in ITALICS and replicates 2 
and 4 in BOLD. 
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Table 3.1: Trial layout and allocation of varieties to plots in the NIN field trial 

 
 

column 
 

row 1 2 3 4 5 6 7 8 9 10 11 

1 
 

- 
 

NE83407 
 

BUCKSKIN 
 

NE87612 
 

VONA 
 

NE87512 
 

NE87408 
 

CODY 
 

BUCKSKIN 
 

NE87612 
 

KS831374 

2 - CENTURA NE86527 NE87613 NE87463 NE83407 NE83407 NE87612 NE83406 BUCKSKIN NE86482 

3 - SCOUT66 NE86582 NE87615 NE86507 NE87403 NORKAN NE87457 NE87409 NE85556 NE85623 

4 - COLT NE86606 NE87619 BUCKSKIN NE87457 REDLAND NE84557 NE87499 BRULE NE86527 

5 - NE83498 NE86607 NE87627 ROUGHRIDER NE83406 KS831374 NE83T12 CENTURA NE86507 NE87451 

6 - NE84557 ROUGHRIDER - NE86527 COLT COLT NE86507 NE83432 ROUGHRIDER NE87409 

7 - NE83432 VONA CENTURA SCOUT66 NE87522 NE86527 TAM200 NE87512 VONA GAGE 

8 - NE85556 SIOUXLAND NE85623 NE86509 NORKAN VONA NE87613 ROUGHRIDER NE83404 NE83407 

9 - NE85623 GAGE CODY NE86606 NE87615 TAM107 ARAPAHOE NE83498 CODY NE87615 

10 - CENTURAK78 NE83T12 NE86582 NE84557 NE85556 CENTURAK78 SCOUT66 - NE87463 ARAPAHOE 

11 - NORKAN NE86T666 NE87408 KS831374 TAM200 NE87627 NE87403 NE86T666 NE86582 CHEYENNE 

12 - KS831374 NE87403 NE87451 GAGE LANCOTA NE86T666 NE85623 NE87403 NE87499 REDLAND 

13 - TAM200 NE87408 NE83432 NE87619 NE86503 NE87615 NE86509 NE87512 NORKAN NE83432 

14 - NE86482 NE87409 CENTURAK78 NE87499 NE86482 NE86501 NE85556 NE87446 SCOUT66 NE87619 

15 - HOMESTEAD NE87446 NE83T12 CHEYENNE BRULE NE87522 HOMESTEAD CENTURA NE87513 NE83498 

16 LANCER LANCOTA NE87451 NE87409 NE86607 NE87612 CHEYENNE NE83404 NE86503 NE83T12 NE87613 

17 BRULE NE86501 NE87457 NE87513 NE83498 NE87613 SIOUXLAND NE86503 NE87408 CENTURAK78 NE86501 

18 REDLAND NE86503 NE87463 NE87627 NE83404 NE86T666 NE87451 NE86582 COLT NE87627 TAM200 

19 CODY NE86507 NE87499 ARAPAHOE NE87446 - GAGE NE87619 LANCER NE86606 NE87522 

20 ARAPAHOE NE86509 NE87512 LANCER SIOUXLAND NE86607 LANCER NE87463 NE83406 NE87457 NE84557 

21 NE83404 TAM107 NE87513 TAM107 HOMESTEAD LANCOTA NE87446 NE86606 NE86607 NE86509 TAM107 

22 NE83406 CHEYENNE NE87522 REDLAND NE86501 NE87513 NE86482 BRULE SIOUXLAND LANCOTA HOMESTEAD 
 

N
ebraska Intrastate Nursery (N

IN
) field experim

ent 



3.3 The ASReml data file 
 

27 
 

3.3 The ASReml data file 
 

The standard format of an ASReml data file is to have the data arranged in space, TAB or COMMA 
separated columns/fields with a line for each sampling unit. The columns contain covariates, 
factors, response variates (traits) and weight variables in any convenient order. This is the first 30 
lines of the file nin89.asd containing the data for the NIN variety trial. The data are in field 
order (rows within columns) and an optional heading (first line of the file) has been included to 
document the file. In this case there are 11 space separated data fields (variety...column) 
and the complete file has 224 data lines, one for each variety in each replicate. 

 
 
optional field labels 
data for sampling unit 1 
 data for sampling unit 2 
 
. 
. 
. 
  

variety id pid raw repl nloc yield lat long row column  
LANCER 1 1101 585 1 4 29.25 4.3 19.2 16 1 
BRULE 2 1102 631 1 4 31.55 4.3 20.4 17 1 
REDLAND 3 1103 701 1 4 35.05 4.3 21.6 18 1 
CODY 4 1104 602 1 4 30.1 4.3 22.8 19 1 
ARAPAHOE 5 1105 661 1 4 33.05 4.3 24 20 1 
NE83404 6 1106 605 1 4 30.25 4.3 25.2 21 1 
NE83406 7 1107 704 1 4 35.2 4.3 26.4 22 1 
NE83407 8 1108 388 1 4 19.4 8.6 1.2 1 2 
CENTURA 9 1109 487 1 4 24.35 8.6 2.4 2 2 
SCOUT66 10 1110 511 1 4 25.55 8.6 3.6 3 2 
COLT 11 1111 502 1 4 25.1 8.6 4.8 4 2 
NE83498 12 1112 492 1 4 24.6 8.6 6 5 2 
NE84557 13 1113 509 1 4 25.45 8.6 7.2 6 2 
NE83432 14 1114 268 1 4 13.4 8.6 8.4 7 2 
NE85556 15 1115 633 1 4 31.65 8.6 9.6 8 2 
NE85623 16 1116 513 1 4 25.65 8.6 10.8 9 2 
CENTURAK78 17 1117 632 1 4 31.6 8.6 12 10 2 
NORKAN 18 1118 446 1 4 22.3 8.6 13.2 11 2 
KS831374 19 1119 684 1 4 34.2 8.6 14.4 12 2 
⋮ 
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These data are analysed again in Chapter 7 using spatial methods of analysis, see  3a in 116. For 
spatial analysis using a separable error structure (see Chapter 2) the data file must first be 
augmented to specify the complete 22 row × 11 column array of plots. These are the first 20 lines 
of the augmented data file nin89aug.asd with 242 data rows. Note that ASReml 4 can 
automatically augment spatial data: see !ROWFACTOR, !COLUMNFACTOR. 
 
variety id pid raw repl nloc yield lat long row column  
LANCER 1 NA NA 1 4 NA 4.3  1.2 1 1 
LANCER 1 NA NA 1 4 NA 4.3 2.4 2 1 
LANCER 1 NA NA 1 4 NA 4.3 3.6 3 1 
LANCER 1 NA NA 1 4 NA 4.3 4.8 4 1 
LANCER 1 NA NA 1 4 NA 4.3  6 5 1 
LANCER 1 NA NA 1 4 NA 4.3 7.2 6 1 
LANCER 1 NA NA 1 4 NA 4.3 8.4 7 1 
LANCER 1 NA NA 1 4 NA 4.3 9.6 8 1 
LANCER 1 NA NA 1 4 NA 4.3  10.8 9 1 
LANCER 1 NA NA 1 4 NA 4.3 12 10 1 
LANCER 1 NA NA 1 4 NA 4.3 13.2 11 1 
LANCER 1 NA NA 1 4 NA 4.3 14.4 12 1 
LANCER 1 NA NA 1 4 NA 4.3 15.6 13 1 
LANCER 1 NA NA 1 4 NA 4.3 16.8 14 1 
LANCER 1 NA NA 1 4 NA 4.3 18 15 1 
LANCER 1 NA NA 2 4 NA 17.2 7.2 6 4 
LANCER 1 NA NA 3 4 NA 25.8 22.8 19 6 
LANCER 1 NA NA 4 4 NA 38.7 12.0 10 9 
LANCER 1 1101 585 1 4 29.25 4.3 19.2 16 1 
BRULE 2 1102 631 1 4 31.55 4.3 20.4 17 1 
REDLAND 3 1103 701 1 4 35.05 4.3 21.6 18 1 
CODY 4 1104 602 1 4 30.1 4.3 22.8 19 1 
⋮ 

optional field labels 
file augmented by missing 
values for first 15 plots 
and 3 buffer plots and 
variety coded LANCER to 
complete 22×11 array 
 
. 
. 
. 
 
 
 
buffer plots 
between reps 
 
 
original data 
. 
. 
. 

 
Note that 
• the pid, raw, repl and yield data for the missing plots have all been made NA (one of the three 

missing value indicators in ASReml, see Section 4.2), 

• variety is coded LANCER for all missing plots; one of the variety names must be used but the 
particular choice is arbitrary.  
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3.4 The ASReml command file 
 

By convention an ASReml command file has a .as extension. The file defines 
 

• a title line to describe the job, 

• labels for the data fields in the data file and the name of the data file, 

• the linear mixed model and the variance model(s) if required, 

• output options including directives for tabulation and prediction. 

Below is the ASReml command file for an RCB analysis of the NIN field trial data highlighting 
the main sections. Note the order of the main sections. 
 

title line −→ 
data field definition−→ 

. 

. 

. 
 
 
 
 
 
 
 
 

data field definition −→ 
data file name and qualifiers−→ 

tabulate statement−→ 
linear mixed model definition−→ 

residual variance model specification −→  
predict statement−→ 

NIN Alliance trial 1989 
variety !A 
id 
pid  
raw 
repl 4 
nloc  
yield 
lat 
long  
row 22 
column 11 
nin89.asd !skip 1 
tabulate yield ∼ variety 
yield ∼ mu variety !r idv(repl) 
residual idv(units) 
predict variety 

 
3.4.1 Generating a template 
ASReml can generate a basic command file, a template for you to modify, from the data file if the 
data file has suitable field (variable) names in the first line. The requirements are 

 
• the data file has file name extension asd, csv, dat or txt; 

• there is not a matching command file already existing; 

• the first line of the file contains a ‘name’ for each field; 

• the ‘name’ must begin with a letter; it may contain numbers and the underscore character but 
not any of the characters +-.,:;$#\*/^!|&’"<>=~{}[]();  
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• the ‘name’ may be terminated with !P to indicate a Pedigree factor, !A to indicate an 
alphanumerically coded factor, !I to indicated a factor where the numbers are to be treated 
as labels for the levels, and ! where the numbers are the actual levels. 

• If none of the ‘names’ are indicated as factors using the ! mechanism, ASReml will scan the 
first few lines of data and try and identify alphanumeric, integer and simple factors. 

Always check the template as it is likely some variates have been misclassified as factors. 
 

The template file created by running ASReml on the nin89.asd file looks like 
 
# !WORKSPACE 100 !RENAME !ARGS // !DOPART $1 
Title: nin89.  
#variety,id,pid,raw,rep,nloc,yield,lat,long,row,column 
#LANCER,1,1101,585,1,4,29.25,4.3,19.2,16,1 
#BRULE,2,1102,631,1,4,31.55,4.3,20.4,17,1 
#REDLAND,3,1103,701,1,4,35.05,4.3,21.6,18,1 
#CODY,4,1104,602,1,4,30.1,4.3,22.8,19,1 
variety !A  # CODY  
id *  # 4 
pid !I # 1104 
raw !I # 602 
rep * # 1 
nloc * # 4 
yield # 30.1 
lat # 4.3 
long # 22.8 
row !I  # 19  
column *  # 1 
# Check/Correct these field definitions.  
nin89.asd !SKIP 1 
yield ~ mu , # Specify fixed model 

!r # Specify random model  
residual units 

 
We need to change the !I associated with row to * because the row numbers are actually 
positions, not just labels which could be taken in any order. Note that ASReml displays a data value 
beside each name to make it easier to confirm the labelling.  
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3.4.2 The title line 
The first text (non-blank, non-control) line in an 
ASReml command file is taken as the title for the 
job and is purely descriptive for future reference. 

 
3.4.3 Reading the data 
The data fields are defined before the data file 
name is specified. Field definitions must be 
given for all fields in the data file and in the 
order in which they appear in the data file. Note 
that, in previous releases data field definitions 
had to be indented but in Release 4 this condition 
has been relaxed and is not required. In this case 
there are 11 data fields 
(variety...column) in nin89.asd, see 
Section 3.3. 

 
The !A after variety tells ASReml that the 
first field is an alphanumeric factor and the 4 after repl tells ASReml that the field called repl 
(the fifth field read) is a numeric factor with 4 levels coded 1:4. Similarly for row and column. 
The other fields include variates (yield) and various other variables. 

 
3.4.4 The data file line 
The data file name is specified immediately after 
the last data field definition. Data file qualifiers 
that relate to data input and output are also 
placed on this line if they are required. In this 
example, !skip 1 tells ASReml to ignore 
(skip) the first line of the data file nin89.asd, 
the line containing the field labels. 

 
The data file line can contain qualifiers that 
control other aspects of the analysis. These 
qualifiers are presented in Section 5.8.  

NIN Alliance trial 1989  
variety !A 
id 
pid  
raw  
repl 4  
nloc  
yield  
lat  
long  
row 22 
column 11 

nin89.asd !skip 1 ⋮ 

NIN Alliance trial 1989  
variety !A 
id ⋮ 

NIN Alliance trial 1989 variety !A 
id  
pid 
⋮ 
row 22 
column 11 
nin89.asd !skip 1 
tabulate yield ∼ variety 
yield ∼ mu variety !r idv(repl) 
residual idv(units) 
predict variety 



3.4 The ASReml command file 

32 
 

3.4.5 Tabulation 
The tabulate statements are optional. They 
provide a simple way of exploring the structure 
of a data. They should appear immediately 
before the model line. In this case the 56 simple 
variety means for yield are formed and written 
to a .tab output file. See Chapter 10 for a 
discussion of tabulation. 

 

3.4.6 Specifying the terms in the mixed model 
The linear mixed model is specified as a list of 
model terms and qualifiers. All elements must be 
space separated. ASReml accommodates a wide 
range of analyses. See Section 2.1 for a brief 
discussion and general algebraic formulation of 
the linear mixed model. The model specified 
here for the NIN data is a simple random effects 
RCB model having fixed variety effects and 
random replicate effects. The reserved word mu 
fits a constant term (intercept), variety fits a fixed variety effect and repl fits a random 
replicate effect because the !r qualifier tells ASReml to fit the terms that follow as random 
effects. 

 
3.4.7 Variance structures 
There are two variance structures to be specified 
and two variance components to be estimated. 
The first structure is for the replicate (repl) 
effects. These effects are IID distributed and 
idv(repl) denotes this and estimates one 
variance component associated with these 
effects. The other is associated with the residual 
effects, which are again assumed to be IID 
distributed. This is formally specified here by the 
line residual idv(units) where residual is the name of the directive that specifies 
the variance structure for the residuals, and units is the reserved word specifying a factor with 
a level for every experimental unit. The default variance structure is always uncorrelated effects 
with a common variance and so idv(repl) and idv(units) can be reduced to simply 
repl and units. See Chapter 7 for a lengthy discussion on variance modelling in ASReml.  

NIN Alliance trial 1989 variety !A 
⋮ 
column 11 

nin89.asd !skip 1 
tabulate yield ∼ variety 
yield ∼ mu variety !r idv(repl) 
residual idv(units) 
predict variety 

⋮ 
column 11 

nin89.asd !skip 1 
tabulate yield ∼ variety 
yield ∼ mu variety !r idv(repl) 
residual idv(units) 
predict variety 

NIN Alliance trial 1989 variety !A 
⋮ 
column 11 

nin89.asd !skip 1 
tabulate yield ∼ variety 
yield ∼ mu variety !r idv(repl) 
residual idv(units) 
predict variety 
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3.4.8 Prediction 
Predict statements appear after the model 
statement. In this case the 56 variety means for 
yield as predicted from the fitted model would be 
formed and returned in the .pvs output file. See 
Chapter 10 for a detailed discussion of prediction 
in ASReml. 

 
3.5 Running the job 

 
Assuming you have located the nin89.asd file (under Windows it will typically be located in 
ASRemlPath/Examples; we suggest copying the data file to your workspace as the Examples 
folder is sometimes write protected) and created the ASCII command file nin89.as as 
described in the previous section and in the same folder, you can run the job. ASRemlPath is 
typically C:\Program Files\ASReml4 under Windows. Installation details vary with the 
implementation and are distributed with the program. You could use ASReml-W or ConTEXT to 
create nin89.as. These programs can then run ASReml directly after they have been configured 
for ASReml. An ASReml job is also run from a command line or by ‘clicking’ the .as file in 
Windows Explorer. 

 
The basic command to run an ASReml job is 
ASRemlPath/bin/ASReml basename[.as] 

where basename[.as] is the name of the command file. Typically, a system PATH is defined which 
includes ASRemlPath/bin/ so that just the program name ASReml is required at the command 
prompt. For example, the command to run nin89.as from the command prompt when attached 
to the appropriate folder is 
ASReml nin89.as 

However, if the path to ASReml is not specified in your system’s PATH environment variable, the 
path must also be given, and the path is required when configuring ASReml-W or ConTEXT. 

 
In this guide we assume the command file has a filename extension .as. ASReml also recognises 
the filename extension .asc as an ASReml command file. When these are used, the extension 
(.as or .asc) may be omitted from basename.as in the command line if there is no file in the 
working directory with the name basename. The options and arguments that can be supplied on 
the command line to modify a job at run time are described in Chapter 11.  

NIN Alliance trial 1989 variety !A 
⋮ 
column 11 

nin89.asd !skip 1 
tabulate yield ∼ variety 
yield ∼ mu variety !r idv(repl) 
residual idv(units) 
predict variety 
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3.6 Description of output files 
 

A series of output files are produced with each ASReml run. Nearly all files, all that contain user 
information, are ASCII files and can be viewed in any ASCII editor including ConTEXT,  
ASReml-W and NotePad. The primary output from the nin89.as job is written to nin89.asr. 
This file contains a summary of the data, the iteration sequence, estimates of the variance 
parameters and a table of Wald F statistics for testing fixed effects. The estimates of all the fixed 
and random effects are written to nin89.sln. The residuals, predicted values of the observations 
and the diagonal elements of the hat matrix (see Chapter 2) are returned in nin89.yht, see 
Section 14.3. Other key files produced by this job include the .aov, .pvs, .res, .tab, 
.sln and .yht files, see Section 14.4. 

 
3.6.1 The .asr file 
Below is nin89.asr with pointers to the main sections. The first line gives the version of 
ASReml used (in square brackets) and the title of the job. The second line gives the build date for 
the program and indicates whether it is a 32bit or 64bit version. The third line gives the date and 
time that the job was run and reports the size of the workspace. The general announcements box 
(outlined in asterisks) at the top of the file notifies the user of current release features. The 
remaining lines report a data summary, the iteration sequence, the estimated variance parameters 
and a table of Wald F statistics. The final line gives the date and time that the job was completed 
and a statement about convergence. 

 
ASReml 3.1 [01 Jan 2011] NIN alliance trial 1989\\ job heading 
Build cm [25 Oct 2011] 64 bit 

04 Nov 2011 21:14:28.404 32 Mbyte Linux (x64) nin89  
Licensed to: Cargo Vale Olives/Univ of Wollongong 31-jul-2012 
*********************************************************** 
* Contact support@asreml.co.uk for licensing and support * 
***************************************************** ARG *  
Folder: /home/gilmoua/W7drive/Users/Public/ASReml/asr3/ug3/Manex4  
variety !A 
QUALIFIERS: !SKIP 1 
Reading nin89.asd FREE FORMAT skipping 1 lines 

 
Univariate analysis of yield 
Summary of 224 records retained of 224 read data summary 

 
Model term Size #miss #zero MinNon0 Mean MaxNon0 StndDevn 
1 variety 56 0 0 1 28.5000 56  
2 id  0 0 1.000 28.50 56.00 16.20 
3 pid  0 0 1101. 2628. 4156. 1121. 
4 raw  0 0 21.00 510.5 840.0 149.0 
5 repl 4 0 0 1 2.5000 4  
6 nloc  0 0 4.000 4.000 4.000 0.000 
7 yield Variate 0 0 1.050 25.53 42.00 7.450 
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8 lat  0  0 4.300 27.22 47.30 12.90 
9 long  0  0 1.200 14.08 26.40 7.698 
10 row 22 0  0 1 11.7321 22  
11 column 11 0  0 1 6.3304 11  
12 mu   1      

Forming 61 equations: 57 dense. 
Initial updates will be shrunk by factor 0.400 
Notice: 1 singularities detected in design matrix. 

 

1 LogL=-454.807 S2= 50.329 168 df 0.1000 
2 LogL=-454.635 S2= 50.073 168 df 0.1219 
3 LogL=-454.513 S2= 49.818 168 df 0.1537 
4 LogL=-454.471 S2= 49.622 168 df 0.1899 
5 LogL=-454.469 S2= 49.584 168 df 0.1989 
6 LogL=-454.469 S2= 49.582 168 df 0.1993 

Final parameter values 0.1993 

 
- - - Results from analysis of yield - - - 

Akaike Information Criterion 912.94 (assuming 2 parameters). 
Bayesian Information Criterion 919.19 

Approximate stratum variance decomposition 
Stratum Degrees-Freedom Variance Component Coefficients 
idv(repl)  3.00  603.100  56.0 1.0 
Residual Variance 165.00 49.5824 0.0 1.0 

 
 

Model_Term   Gamma Sigma Sigma/SE % C 
idv(repl) IDV_V 4 0.199323 9.88291 % 1.12 0 P parameter 
idv(units)  224 effects    estimates 
Residual SCA_V 224 1.000000 49.5824 9.08 0 P 
 
 

Source 

 
 

of 

 
 

Variation 

 
Wald F 
NumDF 

 
statistics 

DenDF 

 
 

F-inc 

 
 

P-inc testing 
12 mu   1 3.0 242.05 <.001 fixed 
1 variety   55 165.0 0.88 0.712 effects 

Notice: The DenDF values are calculated ignoring fixed/boundary/singular 
variance parameters using algebraic derivatives. 

5 repl 4 effects fitted 
Finished: 04 Nov 2011 21:14:29.242 LogL Converged  
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3.6.2 The .sln file 
The following is an extract from nin89.sln containing the estimated variety effects, intercept 
and random replicate effects in this order (column 3) with standard errors (column 4). Note that 
the variety effects are returned in the order of their first appearance in the data file, see replicate 1 
in Table 3.1. 

 
Model_Term Level  Effect seEffect 
variety LANCER  0.000 0.000 
variety BRULE  -2.487 4.979 
variety REDLAND  1.938 4.979 
variety CODY  -7.350 4.979 
variety ARAPAHOE  0.8750 4.979 
variety NE83404  -1.175 4.979 
variety NE83406  -4.287 4.979 
variety NE83407  -5.875 4.979 
variety CENTURA  -6.912 4.979 
variety SCOUT66  -1.037 4.979 
variety COLT  -1.562 4.979 
variety NE83498  1.563 4.979 
variety NE84557  -8.037 4.979 
variety 

⋮ 
NE83432  -8.837 4.979 

variety NE87615  -2.875 4.979 
variety NE87619  2.700 4.979 
variety NE87627  -5.337 4.979 
mu  1 28.56 3.856 
repl  1 1.880 1.755 
repl  2 2.843 1.755 
repl  3 -0.8713 1.755 
repl  4 -3.852 1.755 
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3.6.3 The .yht file 
The following is an extract from nin89.yht containing the predicted values of the observations 
(column 2), the residuals (column 3) and the diagonal elements of the hat matrix. This final column 
can be used in tests involving the residuals, see Section 2.4.2 Diagnostics. 

 
Record Yhat Residual Hat 

1 30.442 -1.192 13.01 
2 27.955 3.595 13.01 
3 32.380 2.670 13.01 
4 23.092 7.008 13.01 
5 31.317 1.733 13.01 
6 29.267 0.9829 13.01 
7 26.155 9.045 13.01 
8 24.567 -5.167 13.01 
9 23.530 0.8204 13.01 

⋮ 
222 16.673 9.877 13.01 

223 24.548 1.052 13.01 
224 23.786 3.114 13.01 

 
3.7 Tabulation, predicted values and functions of the 

variance components 
It may take several runs of ASReml to determine an appropriate model for the data, that is, the 
fixed and random effects that are important. During this process you may wish to explore the data 
by simple tabulation. Having identified an appropriate model, you may then wish to form predicted 
values or functions of the variance components. The facilities in ASReml to form predicted values 
and functions of the variance components are described in Chapters 10 and 13 respectively. Our 
example only includes tabulation and prediction. 

 
The statement 
tabulate yield ∼ variety 
in nin89.as results in nin89.tab as follows: 
NIN alliance trial 1989 11 Jul 2005 13:55:21  

Simple tabulation of yield 

variety  

LANCER 28.56 
BRULE 26.07 
REDLAND 30.50 
CODY 21.21 
ARAPAHOE 29.44 
NE83404 27.39 
NE83406 24.28 
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NE83407 22.69 
CENTURA 21.65 
SCOUT66 27.52 
COLT 27.00 

⋮  

NE87522 25.00 
NE87612 21.80 
NE87613 29.40 
NE87615 25.69 
NE87619 31.26 
NE87627 23.23 

 
The 
predict variety 

statement after the model statement in nin89.as results in the nin89.pvs file displayed 
below (some output omitted) containing the 56 predicted variety means, also in the order in 
which they first appear in the data file (column 2), together with standard errors (column 3). An 
average standard error of difference among the predicted variety means is displayed immediately 
after the list of predicted values. As in the .asr file, date, time and trial information are given 
the title line. The Ecode for each prediction (column 4) is usually E indicating the prediction is 
of an estimable function. Predictions of non-estimable functions are usually not printed, see 
Chapter 10. 

 
NIN alliance trial 1989 04 Apr 2008 17:00:47  

nin89 

 
Ecode is E for Estimable, * for Not Estimable 

_ _ _ _   _ _ _ _   _ _ _ _   _ _ _ _   _ _ _ _   _ _ _ _   _ _ _ _   _ _ _ _     1   _ _ _ _   _ _ _ _  _ _ _ _  _ _ _ _  _ _ _ _  _ _ _ _   

Predicted values of yield 
The predictions are obtained by averaging across the hypertable 

calculated from model terms constructed solely from factors 
in the averaging and classify sets. 

The ignored set: repl 
Use !AVERAGE to move table factors into the averaging set. 

 
variety Predicted_Value Standard_Error Ecode 
LANCER 28.5625 3.8557 E 
BRULE 26.0750 3.8557 E 
REDLAND 30.5000 3.8557 E 
CODY 21.2125 3.8557 E 
ARAPAHOE 29.4375 3.8557 E 
NE83404 27.3875 3.8557 E 
NE83406 24.2750 3.8557 E 
NE83407 22.6875 3.8557 E 
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CENTURA 21.6500 3.8557 E 
SCOUT66 27.5250 3.8557 E 
COLT 27.0000 3.8557 E 

⋮    

NE87613 29.4000 3.8557 E 

NE87615 25.6875 3.8557 E 
NE87619 31.2625 3.8557 E 
NE87627 23.2250 3.8557 E 
SED: Overall Standard Error of Difference 4.979 
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4 Data file preparation 
 
 
4.1 Introduction 

 
The first step in an ASReml analysis is to prepare the data file. Data file preparation is discussed 
in this chapter using the NIN example of Chapter 3 for demonstration. The first 25 lines of the 
data file are as follows: 
 

variety id pid raw repl nloc yield lat long row 
column  
BRULE 2 1102 631 1 4 31.55 4.3 20.4 17 1 
REDLAND 3 1103 701 1 4 35.05 4.3 21.6 18 1 
CODY 4 1104 602 1 4 30.1 4.3 22.8 19 1 
ARAPAHOE 5 1105 661 1 4 33.05 4.3 24 20 1 
NE83404 6 1106 605 1 4 30.25 4.3 25.2 21 1 
NE83406 7 1107 704 1 4 35.2 4.3 26.4 22 1 
NE83407 8 1108 388 1 4 19.4 8.6 1.2 1 2 
CENTURA 9 1109 487 1 4 24.35 8.6 2.4 2 2 
SCOUT66 10 1110 511 1 4 25.55 8.6 3.6 3 2 
COLT 11 1111 502 1 4 25.1 8.6 4.8 4 2 
NE83498 12 1112 492 1 4 24.6 8.6 6 5 2 
NE84557 13 1113 509 1 4 25.45 8.6 7.2 6 2 
NE83432 14 1114 268 1 4 13.4 8.6 8.4 7 2 
NE85556 15 1115 633 1 4 31.65 8.6 9.6 8 2 
NE85623 16 1116 513 1 4 25.65 8.6 10.8 9 2 
CENTURK78 17 1117 632 1 4 31.6 8.6 12 10 2 
NORKAN 18 1118 446 1 4 22.3 8.6 13.2 11 2 
KS831374 19 1119 684 1 4 34.2 8.6 14.4 12 2 
TAM200 20 1120 422 1 4 21.1 8.6 15.6 13 2 
NE86482 21 1121 560 1 4 28 8.6 16.8 14 2 
HOMESTEAD 22 1122 566 1 4 28.3 8.6 18 15 2 
LANCOTA 23 1123 514 1 4 25.7 8.6 19.2 16 2 
NE86501 24 1124 635 1 4 31.75 8.6 20.4 17 2 
NE86503 25 1125 840 1 4 42 8.6 21.6 18 2 
⋮ 
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4.2 The data file 
 

The standard format of an ASReml data file is to have the data arranged in columns/fields with a 
single line for each sampling unit. The columns contain variates and covariates (numeric), factors 
(alphanumeric), traits (response variables) and weight variables in any order that is convenient 
to the user. The data file may be free format, fixed format or a binary file. 

 
4.2.1 Free format data files 

 
The data are read free format (SPACE, COMMA or TAB separated) unless the file name has extension 
.bin for real binary, or .dbl for double precision binary (see below). Important points to note 
are as follows: 

 
• files prepared in EXCEL must be saved to COMMA or TAB-delimited form. 

• blank lines are ignored,  

• column headings, field labels or comments may be present at the top of the file (see Section  
3.4.1) provided that the !skip qualifier (Table 5.2) is used to skip over them, 

• NA, * and . are treated as coding for missing values in free format data files; 
- if missing values are coded with a unique data value (for example, 0 or -9), use the 

transformation !M value to flag them as missing or !DV value to drop the data record 
containing them (see Table 5.1), 

• COMMA delimited files whose file name ends in .csv or for which the !CSV qualifier is set 
recognise empty fields as missing values, 
- a line beginning with a COMMA implies a preceding missing value, 

- consecutive COMMAS imply a missing value, 

- a line ending with a COMMA implies a trailing missing value, 

- if the filename does not end in .csv and the !CSV qualifier is not set, COMMAS are treated 
as white space, 

• TAB delimited files recognise empty fields as missing values 

• characters following # on a line are ignored so this character may not be used except to flag 
trailing comments on the ends of lines, or to comment out data records, unless !SPECIALCHAR 
is specified, see Section 5.4.2, 

• adjacent lines can be concatenated and written on one line using //. For example, 

line_1 
line_2 
⋮ 
line_n  
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can be written on one line as 
line_1 // line 2 // ... line n 

This can aid legibility of the input file. Note that everything, including //, after the first # on a 
line is interpreted as a comment, 

 
• blank spaces, tabs and commas must not be used (embedded) in alphanumeric fields unless the 

label is enclosed in quotes, for example, the name Willow Creek would need to be appear 
in the data file as ‘Willow Creek’ to avoid an error, 

• the $ symbol must not be used in the data file, 

• alphanumeric factor level labels have a default size of 16 characters. Use the !LL size qualifier 
to extend the size of factor labels stored. 

• extra data fields on a line are ignored, 

• if there are fewer data items on a line than ASReml expects, the remainder are taken from the 
following line(s) except in .csv files where they are taken as missing. If you end up with half 
the number of records you expected, this is probably the reason, 

• all lines beginning with ! followed by a blank are copied to the .asr file as comments for the 
output; their contents are ignored, 

4.2.2 Fixed format data files 
 

The format must be supplied with the !FORMAT qualifier which is described in Table 5.5. 
However, if all fields are present and are separated the file can be read free format. 

 
4.2.3 Preparing data files in Excel 

 
Many users find it convenient to prepare their data in Excel, Access or some other database. Such 
data must be exported from these programs into either .csv (COMMA separated values) or .txt (TAB 
separated values) form for ASReml to read it. ASReml can convert an .xls file to a .csv file. When 
ASReml is invoked with an .xls file as the filename argument and there is no .csv file or .as with 
the same basename, it exports the first sheet as a .csv file and then generates a template .as 
command file from any column headings it finds (see Section 11.3.) It will also convert a Genstat 
.gsh spreadsheet file to .csv format. The data extracted from the .xls file are labels, numerical 
values and the results from formulae. Empty rows at the start and end of a block are trimmed, but 
empty rows in the middle of a block are kept. Empty columns are ignored. A single row of labels 
as the first non-empty row in the block will be taken as column names. Empty cells in this row 
will have default names C1, C2 etc. assigned. Missing values are commonly represented in 
ASReml data files by NA, * or .. ASReml will also recognise empty fields as missing values in .csv 
(.xls) files.  
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4.2.4 Binary format data files 
 

Conventions for binary files are as follows: 
 

• binary files are read as unformatted Fortran binary in single precision if the filename has a 
.bin or .BIN extension, 

• Fortran binary data files are read in double precision if the filename has a .dbl or .DBL 
extension, 

• ASReml recognises the value -1e37 as a missing value in binary files, 

• Fortran binary in the above means all real (.bin) or all double precision (.dbl) 
variables; mixed types, that is, integer and alphabetic binary representation of variables is not 
allowed in binary files, 

• binary files can only be used in conjunction with a pedigree file if the pedigree fields are coded 
in the binary file so that they correspond with the pedigree file (this can be done using the 
!SAVE option in ASReml to form the binary file, see Table 5.5), or the identifiers are whole 
numbers less than 9,999,999 and the !RECODE qualifier is specified (see Table 5.5). 
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5 Command file: Reading the data 
 
 
5.1 Introduction 

 
In the code box to the right is the ASReml 
command file nin89a.as for a spatial analysis 
of the Nebraska Intrastate Nursery (NIN) field 
experiment introduced Chapter 3. The lines that 
are highlighted in bold/blue type relate to reading 
in the data. In this chapter we use this example to 
discuss reading in the data in detail. 

 
Notice the in-line comment indicated by the #. 

 
5.2 Important rules 

 
In the ASReml command file 

 
• all blank lines are ignored, 

• # is used to annotate the input; all characters following a # symbol on a line are ignored, 

• lines beginning with ! followed by a blank are copied to the .asr file as comments for the 
output, 

• a blank is the usual separator; TAB is also a separator, 

• a COMMA as the last character on the line is sometimes used to indicate that the current list is 
continued on the next line; a COMMA is not needed when ASReml knows how many values to 
read, 

• reserved words used in specifying the linear model (Table 6.1) are case sensitive; they need to 
be typed exactly as defined: they may not be abbreviated.  

NIN Alliance Trial 1989  
variety !A # Alphanumeric 
id  
pid 
raw  
repl 4  
nloc  
yield  
lat  
long  
row 22 
column 11 
nin89aug.asd !skip 1  
yield ∼ mu variety 
residual idv(units) 
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• a qualifier is a letter sequence preceded by ! which sets an option; 
- some qualifiers require arguments, 

- qualifiers must appear on the correct context, 

- qualifier identifiers are not case sensitive, 

- most qualifier identifiers may be truncated to 3 characters. 
 
5.3 Title line 

 
The first 40 characters of the first nonblank text 
line in an ASReml command file are taken as a 
title for the job. Use this to document the analysis 
for future reference. An optional qualifier line 
(see Section 11.3) may precede the title line. It is 
recognised by the presence of the qualifier prefix 
letter !. Therefore, the title MUST NOT include an exclamation mark. 

 
5.4 Specifying and reading the data 

 
Typically, a data record consists of all the information pertaining to an experimental unit (plot, 
animal, assessment). Data field definitions manage the process of converting the fields as they 
appear in the data file to the internal form needed by ASReml. This involves mapping (coding) 
factors, general transformations, skipping fields and discarding unnecessary records. If the 
necessary information is not in a single file, the MERGE facility (see Chapter 12) may help. 

 
Variables are defined immediately after the job title. These definitions indicate how each field in 
the data file is handled as it is read into ASReml. Transformations can be used to create additional 
variables. Users can explicitly nominate how many are read with the !READ qualifier described 
in Table 5.5. No more than 10,000 variables may be read or formed.  

NIN Alliance Trial 1989  
variety !A 
id 
pid 

⋮ 
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Data field definitions 
 
• should be given for all fields in the data file; 

fields can be skipped and fields (on the end of 
a data line) without a field definition are 
ignored; if there are not enough data fields on 
a data line, the remainder are taken from the 
next line(s), 

• must be presented in the order they appear in 
the data file, 

• can appear with other definitions on the same 
line, 

• data fields can be transformed (see following heading): 

• additional variables can be created by transformation qualifiers. 

5.4.1 Data field definition syntax 
Data field definitions appear in the ASReml command file in the form 

SPACE label [field_type ] [transformations ] 

• SPACE – is now optional 

• label 

- is an alphanumeric string to identify the field, 

- has a maximum of 31 characters although only 20 are ever printed/displayed, 

- must begin with a letter, 

- must not contain the special characters ., *, :, /, !, #, $, | or ( , 

- reserved words (Table 6.1 and Table 7.6) must not be used, 

- !CSKIP [c] can be used to skip c (default 1) data fields. 

• field_type defines how a variable is interpreted as it is read and whether it is regarded as a factor 
or variate if specified in the linear model, 
- for a variate, leave field_type blank or specify 1, 

- for a model factor, various qualifiers are required depending on the form of the factor coding 
where n is the number of levels of the factor and s is a list of labels (or the name of a file 
containing the labels one per row) to be assigned to the levels: 

  

NIN Alliance Trial 1989  
variety !A 
id  
pid 
raw  
repl 4  
nloc  
yield  
lat  
long  
row 22 
column 11 
nin89aug.asd !skip 1  
yield ∼ mu variety 
⋮ 
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* or n is used when the data field has values 1. . . n directly coding for the factor 
unless the levels are to be labelled (see !L), 
Row * # 1:12 for example 

!L s is used when the data field is numeric with values 1. . . n and labels are to be 
assigned to the n levels, for example 
Sex !L Male Female 

!A [n] is required if the data field is alphanumeric, for example 
Location !A # names 
Specify n if there are more than 1000 classes over all class/factor variables 
indicating the expected number for this factor 

 
!A !L 
s 

is used if the data field is alphanumeric and must be coded in a particular order 
to set the order of the levels. For example, SNP !A !L C:C C:T T:T 
defines the levels over-riding the default, data dependent order. 
If there are many labels, they may be written over several lines by using a 
trailing COMMA to indicate continuation of the list. New R4 Alternatively, the 
labels may be listed in a file. If the filename includes embedded blanks, or has 
no file extension, it must be enclosed in quotes: 
Genotype !A !L MyNames.txt  
Genotype !A !L ’My Names.txt’  
Genotype !A !L ’MyNames’ 

Use a !SKIP qualifier after the filename to skip any heading lines. Names 
found in the data that are not included are simply appended to the list of levels 
as they are discovered by ASReml. An example of this would be for a genotype 
factor with 6 levels appearing in the data file in the order genb6 gena1 
gena5 genb2 genb4 gena3. In this case 
Genotype !A !L gena1 genb2 gena3 genb4 

would result in the levels of Genotype being ordered gena1 genb2 
gena3 genb4 genb6 gena5. 

!I [n] is required if the data is numeric defining a factor but not 1. . .n; !I must be 
followed by n if more than 1000 codes are present, 
Year !I # 1995 1996 

!AS p is required if the data field has level names in common with a previous 
!A or !I factor p and is to be coded identically, for example in a plant diallel 
experiment 
Male !A 22 Female !AS Male # integrated coding 

!P indicates the special case of a pedigree factor; ASReml will determine whether 
the identifiers are integer or alphanumeric from the pedigree file qualifiers, 
and set the levels after reading the pedigree file, see Section 9.3, 
Animal !P # coded according to pedigree file 

  



5.4 Specifying and reading the data 

48 
 

A warning is printed if the nominated value for n does not agree with the actual number of levels 
found in the data; if the nominated value is too small the correct value is used. 

- for a group of m variates or factor variables 

!G m [l] is used when m contiguous data fields comprise a set to be used together. The 
variables will be treated as factor variables if the second argument (l) setting 
the number of levels is present (it may be *). For example, 

 ⋮ is equivalent to ⋮ 
X1 X2 X3 X4 X5 y 
data.dat 
y ∼ mu X1 X2 X3 X4 X5 

X !G 5 y 
data.dat  
y ∼ mu X 

 
- !DATE specifies the field has one of the date formats dd/mm/yy, dd/mm/ccyy, dd-Mon- yy, 

dd-Mon-ccyy and is to be converted into a Julian day where dd is a 1 or 2 digit day of the 
month, mm is a 1 or 2 digit month of the year, Mon is a three letter month name (Jan Feb 
Mar Apr May Jun Jul Aug Sep Oct Nov Dec), yy is the year within the century 
(00 to 99), cc is the century (19 or 20). The separators ’/’ and ’-’ must be present as indicated. 
The dates are converted to days starting 1 Jan 1900. When the century is not specified, yy of 
0-32 is taken as 2000-2032, 33-99 taken as 1933-1999. 

- !DMY specifies the field has one of the date formats dd/mm/yy or dd/mm/ccyy and is to be 
converted into a Julian day. 

- !MDY specifies the field has one of the date formats mm/dd/yy or mm/dd/ccyy and is to be 
converted into a Julian day. 

- !TIME specifies the field has the time format hh:mm:ss. and is to be converted to seconds 
past midnight where hh is hours (0 to 23), mm is minutes (0-59) and ss is seconds (0 to 59). 
The separator ’:’ must be present. 

• transformations are described below. 

5.4.2 Storage of alphabetic factor labels 
 

Space is allocated dynamically for the storage of alphabetic factor labels with a default allocation 
being 2000 labels of 16 characters long. If there are large !A factors (so that the total across all 
factors will exceed 2000), you must specify the anticipated size (within say 5%) of the larger 
factors. 

 
If some labels are longer than 16 characters and the extra characters are significant, you must 
lengthen the space for each label by specifying !LL c e.g. 
cross !A 2300 !LL 48 

indicates the factor cross has about 2300 levels and needs 48 characters to hold the level names; 
only the first 20 characters of the names are ever printed.  
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!PRUNE on a field definition line means that if fewer levels are actually present in the factor than 
were declared, ASReml will reduce the factor size to the actual number of levels. Use !PRUNEALL 
for this action to be taken on the current and subsequent factors up to (but not including) a factor 
with the !PRUNEOFF qualifier. The user may overestimate the size for large ALPHA and 
INTEGER coded factors so that ASReml reserves enough space for the list. Using !PRUNE will 
mean the extra (undefined) levels will not appear in the .sln file. Since it is sometimes necessary 
that factors not be pruned in this way, for example in pedigree/GIV factors, pruning is only done 
if requested. 

 
Normally a # character in the data file will have the effect of eliminating whatever text follows on 
the line. This means that ordinarily the # character may not be included in the name of the level of 
an alphanumeric variable. The qualifier !SPECIALCHAR cancels the normal meaning of the # 
character in an input file so that it can be included in the name of a level of an alphanumeric or 
pedigree variable. If class names are being predefined, the qualifier !SPECIALCHAR must appear 
before the class names are read in. 

 
5.4.3 Ordering factor levels 

 
The default order for factor levels when factors are declared with !I and !A is the order the levels 
are encountered in the data file. !SORT declared after !A or !I on a field definition line will 
cause ASReml to fit the levels in (numeric) alphabetical order although they are defined in some 
other order. To control the order levels are defined, the level names must be prespecified using the 
!L s qualifier (applies only to factors declared !A ). Thus for a variable SEX coded as Male and 
Female, declared SEX !A , the user cannot know whether it will be coded 1=Male, 2=Female 
or 1=Female, 2=Male without looking to see which occurs first in the data file. However, 
declaring it as SEX !A !L Male Female will mean Male is coded 1; Female is coded 2. 
If it is declared as SEX !A !SORT , the coding order is unspecified but ASReml creates a lookup 
table after reading the data to arrange levels in sorted order and uses this sorted order when forming 
the design matrices. Consequentially, with the !SORT qualifier, the order of fitted effects will be 
1=Female, 2=Male in the analysis regardless of which appears first in the file. 

 
It will generally be preferable to pre-specify the levels than to use !SORT because most other 
references to particular levels of factors will refer to the unsorted levels. Therefore, users should 
verify that ASReml has made the correct interpretation when nominating specific levels of 
!SORTed factors. In particular any transformations are performed as the data is read in and before 
the sorting occurs. 

 
!SORTALL means that the levels of this and subsequent factors are to be sorted.  
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5.4.4 Skipping input fields 
 

This is particularly useful in large files with alphabetic fields that are not needed as it saves ASReml 
the time required to classify the alphabetic labels. New R4 !CSKIP f can be used to skip f fields. 
Thus 

!CSKIP 1 A B 

skips the first data field and reads the second and third fields into variables A and B, and 

!CSKIP Sire !I !CSKIP 2 Y 

will define two variables, Sire taken from the second data field and Y taken from the fifth data 
field. Also, !SKIP f will skip f data fields BEFORE reading this field. Thus 

Sire !I !SKIP 1 Y !SKIP 2 

achieves the same result but in a less obvious way! These qualifiers are ignored when reading 
binary data. 

 
Important Using the !SKIP qualifier in association with the specification of a file to be read in 
allows initial lines of the file to be skipped. !SKIP can also be used to skip columns when 
reading in a data file. Use of !CSKIP for skipping data fields is recommended to avoid confusion. 

 
5.5 Transforming the data 

 
Transformation is the process of modifying the data (for example, dividing all of the data values 
in a field by 10), forming new variables (for example, summing the data in two fields) or creating 
temporary data (for example, a test variable used to discard some records from analysis and 
subsequently discarded). Occasional users may find it easier to use a spreadsheet to calculate 
derived variables than to modify variables using ASReml transformations. 
 
Transformation qualifiers are listed after data field labels (and the field_type if present). They 
define an operation (e.g. +), often involving an argument (a constant or another variable), which 
is performed on a target variable. By default the target is the current field, but can be changed with 
the !TARGET qualifier. For a !G group of variables, the target is the first variable in the set. 

 
Using transformations will be easier if you understand the process. As ASReml parses the variable 
definitions, it sequentially assigns them column positions in the internal data vector. It notes which 
is the last variable which is not created by (say the !=) transformation, and that determines how 
many fields are read from the data file (unless overridden by !READ qualifier in Table 5.2). 
ASReml actually reads the data file after parsing the model line. It reads a line into a temporary 
vector, performs the transformations in that vector, and saves the values that relate to labelled 
variables to the internal data array.   
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Note that 

• there may be up to 10000 variables and these are internally labeled V1, V2⋯ V10000 for 
transformation purposes. Values from the data file, ignoring any !SKIPed fields, are read into 
the leading variables, 

• alpha (!A), integer (!I), pedigree (!P) and date (!DATE) fields are converted to real 
numbers (level codes) as they are read and before any transformations are applied, 

• transformations may be applied to any variable (since every variable is numeric), but it may not 
be sensible to change factor level codes, 

• transformations operate on a single variable (not a !G group of variables) unless it is explicitly 
stated otherwise, 

• transformations are performed in order for each record in turn, 

• variables that are created by transformation should be defined after (below) variables that are 
read from the data file unless it is the explicit intention to overwrite an input variable (see 
below), 

• after completing the transformations for each record, the values in the record for variables 
associated with a label are held for analysis, (or the record (all values) is discarded; see !D 
transformation and Section 6.9), 

Thus variables form three classes: those read from the data file, possibly modified, and labelled 
are available for subsequent use in analysis), those created and labelled are also available for 
subsequent use in the analysis and those created or read but not labelled (intermediate 
calculations) not required for subsequent analysis. 

 
When listing variables in the field definitions, list those read from the data file first. After them, 
list (and define) the labelled variables that are to be created. The number of variables read can be 
explicitly set using the !READ qualifier described in Table 5.5. Otherwise, if the first 
transformation on a field overwrites its contents (for instance using !=), ASReml recognises that 
the field does not need to be read in (unless a subsequent field does need to be read). For example, 

A 
B 
C !=A !-B 

reads two fields (A and B), and constructs C as A-B. All three are available for analysis. However, 
A 
B 
C !=A !-B 
D 
E !=D !-B 

reads four fields (A, B, C and D) because the fourth field is not obviously created and must 
therefore be read even though the third field (C) is overwritten. The fifth field is not read but just 
created E.  
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Variables that have an explicit label, may be referenced by their explicit label or their internal 
label. Therefore, to avoid confusion, do not use explicit labels of the form Vi, where i is a number, 
for variables to be referred to in a transformation. Vi always refers to field/variable i in a 
transformation statement. 

Variables that are not initialized from the data file, are initialized to missing value for the first 
record, and otherwise, to the values from the preceding record (after transformation). Thus 

A
B 
LagA !=V4 !V4=A 

reads two fields (A and B), and constructs LagA as the value of A from the previous record by 
extracting a value for LagA from working variable V4 before loading V4 with the current value 
of A. 

 
5.5.1 Transformation syntax 
Transformation qualifiers have one of seven forms, namely 

!operator to perform an operation on the current field, for example, absY 
!ABS to take absolute values, 

!operator value to perform an operation involving an argument on the current field, 
for example, 
logY !=Y !^0 copies Y and then takes logs, 

!operator V field to perform an operation on the current field using the data in 
another field, for example, !-V2 to subtract field 2 from the current 
field, 

!V target to reset the focus for subsequent transformations to field number 
target, 

!TARGET target to reset the focus for subsequent transformations to the previously 
named field target,  

!V target = value to set the target field to a particular value, 
!V target = V field to overwrite the data in a target field by the data values of another 

field; a special case is when field is 0 instructing ASReml to put 
the record number into the target field. 

 
• operator is one of the symbols defined in Table 5.1, 

• value is the argument, a real number, required by the transformation, 

• V is the literal character and is followed by the number (target or field) of a data field; the 
data field is used or modified depending on the context, 

• Vfield may be replaced by the label of the field if it already has a label,  
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• in the first three forms the operation is performed on the current field; this will be the field 
associated with the label unless the focus has been reset by specifying a new target in a 
preceding transformation, 

• the last four forms change the focus of subsequent transformations to target, 

• in the last two forms a value is assigned to the target field. For example, ... !V22=V11 
... copies (existing) field 11 into field 22. Such a statement would typically be followed by 
more transformations. If there are fewer than 22 variables labelled then V22 is used in the 
transformation stage but not kept for analysis. 

• only the !DOM and !RESCALE transformations automatically process a set of variables defined 
with the !G field definition. All other transformations always operate on only a single field. 
Use the !DO ... !ENDDO transformations to perform them on a set of variables. 

Table 5.1: List of transformation qualifiers and their actions with examples 

qualifier argument Action examples 

!= 
 
v used to overwrite/create a variable 

with v. It usually implies the variable 
is not read (see examples on 51. 

 
half !=0.5 
zero !=0. 

!+, !-, !*, 

!/ 

v usual arithmetic meaning; note that, 
0/0 gives 0 but v/0 gives a missing 
value where v is not 0. 

yield !/10 

!^ v raises the data (which must be 
positive) to the power v. 

yield 
SQRyld !=yield 
!^0.5 

!^ 0 takes natural logarithms of the data 
(which must be positive). 

yield 
LNyield !=yield 
!^0 

!^ -1 takes reciprocal of data (data must 
be positive). 

yield 
INVyield !=yield 
!^-1 

!>, !<, !<>, 

!==,   !<=, 

!>=  

v  logical operators forming 1 if true, 0 
if false. 

yield 
high !=yield !>10 

!ABS  takes absolute values - no argument 
required. 

yield 
ABSyield !=yield 
!ABS 

!ARCSIN v forms an ArcSin transformation 
using the sample size specified in the 
argument, a number or another 
field. In the side example, for two 
existing fields Germ and Total 
containing counts, we form the 
ArcSin for their ratio (ASG) by 
copying the Germ field and applying 
the ArcSin transformation using the 
Total field as sample size. 

Germ Total 
ASG !=Germ !ARCSIN Total 
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5.1: List of transformation qualifiers and their actions with examples 
 

qualifier argument Action examples  

 

!COS, 
!SIN 

 

s 

 

takes cosine and sine of the data 

 

Day 

 

  variable with period s having default 
2𝜋𝜋; omit s if data is in radians, set 
s to 360 if data is in degrees. 

CosDay !=Day !COS 
365 

 
  

  

!D, !D<>, v !D[o] v discards records which have yield !D<=0  
!D<, 
!D<=, 

v v or ’missing value’ in the field, 
subject to the logical operator o. 

yield !D<1 !D>100  

!D>, !D>= v   

!DV, v !DV[o] v discards records, subject to yield !DV<=0  
!DV<>, v the logical operator o, which have v 

in the field but keeps records with 
’missing value’ in the field; if !DV is 
used after !A or !I, v should refer 
to the encoded factor level rather 
than the value in the data file (see 
also Section 4.2). Use !DV * to 
discard just those records with a 
missing value in the field. 
!D v is equivalent to !DV * !DV v. 

yield !DV<1  

!DV<, v !DV>100  
!DV<=,   

 
 
 
InitialWt !DV * 

 

!DV>,   

!DV>=   
   
   
   
   
   
!DO [𝑛𝑛[𝑖𝑖𝑡𝑡[𝑖𝑖𝑣𝑣]]] causes ASReml to perform the 

following transformations n times 
(default is variables in current term), 
incrementing the target by 𝑖𝑖𝑡𝑡 
(default 1) and the argument (if 
present) by 𝑖𝑖𝑣𝑣 (default 0). Loops may 
not be nested. A loop is terminated 
by !ENDDO, another !DO or a new 
field definition, 

See !DOM 58  

 

 

 

 

 
!DOM f copies and converts additive marker 

covariables (-1, 0, 1) to dominance 
marker covariables (see !DOM 58). 

ChrAadd !G 10 MM!.. 
ChrAdom !DOM ChrAadd 

 

!ENDDO  terminates a !DO transformation 
block 

See !DOM 58  

!EXP  takes antilog base e - no argument 
required 

Rate !EXP  
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5.1: List of transformation qualifiers and their actions with examples 

qualifier argument Action examples 

!Jddm, 
!Jmmd 
!Jyyd 

 !Jddm converts a number 
representing a date in the form 
ddmmccyy, ddmmyy or ddmm into 
days. !Jmmd converts a date in the 
form ccyym- mdd, yymmdd or mmdd 
into days. !Jyyd converts a date in 
the form ccyyddd or yyddd into days. 
These calculate the number of days 
since December 31 1900 and are 
valid for dates from January 1 1900 
to December 31 2099; note that if cc 
is omitted it is taken as 19 if yy > 32 
and 20 if yy < 33, the date must be 
entirely numeric: characters such 
as / may not be present (but see 
!DATE). 

 

!M, !M<>, 
!M< !M<= 
!M> !M>= 

v 
v 
v 

!Mv converts data values of v to 
missing; if !M is used after !A or 
!I, v should refer to the factor level 
rather than the value in the data file 
(see also Section 4.2). 

yield !M-9 
yield !M<=0 !M>100 

!MAX, 
!MIN, 
!MOD 

v the maximum, minimum and 
modulus of the field values and the 
value v. 

yield !MAX 9 

!MM s assigns Haldane map positions (s) 
to marker variables and imputes 
missing values to the markers (see 
Section 5.5.2). 

ChrAadd !G 10 !MM 1 ⋯ 

!NA v replaces any missing values in the 
variate with the value v. If v is 
another field, its value is copied. 

Rate !NA 0 
WT !=Wt2 !NA Wt1 

!NORMAL v replaces the variate with normal 
random variables having variance 
v. 

Ndat !=0 !Normal 4.5 
is equivalent to 
Ndat !=Normal 4.5 

!REPLACE o n replaces data values o with n in the 
current variable. I.e. 
IF(DataValue.EQ.o) 
DataValue=n 

Rate !REPLACE -9 0 

!RESCALE o s rescales the column(s) in the 
current variable (!G group of 
variables) using 𝒀𝒀 =  (𝒀𝒀 +  𝑜𝑜)  ∗  𝑠𝑠 

Rate !RESCALE -10 0.1 

!SEED v sets the seed for the random 
number generator. 

⋯!SEED 848586 
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5.1: List of transformation qualifiers and their actions with examples 

qualifier argument action examples 

!SET vlist for vlist, a list of n values, the data 
values 1···n are replaced by the 
corresponding element from vlist; data 
values that are < 1 or > n are replaced 
by zero. vlist may run over several lines 
provided each incomplete line ends 
with a COMMA, i.e., a COMMA is used as 
a continuation symbol. 

treat !L C A B 
CvR !=treat !SET 1 -1 -1 
 
 
group !=treat !SET 1,  
2 2 3 3 4 

!SETN v n SETN v n replaces data values 1 : n with 
normal random variables having 
variance v. Data values outside the range 
1···n are set to 0 

Anorm !=A !SETN 2.5 10 

!SETU v n replaces data values 1 : n with uniform 
random variables having range 0 : v. 
Data values outside the range 1···n are 
set to 0. 

Aeff !=A !SETU 5 10 

!SUB vlist replaces data values = vi with their index 
i where vlist is a vector of n values. Data 
values not found in vlist are set to 0. 
vlist may run over several lines if 
necessary, provided each incomplete 
line ends with a COMMA. ASReml allows 
for a small rounding error when 
matching. It may not distinguish 
properly if values in vlist only differ in 
the sixth decimal place. 

year 3 !SUB 66 67 68 

!SEQ  replaces the data values with a 
sequential number starting at 1 which 
increments whenever the data value 
changes between successive records; the 
current field is presumed to define a 
factor and the number of levels in the 
new factor is set to the number of levels 
identified in this sequential process. 
Missing values remain missing. 

plot !=V3 !SEQ 

!TARGET v changes the focus of subsequent 
transformations to variable (field) v. 

sqrtA 
meanAB !+A !/2 , 
!TARGET sqrtA^0.5  

!UNIFORM v replaces the variate with uniform 
random variables having range 0 : v. 

Udat !=0. !UNIFORM 4.5 
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5.1: List of transformation qualifiers and their actions with examples 

qualifier argument action examples 

!Vtarget value assigns value to data field target 
overwriting previous contents; 
subsequent transformation qualifiers 
will operate on data field target. 

··· !V3=2.5 

 Vfield assigns the contents of data field field 
to data field target overwriting 
previous contents; subsequent 
transformation qualifiers will operate 
on data field target. If field is 0 the 
number of the data record is inserted 

··· !V10=V3 
··· !V11=block 
··· !V12=V0 

 

5.5.2 QTL marker transformations 
!MM s associates marker positions in the vector s (based on the Haldane mapping function) with 
marker variables and replaces missing values in a vector of marker states with expected values 
calculated using distances to non-missing flanking markers. This transformation will normally be 
used on a !G n factor where the n variables are the marker states for n markers in a linkage group 
in map order and coded [-1,1] (backcross) or [-1,0,1] (F2 design). s (length n+1) should be the n 
marker positions relative to a left telomere position of zero, and an extra value being the length of 
the linkage group (the position of the right telomere). The length (right telomere) may be omitted 
in which case the last marker is taken as the end of the linkage group. The positions may be given 
in Morgans or centiMorgans (if the length is greater than 10, it will be divided by 100 to convert 
to Morgans). 

 
The recombination rate between markers at sL and sR (L is left and R is right of some putative 
QTL at Q) is 
𝜃𝜃𝐿𝐿𝐿𝐿 = (1 − 𝑒𝑒−2(𝑠𝑠𝑅𝑅−𝑠𝑠𝐿𝐿))/2. 
Consequently, for 3 markers (L,Q,R), 𝜃𝜃𝐿𝐿𝐿𝐿 =  𝜃𝜃𝐿𝐿𝐿𝐿 +  𝜃𝜃𝑄𝑄𝑄𝑄 − 2𝜃𝜃𝐿𝐿𝐿𝐿𝜃𝜃𝑄𝑄𝑄𝑄 . 
The expected value of a missing marker at Q (between L and R) depends on the marker states at 
L and R: 𝐸𝐸(𝑞𝑞|1, 1)  =  (1 − 𝜃𝜃𝐿𝐿𝐿𝐿 − 𝜃𝜃𝑄𝑄𝑄𝑄)/(1 − 𝜃𝜃𝐿𝐿𝐿𝐿), 
𝐸𝐸(𝑞𝑞|1,−1)  =  (𝜃𝜃𝑄𝑄𝑄𝑄 − 𝜃𝜃𝐿𝐿𝐿𝐿)/𝜃𝜃𝐿𝐿𝐿𝐿 ,𝐸𝐸(𝑞𝑞| − 1, 1)  =  (𝜃𝜃𝐿𝐿𝐿𝐿 − 𝜃𝜃𝑄𝑄𝑄𝑄)/𝜃𝜃𝐿𝐿𝐿𝐿  
and 𝐸𝐸(𝑞𝑞|−1,−1) = �−1 + 𝜃𝜃𝐿𝐿𝐿𝐿 + 𝜃𝜃𝑄𝑄𝑅𝑅� / (1 − 𝜃𝜃𝐿𝐿𝐿𝐿). 

Let 𝜆𝜆𝐿𝐿 = (𝐸𝐸(𝑞𝑞|1,1) + 𝐸𝐸(𝑞𝑞|1,−1))/2 = 𝜃𝜃𝑄𝑄𝑄𝑄(1−𝜃𝜃𝑄𝑄𝑄𝑄)(1−2𝜃𝜃𝐿𝐿𝐿𝐿)
𝜃𝜃𝐿𝐿𝐿𝐿(1−𝜃𝜃𝐿𝐿𝐿𝐿) 

 

and 𝜆𝜆𝑅𝑅 = (𝐸𝐸(𝑞𝑞| − 1,1) + 𝐸𝐸(𝑞𝑞| − 1,−1))/2 = 𝜃𝜃𝐿𝐿𝐿𝐿(1−𝜃𝜃𝐿𝐿𝐿𝐿)(1−2𝜃𝜃𝑄𝑄𝑄𝑄)
𝜃𝜃𝐿𝐿𝐿𝐿(1−𝜃𝜃𝐿𝐿𝐿𝐿) 

 

Then 𝐸𝐸(𝑞𝑞|𝑥𝑥𝐿𝐿 ,𝑥𝑥𝑅𝑅)  =  𝜆𝜆𝐿𝐿𝑥𝑥𝐿𝐿 + 𝜆𝜆𝑅𝑅𝑥𝑥𝑅𝑅. 
Where there is no marker on one side, 
𝐸𝐸(𝑞𝑞|𝑥𝑥𝑅𝑅) = �1 − 𝜃𝜃𝑄𝑄𝑄𝑄�𝑥𝑥𝑅𝑅 + 𝜃𝜃𝑄𝑄𝑄𝑄(−𝑥𝑥𝑅𝑅) = 𝑥𝑥𝑅𝑅(1 − 2𝜃𝜃𝑄𝑄𝑄𝑄). 
This qualifier facilitates the QTL method discussed in Gilmour (2007).  
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!DOM A is used to form dominance covariables from a set of additive marker covariables previously 
declared with the !MM marker map qualifier. It assumes the argument A is an existing group of marker 
variables relating to a linkage group defined using !MM which represents additive marker variation 
coded [-1, 0, 1] (representing marker states aa, aA and AA) respectively. It is a group transformation 
which takes the [-1,1] interval values, and calculates (|X|- 0.5)*2 i.e. -1 and 1 become one, 0 becomes 
-1. The marker map is also copied and applied to this model term so it can be the argument in a qtl() 
term (see Table 6.2). 

 
!DO ... !ENDDO provides a mechanism to repeat transformations on a set of variables. All 
transformations except !DOM and !RESCALE operate once on a single field unless preceded by 
a !DO qualifier. The !DO qualifier has three arguments: 𝑛𝑛[[𝑖𝑖𝑡𝑡]𝑖𝑖𝑣𝑣]. n is the number of times the 
following transformations are to be performed. 𝑖𝑖𝑡𝑡 (default 1) is the increment applied to the target 
field. 𝑖𝑖𝑣𝑣 (default 0.0) is the increment applied to the transformation argument. The default for n is 
the number of variables in the current field definition. !ENDDO is formally equivalent to !DO 1 
and is implicit when another !DO appears or the next field definition begins. Note that when 
several transformations are repeated, the processing order is that each is performed n times before 
the next is processed (contrary to the implication of the syntax). However, the target is reset for 
each transformation so that the transformations apply to the same set of variables. 
Y1 Y2 Y3 Y4 Y5  # Repeat 5 times, incrementing just  

Ymean !=0. !DO 5 0 1 !+Y1 !ENDDO !/5 # the argument 

is equivalent to 
Y1 Y2 Y3 Y4 Y5 

Ymean !=0. !+Y1 !+Y2 !+Y3 !+Y4 !+Y5 !/5 
 
Y0 Y1 Y2 Y3 Y4 Y5 !TARGET Y1 !do 5 1 0 !-Y0 !ENDDO#Take Y0 from rest 
Markers !G 12 !do !D * !ENDDO # Delete records with missing marker values 

The default arguments ( 12, 1, 0.) are used. The initial target is the first marker. 
 
5.5.3 Remarks concerning transformations 
Note the following 

• variables that are created should be listed after all variables that are read in unless the intention 
is to overwrite an input field. 

• missing values are unaffected by arithmetic operations, that is, missing values in the current or 
target column remain missing after the transformation has been performed except in assignment 

- !+3 will leave missing values (NA, * and .) as missing, 

- !=3 will change missing values to 3, 

• multiple arithmetic operations cannot be expressed in a complex expression but must be given 
as separate operations that are performed in sequence as they appear, for example,  
yield !-120 !*0.0333 would calculate 0.0333 * (yield - 120),  
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• Most transformations only operate on a single field and will not therefore be performed on all 
variables in a !G factor set. The only transformations that apply to the whole set are !DOM, 
!MM and !RESCALE 

ASReml code action 

yield !M0 changes the zero entries in yield to missing values 

yield !^0 takes natural logarithms of the yield data 

score !-5 subtracts 5 from all values in score 

score !SET -0.5 1.5 2.5 replaces data values of 1, 2 and 3 with -0.5, 1.5 and 2.5 
respectively 

score !SUB -0.5 1.5 2.5 replaces data values of -0.5, 1.5 and 2.5 with 1, 2 and 3 
respectively; 

a data value of 1.51 would be replaced by 0 since it is not in the 
list or very close to a number in the list 

block 8 
variety 20  
yield 
plot * !=variety !SEQ 

in the case where 
- there are multiple units per plot, 
- contiguous plots have different treatments, and 
- the records are sorted units within plots within 

blocks,  
this code generates a plot factor assuming a new plot 
whenever the code in V2 (variety) changes; whether this 
creates a variable or overwrites an input variable depends on 
whether any subsequent variables are input variables, 

Var 3 
Nit 4 
VxN 12 !=Var !-1 !*4 !+Nit 

assuming Var is coded 1:3 and Nit is coded 1:4, this syntax 
could be used to create a new factor VxN with the 12 levels of the 
composite Var by Nit factor. 

YA !V98=YA !NA 0 
YB !V99=YB !NA 0 !+V98 !D0 

 

will discard records where both YA and YB have missing 
values (assuming neither have zero as valid data). The first line 
sets the focus to variable 98, copies YA into V98 and changes 
any missing values in V98 to zero. The second line sets the focus 
to variable 99, copies YB into V99 and changes any missing 
values in V99 to zero. It then adds V98 and discards the whole 
record if the result is zero, i.e. both YA and YB have missing 
values for that record. Variables 98 and 99 are not labelled 
and so are not retained for subsequent use in analysis. 
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5.5.4 Special note on covariates 
Covariates are variates that appear as independent variables in the model. It is recommended that 
covariates be centred and scaled to have a mean near zero and a variance of about one to avoid 
failure to detect singularities. This can be achieved either 

 
• externally to ASReml in data file preparation, 

• using !RESCALE -mean scale where mean and scale are user supplied values, for example, 
age !rescale -140 .142857 # in weeks 

 

5.6 Data file line 
 

The purpose of the data file line is to 
 
• nominate the data file, 
• specify qualifiers to modify 

- the reading of the data, 
- the output produced, 
- the operation of ASReml. 

 

5.6.1 Data line syntax 
The data file line appears in the ASReml command file in the form 

datafile [qualifiers] 
[newlinequalifier] 

 
• datafile is the path name of the file that contains the variates, factors, covariates, traits (response 

variates) and weight variables represented as data fields, see Chapter 4; enclose the path name 
in quotes if it contains embedded blanks, 

• the qualifiers tell ASReml to modify either 

- the reading of the data and/or the output produced, see Table 5.2 for a list of data file related 
qualifiers, 

- the operation of ASReml, see Table 5.3 to Table 5.6 for a list of job control qualifiers 

• the data file related qualifiers must appear on the data file line, 

• the job control qualifiers may appear on the data file line or on following lines, 

• newlinequalifier indicates that some qualifiers including some associated with forming new model 
terms (for example !CONTRAST, !GROUPFACTOR, !MBF, !SPL, !SUBGROUP, !SUBSET), 
!GINDEX and !MERGE need defining on a new line,  

NIN Alliance Trial 1989 
variety !A 
⋮ 
row 22 
column 11 
nin89aug.asd skip 1  
yield ∼ mu variety 
⋮ 
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• the arguments to qualifiers are represented by the following symbols 
f — a filename, 
n — an integer number, typically a count, 
p — a list of real numbers, typically in increasing order. It is generally true that if there are 

many numbers in a list they may be written over several lines by using a trailing COMMA 
to indicate continuation of the list, 

r — a real number, 
s — a character string, 
t — a model term label, 
v — the number or label of a data variable, 
vlist — a list of variable labels. 

 
5.7 Data file qualifiers 

 
Table 5.2 lists the qualifiers relating to data input. Use the Index to check for examples or further 
discussion of these qualifiers. 
 

Table 5.2: Qualifiers relating to data input and output 

qualifier action 

Frequently used data file qualifiers 
!SKIP n 

causes the first n records of the (non-binary) data file to be ignored. 
Typically these lines contain column headings for the data fields. 

Other data file qualifiers 
!COLUMNFACTOR v 

!COLFAC v 

is used in combination with !ROWFACTOR [and !SECTION] to get ASReml 
to insert extra data records to complete the grid of plots defined by the 
RowFactor and the ColumnFactor for each Section so that a two- 
dimensional error structure can be defined (see !SECTION in Table 5.4) 

!CSV used to make consecutive commas imply a missing value; this is 
automatically set if the file name ends with .csv or .CSV (see Section 4.2 
Warning: This qualifier is ignored when reading binary data. 

!DATAFILE f specifies the datafile name replacing the one obtained from the datafile line. 
It is required when different !PATHS (see !DOPATH in Table 11.3) of a 
job must read different files. The !SKIP qualifier, if specified, will be 
applied when reading the file. 

!FILTER v  
[ !SELECT n] 
[ !EXCLUDE n] 

New R4 enables a subset of the data to be analysed; v is the number or 
name of a data field. When reading data, the value in field v is checked 
after any transformations are performed. If !SELECT and !EXCLUDE are 
omitted, records with zero in field v are omitted from the analysis. If 

!SELECT n is specified records with n in field v are retained and all other 
records are omitted. Conversely if !EXCLUDE n is specified, records with n 
in field v are ignored. 
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Table 5.2: Qualifiers relating to data input and output 

qualifier action 

!FOLDER s specifies an alternative folder for ASReml to find input files. This qualifier is usually 
placed on a separate line BEFORE the data filename line (and any pedigree/.giv 
.grm filename lines. For example, 
!FOLDER ../Data 
data.asd !SKIP 1 
is equivalent to 
../Data/data.asd !SKIP 1 

!FORMAT s supplies a Fortran like FORMAT statement for reading fixed format files. A simple 
example is !FORMAT(3I4,5F6.2) which reads 3 integer fields and 5 floating point 
fields from the first 42 characters of each data line. A format statement is enclosed in 
parentheses and may include 1 level of nested parentheses, for example, e.g. 
!FORMAT(4x,3(I4,f8.2)). Field descriptors are 

 • rX to skip r character positions, 
• rAw to define r consecutive fields of w characters width, 
• rIw to define r consecutive fields of w characters width, and 
• rFw.d to define r consecutive fields of w characters width; d indicates where 

to insert the decimal point if it is not explicitly present in the field, 
where r is an optional repeat count. 
In ASReml, the A and I field descriptors are treated identically and simply set the 
field width. Whether the field is interpreted alphabetically or as a number is 
controlled by the !A qualifier. 

Other legal components of a format statement are 
 • the , character; required to separate fields - blanks are not permitted in the 

format. 
• the / character; indicates the next field is to be read from the next line. 

However a / on the end of a format to skip a line is not honoured. 
• BZ; the default action is to read blank fields as missing values. * and NA are 

also honoured as missing values. If you wish to read blank fields as zeros, 
include the string BZ. 

• the string BM; switches back to ’blank missing’ mode. 
• the string Tc; moves the ’last character read’ pointer to line position c so that 

the next field starts at position c + 1. For example T0 goes back to the 
beginning of the line. 

• the string D; invokes debug mode. 
 A format showing these components is 

!FORMAT(D,3I4,8X,A6,3(2x,F5.2)/4x,BZ,20I1)and is suitable for 
reading 27 fields from 2 data records such as 
111122223333xxxxxxxxALPHAFxx 4.12xx 5.32xx 6.32  
xxxx123 567 901 345 7890 
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Table 5.2: Qualifiers relating to data input and output 

qualifier action 

!MERGE c f [ !SKIP n ] 
[!MATCH a b ] 

may be specified on a line following the datafile line. The purpose is to 
combine data fields from the (primary) data file with data fields from a 
secondary file (f ). This !MERGE qualifier has been superseded by the 
much more powerful MERGE statement (see Chapter 12). 
The effect is to open the named file (skip n lines) and then insert the 
columns from the new file into field positions starting at position c. If 
!MATCH a b is specified, ASReml checks that the field a (0 < a < c) has 
the same value as field b. If not, it is assumed that the merged file has 
some missing records and missing values are inserted into the data record 
and the line from the MERGE file is kept for comparison with the next 
record. 
It is assumed that the lines in the MERGE file are in the same order as the 
corresponding lines occur in the primary data file, and that there are no 
extraneous lines in the MERGE file. A much more powerful merging 
facility is provided by the MERGE directive described in Chapter 12. 
For example, assuming the field definitions define 10 fields, 
PRIMARY.DAT !skip 1 
!MERGE 6 SECOND.DAT !SKIP 1 !MATCH 1 6 
would obtain the first five fields from PRIMARY.DAT and the next five 
from SECOND.DAT, checking that the first field in each file has the same 
value. 
Thus each input record is obtained by combining information from each 
file, before any transformations are performed 

!READ n formally instructs ASReml to read n data fields from the data file. It is 
needed when there are extra columns in the data file that must be read but 
are only required for combination into earlier fields in transformations, or 
when ASReml attempts to read more fields than it needs to. 

!RECODE is required when reading a binary data file with pedigree identifiers that 
have not been recoded according to the pedigree file. It is not needed when 
the file was formed using the !SAVE option but will be needed if formed 
in some other way (see Section 4.2). 

!ROWFACTOR v 
!ROWFAC v 

is used in combination with !COLUMNFACTOR [and !SECTION] to get 
ASReml to insert extra data records to complete the grid of plots defined 
by the RowFactor and the ColumnFactor for each Section so that a two- 
dimensional error structure can be defined (see !SECTION in Table 5.3). 

!RREC [n] causes ASReml to read n records or to read up to a data reading error if n 
is omitted, and then process the records it has. This allows data to be 
extracted from a file which contains trailing non-data records (for 
example extracting the predicted values from a .pvs file). The argument 
(n) specifies the number of data records to be read. If not supplied, ASReml 
reads until a data reading error occurs, and then processes the data it has. 
Without this qualifier, ASReml aborts the job when it encounters a data 
error. See !RSKIP. 
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Table 5.2: Qualifiers relating to data input and output 

qualifier action 

!RSKIP n [s] allows ASReml to skip lines at the heading of a file down to (and including) 
the nth instance of string s. For example, to read back the third set 
predicted values in a .pvs file, you would specify 
!RREC !RSKIP 4 ’ Ecode’ 

since the line containing the 4th instance of ’ Ecode’ immediately 
precedes the predicted values. The !RREC qualifier means that ASReml 
will read until the end of the predict table. The keyword Ecode which 
occurs once at the beginning and then immediately before each block of 
data in the .pvs file is used to count the sections. 

 

5.7.1 Combining rows from separate files 
 

ASReml can read data from multiple files provided the files have the same layout. The file specified 
as the ’primary data file’ in the command file can contain lines of the form 
!INCLUDE <filename> !SKIP n 
where <filename> is the (path)name of the data subfile and !SKIP n is an optional qualifier 

indicating that the first n lines of the subfile are to be skipped. After reading each subfile, input 
reverts to the primary data file. 

 
Typically, the primary data file will just contain !INCLUDE statements identifying the subfiles to 
include. For example, you may have data from a series of related experiments in separate data files 
for individual analysis. The primary data file for the subsequent combined analysis would then just 
contain a set of !INCLUDE statements to specify which experiments were being combined. 

 
If the subfiles have CSV format, they should all have it and the !CSV file should be declared on 
the primary datafile line. This option is not available in combination with !MERGE. 

 
5.8 Job control qualifiers 
 
The following tables list the job control qualifiers. These change or control various aspects of the 
analysis. Job control qualifiers may be placed on the datafile line and following lines. They may 
also be defined using an environment variable called ASREL_QUAL. The environment variable is 
processed immediately after the datafile line is processed. All qualifier settings are reported in the 
.asr file. Use the Index to check for examples or further discussion of these qualifiers. 
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Important Many of these are only required in very special circumstances and new users should 
not attempt to understand all of them. You do need to understand that all general qualifiers are 
specified here. Many of these qualifiers are referenced in other chapters where their purpose will 
be more evident. 

Table 5.3: List of commonly used job control qualifiers 

qualifier action 

!CONTINUE [f ] 
!MSV [f ] 
!TSV [f ] 
New R4 

These qualifiers are used to restart/resume iterations from the point 
reached in a previous run. The qualifier !CONTINUE [f ] can alternately 
be set from the command line using the option letter C [f] (see Section 
11.3). In each run ASReml writes the initial values of the variance parameters 
to a file with extension .tsv (template-start values) with information to 
identify individual variance parameters. After each iteration, ASReml writes 
the current values of the variance parameters to files with extension .rsv 
(re-start values) and .msv; the .msv version has information to clearly 
identify each variance parameter. If f is not set, then ASReml looks for a 
.rsv file with the same name used for the output files, i.e. the .as name 
possibly appended by arguments. ASReml then scans this file for parameter 
values related to the current model, replacing the values obtained from the 
.as file before iteration resumes. If !CONTINUE 2 or !TSV is used then 
the .tsv file is used instead of the .rsv file. Similarly, if !CONTINUE 3 
or !MSV are used then the .msv file is used instead of the .rsv file. If f 
=filename, with no extension, is used with !CONTINUE, !TSV or !MSV, 
ASReml will use the file f.rsv , f.tsv or f.msv. If f =filename.xsv 
with x=r, t or m is used with !CONTINUE, !TSV or !MSV, ASReml will 
use the file f.xsv. If the specified file is not present, ASReml reverts to 
reading the previous .rsv file. Some users may prefer, rather than 
specifying initial values in the model formulation, to generate a default 
.tsv file using !MAXIT 0 and then edit the .tsv file with more 
appropriate values. If the model has changed and !CONTINUE is used, 
ASReml will pick up the values it recognises as being for the same terms from 
the .rsv file. Furthermore, ASReml will use estimates in the .rsv file for 
certain models to provide starting values for certain more general models, 
inserting reasonable defaults where necessary. The transitions recognised 
are listed and discussed in Section 7.9.2. 
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Table 5.3: List of commonly used job control qualifiers 

qualifier action 

!CONTRAST s t p provides a convenient way to define contrasts among treatment levels. 
!CONTRAST lines occur as separate lines between the datafile line and the 
model line. 
s is the name of the model term being defined. 
t is the name of an existing factor. 
p is the list of contrast coefficients. For example 
!CONTRAST LinN Nitrogen 3 1 -1 -3 
defines LinN as a contrast based on the 4 (implied by the length of the list) 
levels of factor Nitrogen. Missing values in the factor become missing 
values in the contrast. Zero values in the factor (no level assigned) become 
zeros in the contrast. The user should check that the levels of the factor are 
in the order assumed by contrast (check the .ass or .sln or .tab files). 
It may also be used on the implicit factor Trait in a multivariate analysis 
provided it implicitly identifies the number of levels of Trait; the number 
of traits is implied by the length of the list. Thus, if the analysis involves 5 
traits, 
!CONTRAST Time Trait 1 3 5 10 20 

!DDF [i] requests computation of the approximate denominator degrees of freedom 
according to Kenward and Roger (1997) for the testing of fixed effects terms 
in the dense part of the linear mixed model. There are three options for i: i 
= -1 suppresses computation, i = 1 and i = 2 compute the denominator d.f. 
using numerical and algebraic methods respectively. 
If i is omitted then i = 2 is assumed. 
If !DDF i is omitted, i = -1 is assumed except for small jobs (< 10 
parameters, < 500 fixed effects, < 10,000 equations and < 100 Mbyte 
workspace) when i = 2. 
Calculation of the denominator degrees of freedom is computationally 
expensive. Numerical derivatives require an extra evaluation of the mixed 
model equations for every variance parameter. Algebraic derivatives 
require a large dense matrix, potentially of order number of equations plus 
number of records and is not available when MAXIT is 1 or for multivariate 
analysis. 

!FCON adds a ’conditional’ Wald F statistic column to the Wald F Statistics table. 
It enables inference for fixed effects in the dense part of the linear mixed 
model to be conducted so as to respect both structural and intrinsic 
marginality (see Section 2.5). The detail of exactly which terms are 
conditioned on is reported in the .aov file. The marginality principle used 
in determining this conditional test is that a term cannot be adjusted for 
another term which encompasses it explicitly (e.g. term A.C cannot be 
adjusted for A.B.C) or implicitly (e.g. term REGION cannot be adjusted for 
LOCATION when locations are actually nested in regions although they are 
coded independently). !FOWN in Table 5.5 provides a way of replacing the 
conditional Wald F statistic by specifying what terms are to be adjusted for, 
provided its degrees of freedom are unchanged from the incremental test. 
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Table 5.3: List of commonly used job control qualifiers 

qualifier action 

!MAXIT n sets the maximum number of iterations; the default is 10 for traditional 
models, more for general models. ASReml iterates for n iterations unless 
convergence is achieved first. Convergence is presumed when the REML log-
likelihood changes less than 0.002* current iteration number and the 
individual variance parameter estimates change less than 1%. 
If the job has not converged in n iterations, use the !CONTINUE qualifier 
to resume iterating from the current point. 
To abort the job at the end of the current iteration, create a file named 
ABORTASR.NOW in the directory in which the job is running. At the end of 
each iteration, ASReml checks for this file and if present, stops the job, 
producing the usual output but not producing predicted values since these 
are calculated in the last iteration. Creating FINALASR.NOW will stop 
ASReml after one more iteration (during which predictions will be formed). 
On case sensitive operating systems (e.g. UNIX), the filename 
(ABORTASR.NOW or FINALASR.NOW) must be upper case. Note that the 
ABORTASR.NOW file is deleted so nothing of importance should be in it. If 
you perform a system level abort (CTRL+C or close the program window) 
output files other than the .rsv file will be incomplete. The .rsv file 
should still be functional for resuming iteration at the most recent 
parameter estimates (see !CONTINUE). 

Use !MAXIT 1 where you want estimates of fixed effects and predictions 
of random effects for the particular set of variance parameters supplied as 
initial values. Otherwise the estimates and predictions will be for the 
updated variance parameters (see the !BLUP qualifier below). 

If !MAXIT 1 is used and an Unstructured Variance model is fitted, ASReml 
will perform a Score test of the US matrix. Thus, assume the variance 
structure is modelled with reduced parameters, if that modelled structure 
is then processed as the initial values of a US structure, ASReml tests the 
adequacy of the reduced parameterization. 

!SUM causes ASReml to report a general description of the distribution of the data 
variables and factors and simple correlations among the variables for those 
records included in the analysis. This summary will ignore data records for 
which the variable being analysed is missing unless a multivariate analysis 
is requested or missing values are being estimated. The information is 
written to the .ass file. 

!X v !Y v !G v !JOIN is used to plot the (transformed) data. Use !X to specify the x variable, 
!Y to specify the y variable and !G to specify a grouping variable. !JOIN 
joins the points when the x value increases between consecutive records. 
The grouping variable may be omitted for a simple scatter plot. Omit 
!Y y produce a histogram of the x variable. 

For example, 
!X age !Y height !G sex 
Note that the graphs are only produced in the graphics versions of ASReml 
(Section 11.3.4). 
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Table 5.3: List of commonly used job control qualifiers 

qualifier action 

 For multivariate repeated measures data, ASReml can plot the response 
profiles if the first response is nominated with the !Y qualifier and the 
following analysis is of the multivariate data. ASReml assumes the response 
variables are in contiguous fields and are equally spaced. For example  
Response profiles 
Treatment !A Y1 Y2 Y3 Y4 Y5 
rat.asd !Y Y1 !G Treatment !JOIN 
Y1 Y2 Y3 Y4 Y5 ∼ Trait Treatment Trait.Treatment 

 

Table 5.4: List of occasionally used job control qualifiers 

qualifier action 

!ASMV n indicates a multivariate analysis is required although the data is presented 
in a univariate form. ’Multivariate Analysis’ is used in the narrow sense 
where an unstructured error variance matrix is fitted across traits, records 
are independent, and observations may be missing for particular traits, see 
Chapter 8 for a complete discussion. 
The data is presumed arranged in lots of n records where n is the number of 
traits. It may be necessary to expand the data file to achieve this structure, 
inserting a missing value NA on the additional records. This option is 
sometimes relevant for some forms of repeated measures analysis. There 
will need to be a factor in the data to code for trait as the intrinsic Trait 
factor is undefined when the data is presented in a univariate manner. 

!ASUV allows you to have an error variance other than 𝐼𝐼 ⊗  𝚺𝚺 where 𝚺𝚺 is the 
unstructured (US, see Table 7.6) variance structure, if the data is presented 
in a multivariate form. If there are missing values in the data, include !f mv 
on the end of the linear model. The intrinsic factor Trait is defined and 
may be used in the model. See Chapter 8 for more information. 
This option is used for repeated measures analysis when the variance 
structure required is not the standard multivariate unstructured matrix. 

!DESIGN causes ASReml to write the design matrix, not including the response 
variable, to a .des file. It allows ASReml to create the design matrix 
required by the VCM process, see Section 7.8.2. 
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Table 5.4: List of occasionally used job control qualifiers 

qualifier action 

!DISPLAY n is used to select particular graphic displays. In spatial analysis of field trials, 
four graphic displays are possible (see Section 14.4). Coding these 
1=variogram 
2=histogram 
4=row and column trends 
8=perspective plot of residuals, 
set n to the sum of the codes for the desired graphics. The default is 9=1+8. 
These graphics are only displayed in versions of ASReml linked with 
Winteracter (that is, Linux, Mac and PC) versions. Line printer versions of 
these graphics are written to the .res file. See the G command line option 
(Section 11.3.4 on graphics) for how to save the graphs in a file for printing. 
Use !NODISPLAY to suppress graphic displays. 

!EPS sets hardcopy graphics file type to .eps. 

!G v is used to set a grouping variable for plotting, see !X. 

!GKRIGE [p] controls the expansion of !PVAL lists for fac(X,Y ) model terms. For 
kriging prediction in 2 dimensions (X,Y ), the user will typically want to 
predict at a grid of values, not necessarily just at data combinations. The 
values at which the prediction is required can be specified separately for X 
and Y using two !PVAL statements. Normally, predict points will be 
defined for all combinations of X and Y values. This qualifier is required 
(with optional argument 1) to specify the lists are to be taken in parallel. 
The lists must be the same length if to be taken in parallel. 
Be aware that adding two-dimensional prediction points is likely to 
substantially slow iterations because the variance structure is dense and 
becomes larger. For this reason, ASReml will ignore the extra PVAL points 
unless either !FINAL or !GKRIGE are set, to save processing time. 

!GROUPFACTOR t v p The !GROUPFACTOR qualifier, like !SUBSET, must appear on a line by 
itself after the data line and before the model line. Its purpose is to define a 
factor t by merging levels of an existing factor v. The syntax is 
!GROUPFACTOR <Group_factor> <Exist_factor> <new codes> 
for example 
!GROUPFACTOR Year YearLoc 1 1 1 2 2 3 3 3 4 4 
forms a new factor Year with 4 levels from the existing factor YearLoc 
with 10 levels. 
Alternatively, Year could be formed by data transformation: 
Year * !=YearLoc !set 1 1 1 2 2 3 3 3 4 4 !L 2001 2002 2003 
2004 

!IDLIMIT v is used when ASReml expands a residual statement like residual 
sat(Site).ar1(row).ar1(col) and the dimension of row or col is 
small. The ar1() structure is changed to id(). When the number of 
rows/columns is less than or equal to v, the structure is set to ID instead of 
AR1. v has a default value of 4 and cannot be reset to less than 3. If the 
qualifier is not specified the value of v is 1. 

!JOIN is used to join lines in plots, see !X. 
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Table 5.4: List of occasionally used job control qualifiers 

qualifier action 

!MBF mbf(v,n) f 
[!FACTOR ] 
[!FIELD s] 
[!KEY k] 
[!NOKEY ] 
[!RENAME t] 
[!RFIELD r] 
[!SKIP k] 
[!SPARSE ] 

specified on a separate line after the datafile line predefines the model term 
mbf(v,n) as a set of n covariates indexed by the data values in variable v. 
MBF stands for My Basis Function and uses the same mechanism as the 
leg(), pol() and spl() model functions but with covariates supplied 
by the user. It is used for reading in specialized design matrices indexed by a 
factor in the data including genetic marker covariables. By default, the file f 
should contain 1+n fields where the first field, the key field, contains the 
values which are in the data variable or at which prediction is required, and 
the remaining n fields define the corresponding covariate values. If n is 
omitted, all fields after the key field, are taken unless !FACTOR is specified 
for which n is 1 and the covariate values are treated as coding for a multilevel 
factor. Set n to 1 to read just one field form the data file. Also note that the 
file may be a binary file (e.g. formed in a previous run using !SAVE). 
!RENAME t changes the name of the term from mbf(...) to the new name 
t. This is necessary when several mbf(...) terms are being defined which 
would otherwise have the same name/label. For example 
!MBF mbf(entry) mlib/m35.csv !RENAME Marker35 

If the key values are the ordered sequence 1 : N , the key field may be omitted 
if !NOKEY is specified. If the key is not in the first field, its location can be 
specified with !KEY k. If extracting a single covariate from a large set of 
covariates in the file, the specific field to extract can be given by !FIELD s 
in absolute terms, or relative to the key field by 
!RFIELD r. For example 
!MBF mbf(variety,1) markers.csv !key 1 !RFIELD 35 !RENAME 
Marker35 

!SKIP k requests the first k lines of the file be ignored. 
!SPARSE can be used when the covariates are predominately zero. Each key 
value is followed by as many column,value pairs as required to specify the non-
zero elements of the design for that value of key. The pairs should be arranged 
in increasing order of column within rows. The rows may be continued on 
subsequent lines of the file provided incomplete lines end with a COMMA. 
This file may now be a binary format file, with file extension .bin indicating 
32bit real binary numbers and .dbl indicating 64bit real binary values. Files 
with these formats can be easily created in a preliminary run using the !SAVE 
qualifier. The advantage of using a binary file is that reading the file is much 
quicker. This is important if the file has many fields and is being accessed 
repeatedly, for example 
!CYCLE 1:1000 
!MBF mbf(Geno) markers.dbl !key 1 !RFIELD $I !rename M$I 
... !r M$I 
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Table 5.4: List of occasionally used job control qualifiers 

qualifier action 

 Restrictions: 
The key field MUST be numeric. In particular, if the data field it relates to 
is either an !A or !I encoded factor, the original (uncoded) level labels 
may not specified in the MBF file. Rather the coded levels must be specified. 
The MBF file is processed before the data file is read in and so the mapping 
to coded levels has not been defined in ASReml when the MBF file is 
processed, although the user can/must anticipate what it will be. 

Comment: 
If this MBF process is to be used repeatedly, for example to process a large 
set of marker variables in conjunction with !CYCLE, processing will be 
much faster if the markers variables are in separate files. ASReml will read 
10 files containing a single field much faster than reading a single file 
containing 400 fields, ten times to extract 10 different markers. Also note 
that the file may be a binary file and will be read much quicker than a 
formatted file. A binary file may be formed in a previous run using !SAVE. 

!MP p 
New R4.2 

specifies p the maximum number of threads to be used with OMP parallel 
processing. ASReml will use all threads available up to the maximum p 
(default 16). ASReml reports in the .asr file the number of used and 
available threads. 

!MVINCLUDE when missing values occur in the design ASReml will report this fact and 
abort the job unless !MVINCLUDE is specified (see Section 6.9); then 
missing values are treated as zeros. Use the !DV transformation to drop the 
records with the missing values. 

!MVREMOVE instructs ASReml to discard records which have missing values in the design 
matrix (see Section 6.9). 

!NODISPLAY suppresses the graphic display of the variogram and residuals which is 
otherwise produced for spatial analyses in the PC version. This option is 
usually set on the command line using the option letter N (see Section 
11.3.4 on graphics). The text version of the graphics is still written to the 
.res file. 

!PVAL v p is a mechanism for specifying the particular points to be predicted for 
covariates modelled using fac(v), leg(v,k), spl(v,k) and pol(v,k). 
The points are specified here so that they can be included in the appropriate 
design matrices. v is the name of a data field. p is the list of values at which 
prediction is required. See !GKRIGE for special conditions pertaining to 
fac(x,y) prediction. 

PVAL f vlist is used to read predict_points for several variables from a file f. vlist is the 
names of the variables having values defined. If the file contains unwanted 
fields, put the pseudo variate label skip in the appropriate position in vlist 
to ignore them. The file should only have numeric values. predict_points 
cannot be specified for design factors. 
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!SECTION v specifies the variable in the data that defines the data sections. This qualifier 
enables ASReml to check that sections have been correctly dimensioned. 
Further, when the model term mv is included in the model and 
!ROWFACTOR and !COLUMNFACTOR are defined, ASReml will check that 
the observations in each section form a complete grid; if not the grid will be 
completed by adding the appropriate extra data records. If only one grid is 
required from all the data then the !SECTION variable does not need 
specifying. The following is a basic example assuming 5 sites (sections). 
Basic multi-envt trial analysis filling out row and column  
grid 
site  5 # sites coded 1 ...5 
column  * # columns coded 1... 
row * # rows coded 1... 
variety   !A # variety names 
yield 

met.dat !SECTION site !ROWFACTOR row !COLUMNFACTOR col  
yield ~ site !r variety site.variety !f mv 
residual sat(site).ar1(row).ar1(column) 

!SPLINE spl(v,n) p defines a spline model term with an explicit set of knot points. The basic 
form of the spline model term, spl(v), is defined in Table 6.1 where v is 
the underlying variate. The basic form uses the unique data values as the 
knot points. The extended form is spl(v,n) which uses n knot points. Use 
this !SPLINE qualifier to supply an explicit set of n knot points (p) for the 
model term t. Using the extended form without using this qualifier results 
in n equally spaced knot points being used. The !SPLINE qualifier may 
only be used on a line by itself after the datafile line and before the model 
line. 
When knot points are explicitly supplied they should be in increasing order 
and adequately cover the range of the data or ASReml will modify them 
before they are applied. If you choose to spread them over several lines use 
a COMMA at the end of incomplete lines so that ASReml will continue 
reading values from the next line of input. If the explicit points do not 
adequately cover the range, a message is printed and the values are rescaled 
unless !NOCHECK is also specified. Inadequate coverage is when the 
explicit range does not cover the midpoint of the actual range. See !KNOTS, 
!PVAL and !SCALE. 

!STEP r reduces the update step sizes of the variance parameters. The default value 
is the reciprocal of the square root of !MAXIT. It may be set between 
0.01 and 1.0. The step size is increased towards 1 each iteration. Starting at 
0.1, the sequence would be 0.1, 0.32, 0.56, 1. This option is useful when you 
do not have good starting values, especially in multivariate analyses. 

!SUBGROUP t v p this qualifier must appear on a line by itself after the data line and before 
the model line. This qualifier forms a new group factor (t) derived from an 
existing group factor (v) by selecting a subset (p) of its variables. A subgroup 
factor may not be used in a PREDICT or TABULATE directive. 
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!SUBSET t v p this qualifier must appear on a line by itself after the data line and before 
the model line. This qualifier forms a new factor (t) derived from an existing 
factor (v) by selecting a subset (p) of its levels. Missing values are 
transmitted as missing and records whose level is zero are transmitted as 
zero. The qualifier occupies its own line after the datafile line but before the 
linear model. e.g. 
!SUBSET EnvC Env 3 5 8 9 :15 21 33 
defines a reduced form of the factor Env just selecting the environments 
listed. It might then be used in the model in an interaction. A subset factor 
can be used in a TABULATE directive but not in a PREDICT directive. 

The intention is to simplify the model specification in MET (Multi 
Environment Trials) analyses where say Column effects are to be fitted to a 
subset of environments. It may also be used on the intrinsic factor Trait 
in a multivariate analysis provided it correctly identifies the number of 
levels of Trait either by including the last trait number, or appending 
sufficient zeros. Thus, if the analysis involves 5 traits, 
!SUBSET Trewe Trait 1 3 4 0 0 

!TAU f 
New R4.2 

specifies that ASReml saves any regression coefficient associated with 
covariate f as a string named Tau so that the value can be used to adjust 
data in the next run. For example, the following code performs a two-stage 
analysis properly adjusting for plant height. First, we specify !TAU x to 
nominate the covariate whose coefficient is to be captured, or the position 
number of the covariate. The default position is 1. Second, we specify $Tau 
to substitute the coefficient into the job code.  
!RENAME 1 !ARG 1 2 
Form adjusted variety means with weights 
!DOPART $1 
yield 
plantheight 
variety * 
row * column * 
adjyld !=plantheight !*$Tau !*-1 !+yield 
yhv.csv !SKIP 1 !TAU plantheight 
!PART 1 
yield ~ mu plantheight mv !r variety row 
!PART 2 
!DF -1 !HOLD !CONTINUE !MAXIT 1 
adjyld ~ mu variety mv !r row 
predict variety !TWOSTAGE 

This job fits two models. In the first, $Tau has a value of 1 when used to 
calculate adjyld but adjyld is not used in the first model. The coefficient 
value is updated at the end of the first model fit to the regression coefficient 
obtained in that fit for plantheight. In the second model, we analyse 
adjyld which has been adjusted for plantheight and the residual 
degrees of freedom reduced by 1 to take account of the plantheight 
adjustment. This example does not take into account the mean plantheight. 

!WMF sets hardcopy graphics file type to .wmf. 
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!AILOADINGS i controls modification to AI updates of loadings in extended Factor Analytic 
models. After ASReml calculates updates for variance parameters, it checks 
whether the updates are reasonable and sometimes reduces them over and 
above any !STEPSIZE shrinkage. The extra shrinkage has two levels. 
Loadings that change sign are restricted to doubling in magnitude, and if 
the average change in magnitude of loadings is greater than 10-fold, they 
are all shrunk back. 
Unless the user gives constraints, ASReml sets them and rotates the loadings 
each iteration. When !AILOADINGS i is specified, it also prevents AI 
updates of some loadings during the first i iterations. For f (> 1) factors, 
only the last factor is estimated (conditional on the earlier ones) in the first 
f - 1 iterations. Then pairs including the last are estimated until iteration i. 
If !AILOADINGS is not specified and !CONTINUE is used and initializes 
the XFA model from a lower order, the i parameter is set internally. 

!AIPENALTY [p] The algorithm for updating loadings in factor analytic models has been 
improved. This builds on an earlier change implemented in ASReml 4 which 
modified updates to loadings, but proved too conservative causing such jobs 
to take too many iterations to converge. The motivation for change was that 
the original update procedure sometimes produced unreasonable updates, 
or otherwise came near to convergence and then drifted away. The present 
procedure is to modify the average information matrix by increasing the 
diagonal elements pertaining to loadings by a percentage, p. The default is 
to start with p = 10% and reduce it by 1 or 2% each iteration down to 1%. If 
the starting values are poor, 10% may not be a sufficient initial retardation. 
If it appears the updates are unreasonable, ASReml will increase the value 
of p by 10% and then continue. The user can set the initial value of p with 
the qualifier !AIPENALTY p. After the penalty has reduced to 1%, it is 
further reduced to 0.2%. The qualifier can be used to set p to 0 if desired. 
The value of p can be monitored by using the !LOGFILE and !DEBUG 
command line qualifiers and searching the .asl file for the string XFAIF 
(XFA Inflation Factor). 
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!AISINGULARITIES can be specified to force a job to continue even though a singularity was 
detected in the Average Information (AI) matrix. The AI matrix is used to 
give updates to the variance parameter estimates. In Release 1, if 
singularities were present in the AI matrix, a generalized inverse was used 
which effectively conditioned on whichever parameters were identified as 
singular. ASReml now aborts processing if such singularities appear unless 
the !AISINGULARITIES qualifier is set. Which particular parameter is 
singular is reported in the variance component table printed in the .asr 
file. 
The most common reason for singularities is that the user has overspecified 
the model and is likely to misinterpret the results if not fully aware of the 
situation. Overspecification will occur in a direct product of two 
unconstrained variance matrices (see Section 7.4), when a random term is 
confounded with a fixed term and when there is no information in the data 
on a particular component. 
Another common cause is when fitting an animal model and there is 
excessive sire/dam variance (so that heritability from a sire model would 
exceed 1) so that the residual variance under the animal model has 
approached zero. In this case the data contradicts the assumptions of the 
animal model. 
The best solution is to reform the variance model so that the ambiguity is 
removed, or to fix one of the parameters in the variance model so that the 
model can be fitted. Only rarely will it be reasonable to specify the 
!AISINGULARITIES qualifier. 

!BMP sets hardcopy graphics file type to .bmp. 

!BRIEF [n] suppresses some of the information written to the .asr file. The data 
summary and regression coefficient estimates are suppressed. This 
qualifier should not be used for initial runs of a job until the user has 
confirmed from the data summary that the data is correctly interpreted by 
ASReml. Use !BRIEF 2 to cause the predicted values to be written to the 
.asr file instead of the .pvs file. Use !BRIEF -1 to get BLUE (fixed 
effect) estimates reported in .asr file. The !BRIEF qualifier may be set 
with the B command line option. 
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!BLUP n is used to calculate the effects reported in the .sln file without calculating 
any derived quantities such as predicted values or updated variance 
parameters. For argument values 1:3, ASReml solves for the effects directly 
while for values 4:19 it solves the mixed model equations by iteration, 
allowing larger models to be fitted. With direct solution, the estimation 
REML iteration routine is aborted after 
n = 1: forming the estimates of the vector of fixed and random effects by 
matrix inversion, 
n = 2: forming the estimates of the vector of fixed and random effects, 
REML log-likelihood and residuals (this is the default), 
n = 3: forming the estimates of the vector of fixed and random effects, 
REML log-likelihood, residuals and inverse coefficient matrix. 
For arguments 4, 10:19, ASReml forms the mixed model equations and 
solves them iteratively to obtain solutions for the fixed and random effects. 
The options are: 
n = 4: forming the estimates of the vector of fixed and random effects using 
the Preconditioned Conjugate Gradient (PCG) Method (Mrode, 2005), 
n = 10:19 forming the estimates of the vector of fixed and random effects by 
Gauss-Seidel iteration of the mixed model equations, with relaxation factor 
n/10, 
The default maximum number of iterations is 12000. This can be reset by 
supplying a value greater than 100 with the !MAXIT qualifier in 
conjunction with the !BLUP qualifier. Iteration stops when the average 
squared update divided by the average squared effect is less than 1e−10. 
Gauss-Seidel iteration is generally much slower than the PCG method. 
ASReml prints its standard reports as if it had completed the iteration 
normally, but since it has not completed it, some of the information printed 
will be incorrect. In particular, variance information on the variance 
parameters will always be unavailable. Standard errors on the estimates will 
be wrong unless n=3. Residuals are not available if n=1. Use of n=3 or n=2 
will halve the processing time when compared to the alternative of using 
!MAXIT 1 rather than a !tt !BLUP n qualifier. However, !MAXIT 1 does 
result in complete and correct output. 

!DENSE n sets the number of equations solved densely up to a maximum of 5000. By 
default, sparse matrix methods are applied to the random effects and any 
fixed effects listed after random factors or whose equation numbers exceed 
800. Use !DENSE n to apply sparse methods to effects listed before the !r 
(reducing the size of the DENSE block) or if you have large fixed model 
terms and want Wald F statistics calculated for them. Individual model 
terms will not be split so that only part is in the dense section. n should be 
kept small (<100) for faster processing. 
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!DF n alters the error degrees of freedom from ν to ν +n. This qualifier might be 
used when analysing pre-adjusted data to reduce the degrees of freedom (n 
negative) or when weights are used in lieu of actual data records to supply 
error information (n positive). The degrees of freedom are only used in the 
calculation of the residual variance in a univariate single site analysis. The 
option will have no effect in analyses with multiple error variances (for sites 
or traits) other than in the reported degrees of freedom. Use !ADJUST r 
rather than !DF n if r is not a whole number. Use with !YSS r to supply 
variance when data fully fitted. 

!EMFLAG n 
!PXEM n 

requests ASReml use Expectation-Maximization (EM) rather than Average 
Information (AI) updates when the AI updates would make a US structure 
non-positive definite. This only applies to US structures and is still under 
development. When !GP is associated with a US structure, ASReml checks 
whether the updated matrix is positive definite (PD). If not, it replaces the 
AI update with an EM update. If the non-PD characteristic is transitory, 
then the EM update is only used as necessary. If the converged solution 
would be non-PD, there will be an EM update each iteration even though 
!EM is omitted. 

EM is notoriously slow at finding the solution and ASReml includes several 
modified schemes, discussed by Cullis et al. (2004), particularly relevant 
when the AI update is consistently outside the parameter space. These 
include optionally performing extra local EM or PXEM (Parameter 
Expanded EM) iterates. These can dramatically reduce the number of 
iterates required to find a solution near the boundary of the parameter 
space but do not always work well when there are several matrices on the 
boundary.  
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 The options are: 

With odd arguments !EMFLAG initiates sequences of EM updates 
!EMFLAG [1] Standard EM plus 10 local EM steps 
!EMFLAG 3 Standard EM plus 10 local EM steps 
!EMFLAG 5 Standard EM only 
!EMFLAG 7 Standard EM plus 1 local EM step 

With even arguments !PXFLAG initiates sequences of EM and PXEM 
updates 
!PXEM [2] Standard EM plus 10 local PXEM steps 
!PXEM 4 Standard EM plus 10 local PXEM steps 
!PXEM 6 Single local PXEM 
!PXEM 8 Standard EM plus 10 local PXEM steps 

Options 3 and 4 cause all US structures to be updated by (PX)EM if any 
particular one requires EM updates. 
The test of whether the AI updated matrix is positive definite is based on 
absorbing the matrix to check all pivots are positive. Repeated EM updates 
may bring the matrix closer to being singular. This is assessed by dividing 
the pivot of the first element with the first diagonal element of the matrix. 
If it is less than 10−7 (this value is consistent with the multiple partial 
correlation of the first variable with the rest being greater than 0.9999999, 
ASReml fixes the matrix at that point and estimates any other parameters 
conditional on these values. To proceed with further iterations without 
fixing the matrix values would ultimately make the matrix such that it would 
be judged singular resulting the analysis being aborted. 

!EQORDER o modifies the algorithm used for choosing the order for solving the mixed 
model equations. A new algorithm devised for Release 2 is now the default 
and is formally selected by !EQORDER 3. The algorithm used for Release 1 
is essentially that selected by !EQORDER 1. The new order is generally 
superior. !EQORDER -1 instructs ASReml to process the equations in the 
order they are specified in the model. Generally this will make a job much 
slower, if it can run at all. It is useful if the model has a suitable order as in 
the IBD model 
Y ~ mu !r !{ giv(id) id !} 
giv(id) invokes a dense inverse of an IBD matrix and id has a sparse 
structured inverse of an additive relationship matrix. While !EQORDER 3 
generates a more sparse solution, !EQORDER -1 runs faster. 

!EXTRA n forces another mod(n,10) rounds of iteration after apparent convergence. 
The default for n is 1. This qualifier has lower priority than !MAXIT and 
ABORTASR.NOW (see !MAXIT for details). 
Convergence is judged by changes in the REML log-likelihood value and 
variance parameters. However, sometimes the variance parameter 
convergence criteria have not been satisfied. 
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!FOWN 

 

allows the user to specify the test reported in the F-con column of the Wald 
F Statistics table. It has the form 
!FOWN terms to test ; background terms 
placed on a separate line immediately after the model line. Multiple 
!FOWN statements should appear together. It generates a Wald F statistic 
for each model term in terms to test which tests its contribution after all other 
terms in terms to test and background terms, conditional on all terms that 
appear in the SPARSE equations. It should only specify terms which will 
appear in the table of Wald F statistics. 
For example, 

!FOWN A B C ; mu 
!FOWN A.B B.C A.C ; mu A B C 
!FOWN A.B.C ; mu A B C A.B B.C A.C 

would request the Wald F statistics based on (see Section 2.5.2) 
R(A | mu B C sparse),  
R(B | mu A C sparse),  
R(C | mu A B sparse), 
R(A.B | mu A B C B.C A.C sparse),  
R(B.C | mu A B C A.B A.C sparse),  
R(A.C | mu A B C A.B B.C sparse) and 
R(A.B.C | mu A B C A.B A.C B.C sparse). 

Warnings: 
• For computational convenience, ASReml calculates !FOWN tests using a 

full rank parameterization of the fitted model with rank (numerator 
degrees of freedom, NumDF) of terms generated by the incremental 
Wald F tests.  

• Unfortunately, if some terms in the implicit model defined by the 
requested !FOWN test would have more or less NumDF than are present 
in the full rank parameterization because aliased effects are reordered, 
it cannot be calculated correctly from the full rank parameterization. In 
this case ASReml reverts to the ’conditional’ test but identifies the terms 
that need to be reordered in the fitted model to obtain the !FOWN test(s) 
specified. It is necessary to rerun ASReml after reordering these terms to 
obtain the !FOWN test(s) specified. Several reruns may be needed to 
perform all !FOWN tests specified. 

• Any model terms in the !FOWN lists which do not appear in the actual 
model, are ignored without flagging an error. 

• Any model terms which are omitted from !FOWN statements are tested 
with the usual conditional test. 

• If any model terms are listed twice, only the first test is performed. F-
con tests specified in !FOWN statements are given model codes 
O,P,... 

 The !FOWN statements are parsed by the routine that parses the model line 
and so accepts the same model syntax options. Care should be taken to 
ensure term names are spelt exactly as they appear in the model. 

!FREEGH p  
New R4.2 

sets number of iterations for a parameter to be held using the H qualifier 
(see Section 7.7.4) 
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!GDENSE  is used to have the first random term included in the dense equations if it is 
a GRM/GIV variance structure. This will result in faster processing when 
the GRM (inverse) matrix is not sparse. 

!GINDEX t p 
New R4.2 

This qualifier !GINDEX ModelTerm Coefficients should be placed after the 
datafile line and before the model line. The qualifier is motivated by wishing 
to predict effects indices that are linear combinations of objective traits that 
are not measured. In principle these objective traits could be included 
directly in a mixed model but it is sometimes more computationally feasible 
to calculate the predicted values by using the idea of a selection index and 
form the index from the predictions of the measured trait. If the i-th index 
for an individual is 𝜶𝜶𝒊𝒊𝒖𝒖𝟎𝟎 with linear combination 𝜶𝜶𝒊𝒊 of objective traits effects 
𝒖𝒖𝟎𝟎 then this index can be predicted with 𝒃𝒃𝒊𝒊𝒖𝒖𝒎𝒎 with 𝒃𝒃𝒊𝒊 = 𝜶𝜶𝒊𝒊𝑮𝑮𝒐𝒐𝒐𝒐𝑮𝑮𝒎𝒎𝒎𝒎−𝟏𝟏  where 
𝑮𝑮𝒐𝒐𝒐𝒐 is the covariance between objective and measured trait effects and 𝑮𝑮𝒎𝒎𝒎𝒎 
is the variance of measured trait effects and 𝒖𝒖𝟎𝟎 is the prediction of the 
effects for the measured traits. Note that this qualifier is envisaged to be 
used to provide predictions of effects using one round of iteration and using 
known values of the variance parameters. 
For example, 
harvey.dat !MAXIT 1 
!GINDEX us(Trait).nrm(animal), 
0.25 0.75 # Index 1 
0.70 0.30 # Index2 
!ASSIGN INITS 19.96 8.985 117.2 
!ASSIGN INITR 134.8 -66.45 655.2 
ADG Y3 Trait Trait.line, 
!r us(Trait $INITS).nrm(animal) 
residual id(units).us(Trait $INITR) 
generates predicted values for 2 indices using animal effect predicted values 
for traits ADG and Y3. The term us(Trait) identifies 𝑮𝑮𝒎𝒎𝒎𝒎. Forty 
coefficients can be supplied and the number is a multiple of the number of 
traits. The computed selection and prediction error standard errors are 
written to the .sli file. Note that the prediction error standard errors are 
calculated from the prediction of 𝒃𝒃𝒊𝒊𝒖𝒖𝒎𝒎. The prediction error of 𝒃𝒃𝒊𝒊𝒖𝒖𝒎𝒎 also 
includes an extra term dependent on (𝒃𝒃𝒊𝒊𝒖𝒖𝒎𝒎 − 𝜶𝜶𝒊𝒊𝒖𝒖𝟎𝟎), the extra variation 
from predicting the indices using measured traits instead of objective traits. 
This variation depends on 𝑮𝑮𝒐𝒐𝒐𝒐 − 𝑮𝑮𝒐𝒐𝒐𝒐𝑮𝑮𝒎𝒎𝒎𝒎−𝟏𝟏 𝑮𝑮𝒎𝒎𝒎𝒎′  but at present this is not 
calculated by ASReml. 

!GLMM [n] sets the number of inner iterations performed when an iteratively weighted 
least squares analysis is performed. Inner iterations are iterations to 
estimate the effects in the linear model for the current set of variance 
parameters. Outer iterations are the AI updates to the variance parameters. 
The default is to perform 4 inner iterations in the first round and 2 in 
subsequent rounds of the outer iteration. Set n to 2 or more to increase the 
number of inner iterations. 

!HPGL [2] sets hardcopy graphics file type to HP GL. An argument of 2 sets the 
hardcopy graphics file type to HP GL 2 

!HOLD [list] allows the user to temporarily fix the parameters listed. Each variance 
structure parameter is allocated a number internally. These numbers are 
reported in the .tsv file and some are reported in the structure input 
section of the .asr file. The list should be in increasing order using colon 
to indicate a sequence, step size is 1. For example !HOLD 1:20 30:40 . 
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!LAST <factor1 > <lev1 > [<fac2 > <lev2 > <fac3 > <lev3 >] 

 limits the order in which equations are solved in ASReml by forcing 
equations in the sparse partition involving the first <levi > equations of 
<factori > to be solved after all other equations in the sparse partition. It is 
intended for use when there are multiple fixed terms in the sparse equations 
so that ASReml will be consistent in which effects are identified as singular. 
The test example had 
!r Anim Litter !f HYS 
where genetic groups were included in the definition of Anim. 

Consequently, there were 5 singularities in Anim. The default reordering 
allows those singularities to appear anywhere in the Anim and HYS terms. 
Since 29 genetic groups were defined in Anim, !LAST Anim 29 forces 
the genetic group equations to be absorbed last (and therefore incorporate 
any singularities). In the more general model fitting 
!r Tr.Anim Tr.Lit !f Tr.HYS 

without !LAST, the location of singularities will almost surely change if the 
G structures for Tr.Anim or Tr.Lit are changed, invalidating Likelihood 
Ratio tests between the models. 

!OUTLIER performs the outlier check described in Section 2.4.2. This can have a large 
time penalty in large models. 

!OWN f supplies the name of a program supplied by the user in association with the 
OWN variance model (Section 7.7.3). 

!PRINT n causes ASReml to print the transformed data file to basename.asp. If 
n < 0, data fields 1...mod(n) are written to the file, 
n = 0, nothing is written, 
n = 1, all data fields are written to the file if it does not exist, 
n = 2, all data fields are written to the file overwriting any previous contents, 
n > 2, data fields n. . . t are written to the file where t is the last defined 
column. 

!PNG sets hardcopy graphics file type to .png. 
!PS sets hardcopy graphics file type to .ps. 

!PVSFORM n modifies the format of the tables in the .pvs file and changes the file 
extension of the file to reflect the format. 
!PVSFORM 1 is TAB separated: .pvs→ _pvs.txt 
!PVSFORM 2 is COMMA separated: .pvs→ _pvs.csv 
!PVSFORM 3 is Ampersand separated: .pvs→ _pvs.tex 
See !TXTFORM for more detail. 

!RESIDUALS [2] 
New R4.2 

instructs ASReml to write the transformed data and the residuals to a binary 
file. The residual is the last field. The file basename.srs is written in single 
precision unless the argument is 2 in which case basename.drs is 
written in double precision. Factor names are held in a .vll file: see 
!SAVE below. If a Generalized Linear Model was fitted, the weights are also 
written to this file after the residuals. 

  



5.8 Job control qualifiers 

82 
 

Table 5.5: List of rarely used job control qualifiers 

qualifier action 

 The file will not be written from a spatial analysis (two-dimensional error) 
when the data records have been sorted into field order because the 
residuals are not in the same order that the data is stored. The residual from 
a spatial analysis will have the units part added to it when units is also 
fitted. The .drs file could be renamed (with extension .dbl) and used for 
input in a subsequent run. 

!SAVE n instructs ASReml to write the data to a binary file. The file asrdata.bin is 
written in single precision if the argument n is 1 or 3; asrdata.dbl is 
written in double precision if the argument n is 2 or 4; the data values are 
written before transformation if the argument is 1 or 2 and after 
transformation if the argument is 3 or 4. The default is single precision 
after transformation (see Section 4.2). 
When either !SAVE or !RESIDUALS is specified, ASReml saves the factor 
level labels to a basename.vll and attempts to read them back when data 
input is from a binary file. Note that if the job basename changes between 
runs, the .vll file will need to be copied to the new basename. If the .vll 
file does not match the factor structure (i.e. the same factors in the same 
order), reading the .vll file is aborted. 

!SCREEN [n] [ !SMX m ] performs a ’Regression Screen’, a form of all subsets regression. For d model 
terms in the DENSE equations, there are 2𝑑𝑑 − 1 possible submodels. Since 
for d > 8, 2𝑑𝑑 − 1 is large, the submodels explored are reduced by the 
parameters n and m so that only models with at least n (default 1) terms but 
no more than m (default 6) terms are considered. The output is a report to 
the .asr file with a line for every submodel showing the sums of squares, 
degrees of freedom and terms in the model (see Section 14.3.1). There is a 
limit of d = 20 model terms in the screen. ASReml will not allow interactions 
to be included in the screened terms. For example, to identify which three 
of my set of 12 covariates best explain my dependent variable given the 
other terms in the model, specify !SCREEN 3 !SMX 3. The number of 
models evaluated quickly increases with d but ASReml has an arbitrary limit 
of 900 submodels evaluated. Use the !DENSE qualifier to control which 
terms are screened. The screen is conditional on all other terms (those in 
the SPARSE equations) being present. 

!SLNFORM [n] modifies the format of the .sln file. 
!SLNFORM -1 prevents the .sln file from being written. 
!SLNFORM 1 is TAB separated: .sln becomes _sln.txt 
!SLNFORM 2 is COMMA separated: .sln becomes _sln.csv 
!SLNFORM 3 is Ampersand separated: .sln becomes _sln.tex 
Note that, extra significant digits are reported when !SLNFORM is set, and 
expanded labelling of the levels in interactions is used because field width 
is no longer restricted. See !TXTFORM for more detail. 

!SPATIAL increases the amount of information reported on the residuals obtained 
from the analysis of a two-dimensional regular grid field trial. The 
information is written to the .res file. 
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Table 5.5: List of rarely used job control qualifiers 

qualifier action 

!TABFORM [n] controls form of the .tab file 
!TABFORM 1 is TAB separated: .tab becomes _tab.txt! 
!TABFORM 2 is COMMA separated: .tab becomes _tab.csv! 
!TABFORM 3 is Ampersand separated: .tab becomes _tab.tex 
See !TXTFORM for more detail. 

!TXTFORM [n] sets the default argument for !PVSFORM, !SLNFORM, !TABFORM and 
!YHTFORM if these are not explicitly set. !TXTFORM (or !TXTFORM 1) 
replaces multiple spaces with TAB and changes the file extension to, say, 
_sln.txt. This makes it easier to load the solutions into Excel. 
!TXTFORM 2 replaces multiple spaces with COMMA and changes the file 
extension to, say, _sln.csv. However, since factor labels sometimes 
contain commas, this form is not so convenient. 
!TXTFORM 3 replaces multiple spaces with Ampersand, appends a double 
backslash to each line and changes the file extension to say _sln.tex 
(Latex style). 
Additional significant digits are reported with these formats. Omitting the 
qualifier means the standard fixed field format is used. For .yht and .sln 
files, setting n to -1 means the file is not formed. 

!TWOWAY modifies the appearance of the variogram calculated from the residuals 
obtained when the sampling coordinates of the spatial process are defined 
on a lattice. The default form is based on absolute ’distance’ in each 
direction. This form distinguishes same sign and different sign distances 
and plots the variances separately as two layers in the same figure. 

!VCC n 
 

specifies that n constraints are to be applied to the variance parameters. The 
constraint lines occur after the G structures are defined. The constraints are 
described in Section 7.8.2. The variance header line (structural 
specification) or residual line (Section 6.2) must be present, even if only 
0 0 0 or residual units indicating there are no explicit R or G 
structures (see Section 7.8.2). 

!VGSECTORS [s] requests that the variogram formed with radial coordinates be based on s 
(4, 6 or 8) sectors of size 180/s degrees (see Section 2.4.2). The default is 4 
sectors if !VGSECTORS is omitted and 6 sectors if it is specified without an 
argument. The first sector is centred on the X direction. 

Figure 5.1 is the variogram using radial coordinates obtained using 
predictors of random effects fitted as fac(xsca,ysca). It shows low 
semi-variance in xsca direction, high semivariance in the ysca direction 
with intermediate values in the 45 and 135 degrees directions. 

!YHTFORM [f ] controls the form of the .yht file 
!YHTFORM -1 suppresses formation of the .yht file 
!YHTFORM 1 is TAB separated: .yht becomes _yht.txt 
!YHTFORM 2 is COMMA separated: .yht becomes _yht.csv 
!YHTFORM 3 is Ampersand separated: .yht becomes _yht.tex 

!YSS [r] adds r to the total Sum of Squares. This might be used with !DF to add 
some variance to the analysis when analysing summarised data. 
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Figure 5.1: Variogram in 4 sectors for Cashmore data  

Table 5.6: List of very rarely used job control qualifiers 

qualifier action 

!CINV n prints the portion of the inverse of the coefficient matrix pertaining to the 
nth term in the linear model. Because the model has not been defined when 
ASReml reads this line, it is up to the user to count the terms in the model 
to identify the portion of the inverse of the coefficient matrix to be printed. 
The option is ignored if the portion is not wholly in the SPARSE stored 
equations. The portion of the inverse is printed to a file with extension .cii 
The sparse form of the matrix only is printed in the form 𝑖𝑖 𝑗𝑗 𝐶𝐶𝑖𝑖𝑖𝑖, that is, 
elements of 𝐶𝐶𝑖𝑖𝑖𝑖 that were not needed in the estimation process are not 
included in the file. 

!FACPOINTS n affects the number of distinct points recognised by the fac() model 
function (Table 6.1). The default value of n is 1000 so that points closer than 
0.1% of the range are regarded as the same point. 
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Table 5.6: List of very rarely used job control qualifiers 

qualifier action 

!KNOTS n changes the default knot points used when fitting a spline to data with more 
than n different values of the spline variable. When there are more than n 
(default 50) points, ASReml will default to using n equally spaced knot 
points. 

!NOCHECK forces ASReml to use any explicitly set spline knot points (see !SPLINE) 
even if they do not appear to adequately cover the data values. 

!NOREORDER prevents the automatic reversal of the order of the fixed terms (in the dense 
equations) and possible reordering of terms in the sparse equations. 

!NOSCRATCH forces ASReml to hold the data in memory. ASReml will usually hold the data 
on a scratch file rather than in memory. In large jobs, the system area where 
scratch files are held may not be large enough. A Unix system may put this 
file in the /tmp directory which may not have enough space to hold it. 

!POLPOINTS n affects the number of distinct points recognised by the pol() model 
function (Table 6.1). The default value of n is 1000 so that points closer than 
0.1% of the range are regarded as the same point. 

!PPOINTS n influences the number of points used when predicting splines and 
polynomials. The design matrix generated by the leg(), pol() and 
spl() functions are modified to include extra rows that are accessed by 
the PREDICT directive. The default value of n is 21 if there is no !PPOINTS 
qualifier. The range of the data is divided by n-1 to give a step size i. For each 
point p in the list, a predict point is inserted at p + i if there is no data value 
in the interval [𝑝𝑝, 𝑝𝑝 + 1.1 × 𝑖𝑖]. !PPOINTS is ignored if !PVAL is specified 
for the variable. This process also effects the number of levels identified by 
the fac() model term. 

!REPORT forces ASReml to attempt to produce the standard output report when there 
is a failure of the iteration algorithm. Usually no report is produced unless 
the algorithm has at least produced estimates for the fixed and random 
effects in the model. Note that residuals are not included in the output 
forced by this qualifier. This option is primarily intended to help debugging 
a job that is not converging properly. 

!SCALE 1 When forming a design matrix for the spl() model term, ASReml uses a 
standardized scale (independent of the actual scale of the variable). The 
qualifier !SCALE 1 forces ASReml to use the scale of the variable. The 
default standardised scale is appropriate in most circumstances. 

!SCORE requests ASReml write the SCORE vector and the Average Information 
matrix to files basename.SCO and basename.AIM. The values written are 
from the last iteration. 
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Table 5.6: List of very rarely used job control qualifiers 

qualifier action 

!SLOW n reduces the update step sizes of the variance parameters more persistently 
than the !STEP r qualifier. If specified, ASReml looks at the potential size 
of the updates and if any are large, it reduces the size of r. If n is greater than 
10 ASReml also modifies the Information matrix by multiplying the 
diagonal elements by n. This has the effect of further reducing the updates. 
In the iteration subroutine, if the calculated LogL is more than 1.0 less than 
the LogL for the previous iteration and !SLOW is set and NIT>1, ASReml 
immediately moves the variance parameters back towards the previous 
values and restarts the iteration. 

!TOLERANCE [𝑠𝑠1 [ 𝑠𝑠2]] modifies the ability of ASReml to detect singularities in the mixed model 
equations. This is intended for use on the rare occasions when ASReml 
detects singularities after the first iteration; they are not expected. 
Normally (when no !TOLERANCE qualifier is specified), a singularity is 
declared if the adjusted sum of squares of a covariable is less than a small 
constant (η) or less than the uncorrected sum of squares × 𝜂𝜂, where η is 10−8 
in the first iteration and 10−10 thereafter. The qualifier scales η by 10s

i for 
the first or subsequent iterations respectively, so that it is more likely an 
equation will be declared singular. Once a singularity is detected, the 
corresponding equation is dropped (forced to be zero) in subsequent 
iterations. If neither argument is supplied, 2 is assumed. If the second 
argument is omitted, it is given the value of the first. 
If the problem of later singularities arises because of the low coefficient of 
variation of a covariable, it would be better to centre and rescale the 
covariable. If the degrees of freedom are correct in the first iteration, the 
problem will be with the variance parameters and a different variance 
model (or variance constraints) is required. 

!VRB requests writing of .vrb file. Previously, the default was to write the file. 
!WVR reports working variables to a .wvr file. 
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6 Command file: Specifying the terms 
in the mixed model 

 
 
6.1 Introduction 

 
 
The linear mixed model is specified in ASReml as a series of model terms and qualifiers In this 
and the following chapter we discuss a functional specification of mixed models in ASReml. This 
chapter describes the model formula syntax for traditional variance component models. 

 
From Chapter 2, the linear mixed model can be written as 

 
𝒚𝒚 = 𝑿𝑿 𝝉𝝉 + 𝒁𝒁𝒁𝒁 + 𝒆𝒆  (6.1) 

 
where 𝒚𝒚 (𝑛𝑛 × 1) is a vector of observations, 𝝉𝝉 (𝑝𝑝 × 1) is a vector of fixed effects, 𝑿𝑿 (𝑛𝑛 × 𝑝𝑝) is the 
design matrix of full column rank that associates observations with the appropriate combination 
of fixed effects, 𝒖𝒖 (𝑞𝑞 × 1) is a vector of random effects, 𝒁𝒁 (𝑛𝑛 × 𝑞𝑞) is the design matrix that 
associates observations with the appropriate combination of random effects, and 𝒆𝒆 (𝑛𝑛 × 1) is the 
vector of residual errors. 
 
Typically, τ and u are composed of several model terms, that is, τ can be partitioned as 
𝝉𝝉 =  [𝝉𝝉1⊤ . . . 𝝉𝝉𝑡𝑡⊤]⊤and u can be partitioned as 𝒖𝒖 =  [𝒖𝒖1⊤ . . .𝒖𝒖𝑏𝑏⊤]⊤, with X and Z partitioned 
conformably as 𝑿𝑿 =  [𝑿𝑿1  

. . .𝑿𝑿𝑡𝑡] and 𝒁𝒁 =  [𝒁𝒁1  
. . .𝒁𝒁𝑏𝑏]. 

 
In this chapter we concentrate on specification of the fixed and random effects and their associated 
design matrices. For ease of exposition, we assume variance component mixed models (Example 
2.2). In these models, the random effects (within model terms) and the residual errors are assumed 
to be identically and independently distributed (IID). This means they have a common variance 
and zero covariance. In these variance component models a functional specification is relatively 
simple and we discuss this here. In Chapter 7 we present a more general functional specification 
of random effects and variance structures. 
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6.2 Specifying model formulae in ASReml 
 

The linear mixed model is specified in ASReml as a 
series of model terms and qualifiers. Model terms 
include factor and variate labels (Section 5.4), 
functions of labels, special terms and interactions of 
these. The model is specified immediately after the 
datafile and any job control qualifier and/or tabulate 
lines. The syntax for specifying the model is 
 
 
response [qualifiers ] ~ fixed [!r conrandom ] [!f sparse_fixed ]  
[residual conresidual ] 

 
• response is the label for the response variable(s) to be analysed; multivariate analysis is 

discussed in Chapter 8, 

• qualifiers allow for weighted analysis (Section 6.7) and Generalized Linear Models (Section 
6.8), 

• ~ is read as ’modelled as’ and separates response from the list of fixed and random terms in the 
linear mixed model, 

• fixed represents the list of primary fixed explanatory terms, that is, variates, factors, interactions 
and special terms for which Wald F statistics are required. See Table 6.1 for a brief definition 
of reserved model terms, operators and commonly used functions. The full definition is in 
Section 6.6, 

• conrandom represents the list of consolidated model terms (see Chapter 7) specifying both 
random effects and variance structures. In this chapter the consolidated model terms are of the 
form idv() with arguments being the explanatory terms to be fitted as random effects, see 
Table 6.1 and Section 6.6. Specifying idv(term) indicates that the term effects are IID 
distributed with a common variance, 

• sparse_fixed are additional fixed terms not included in the table of Wald F statistics, 

• the residual statement allows specification of the residual error variance structure, 

• conresidual is the list of residual consolidated terms (see Chapter 7) specifying both random 
effects and variance structures. In this chapter we are assuming that the residual errors are IID. 
Hence the specification idv(units) in the code box, where units is the reserved word 
specifying a factor with a level for every experimental unit.  

NIN Alliance Trial 1989 
variety 
⋮ 
column 11 
nin89.asd !skip 1 
yield ∼ mu variety !r idv(repl) 
!f mv 
residual idv(units) 
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6.2.1 General rules 
The following general rules apply in specifying the linear mixed model: 

 
• all elements in the model must be space separated, 

• the character ~ (’modelled as’) separates the response variables(s) from the explanatory 
variables in the model, 

• elements in the model may be separated by + which is ignored except when it is at the end 
of a line which implies the model continues onto the next line; the + sign must appear on the 
first line of the model statement when the model statement is written over several lines. 

• data fields are identified in the model by their labels 
Important It is often clearer if labels are not abbreviated. If abbreviations are used then 
they need to be chosen to avoid confusion. 

- labels are case sensitive, 

- labels may be abbreviated (truncated) when used in the model line but care must be taken 
that the truncated form is not ambiguous. If the truncated form matches more than one 
label, the term associated with the first match is assumed, For example, dens is an 
abbreviation for density but spl(dens,7) is a different model term to 
spl(density,7) because it does not represent a simple truncation. 

- model terms may only appear once in the model line; repeated occurrences are ignored, 

- model terms other than the original data fields are defined the first time they appear on 
the model line. They may be abbreviated (truncated) if they are referred to again provided 
no ambiguity is introduced. 

• if the model is written over several lines, all but the final line must end with a COMMA (or +) 
to indicate that the list is continued. 

In Table 6.1 and Table 6.2, the arguments in model term functions are represented by the 
following symbols 

f — the label of a data variable defined as a model factor, 
 

k, n — an integer number, 
 

r — a real number, 
 

t — a model term label (includes data variables), 
 

v, y — the label of a data variable,  



6.2 Specifying model formulae in ASReml 

90 
 

Where a model term takes another model term as an argument, the argument may occasionally 
need to be predefined. This is done by including the argument model term in the model term list 
with a leading ’-’ which will cause the term to be defined but not fitted. For example 
Trait.male -Trait.female and(Trait.female) 

Table 6.1: Summary of reserved words, operators and functions 

 model  
term 

brief description common usage 

   fixed Random 

reserved 
terms 

mu the constant term or intercept √  
mv a term to estimate missing values √  

 Trait multivariate counterpart to mu √  
 units forms a factor with a level for each experimental unit  √ 
operators . or : placed between labels to specify an interaction √ √ 
 / forms nested expansion (Section 6.5) √ √ 
 ∗ forms factorial expansion (Section 6.5) √ √ 
 - placed before model terms to exclude them from the 

model 
√ √ 

 , placed at the end of a line to indicate that the model 
specification continues on the next line 

  

 + treated as a space √ √ 
 !{...!} placed around some model terms when it is important 

the terms not be reordered (Section 6.4) 
 √ 

commonly 
used 
functions 

at(f,n) condition on level n of factor f.  
n may be a list of level numbers 

√ √ 

at(f) forms conditioning covariables for all levels of factor f √ √ 
 fac(v ) forms a factor from v with a level for each unique value 

in v 
 √ 

 fac(v,y ) forms a factor with a level for each combination of 
values in v and y 

 √ 

 lin(f) forms a variable from the factor f with values equal to 
1. . . n corresponding to level(1). . . level(n) of the factor 

√  

 spl(v [,k]) forms the design matrix for the random component of 
a cubic spline for variable v 

 √ 

other 
functions 

t{n} 
 

fits variable n from the !G set of variables t. This is a 
special case of the !SUBGROUP qualifier function 
applied to !G variables. Note that the square 
parentheses are permitted alternative syntax. 

√ √ 

 abs(v) forms the absolute value of the variable v   
 and(t[,r]) adds r times the design matrix for model term t to the 

previous design matrix; r has a default value of 1. If t 
is complex it may be necessary to predefine it by saying 
-t and(t,r) 

 √ 

 c(f) factor f is fitted with sum to zero constraints √  
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Table 6.1: Summary of reserved words, operators and functions 

 model  
term 

brief description common usage 

   fixed random 

 cos(v,r) forms cosine from v with period r √  
 ge(f) condition on factor/variable f >= r √  
 giv(f,n) associates the nth .giv G-inverse with the factor f  √ 
 grm(f,n) associates the nth .grm G with the factor f  √ 
 gt(f) condition on factor/variable f > r √  
 h(f) factor f is fitted Helmert constraints √  
 hs(f, k) 

New R4.2 
is a factor with level 1 if factor f is coded 1 or k and zero 
otherwise 

√ √ 

 ide(f) fits pedigree factor f without relationship matrix  √ 
 inv(v[,r]) forms reciprocal of v + r √  
 le(f) condition on factor/variable f <= r √  
 leg(v,[-]n) forms n+1 Legendre polynomials of order 0 

(intercept), 1 (linear). . . n from the values in v; the 
intercept polynomial is omitted if v is preceded by 
the negative sign. 

√  

 lt(f) condition on factor/variable f < r √  
 log(v[,r]) forms natural logarithm of v + r √  
 ma1 forms an MA1 design matrix from plot numbers  √ 
 mbf(v,r) is a factor derived from data factor v by using the 

!MBF qualifier. 
√ √ 

 out(n) condition on observation n √  
 out(n,t) condition on record n, trait t √  
 pol(v,[-]n) forms n+1 orthogonal polynomials of order 0 

(intercept), 1 (linear). . . n from the values in v; the 
intercept polynomial is omitted if n is preceded by the 
negative sign. 

√  

 pow(x, p[,o]) defines the covariable (x + o)p for use in the model 
where x is a variable in the data, p is a power and o is 
an offset. 

√  

 qtl(f,p) impute a covariable from marker map information at 
position p  

√  

 ref(f, k) 
New R4.2 

creates a factor using levels from f except that level k 
is set to zero. This effectively sets k (default 1) as the 
reference level of the factor f when mu and ref(f,k) are 
fitted and the level j effect of ref(f, k) estimates the 
difference of level j and k of the factor f effects 

√  

 sin(v,r) forms sine from v with period r √  
 sqrt(v[,r]) forms square root of v + r √  
 uni(f) forms a factor with a level for each record where factor 

f  is non-zero 
 √ 
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Table 6.1: Summary of reserved words, operators and functions 

 model  
term 

brief description common usage 

   fixed random 

 vect(v) is used in a multivariate analysis on a multivariate set 
of covariates (v) to pair them with the variates 

√ √ 

 xfa(f,k) is formally a copy of factor f  with k extra levels. This is 
used when fitting extended factor analytic models 
(XFA Table 7.6) of order k. 

 √ 

 zero(k) 
zero 
New R4.2 

is used to include k column(s) of zeros in the model. 
It is primarily intended to be used to set aside space 
for fitting the factors of an extended factor analytic 
(XFAk) (or reduced rank, RRk) model applied across 
several model terms.  
For example: 
str(ani age.ani zero(1).ani xfa1(2).ani) 
zero is equivalent to zero(1) 

 √ 

 
6.2.2 Examples 

 

ASReml code action 

yield ~ mu variety  
residual idv(units) 

fits a model with a constant and fixed 
variety effects 

yield ~ mu variety 
!r idv(block) residual idv(units)  

fits a model with a constant term, fixed 
variety effects and random block effects 

yield ~ mu time variety  
time.variety residual idv(units) 

fits a saturated model with fixed time 
and variety main effects and time by 
variety interaction effects 

livewt ~ mu breed sex breed.sex !r 
idv(sire) residual idv(units)  fits a model with fixed breed, sex and 

breed by sex interaction effects and 
random sire effects 
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6.3 Fixed terms in the model 
 
6.3.1 Primary fixed terms 
The fixed list in the model formula 

 
• describes the fixed covariates, factors and 

interactions including special functions to be 
included in the table of Wald F statistics, 

• generally begins with the reserved word mu which 
fits a constant term, mean or intercept, see Table 
6.1. 

6.3.2 Sparse fixed terms 
The !f sparse_fixed terms in model formula 

 
• are the fixed covariates (for example, the fixed 
lin(row) covariate now included in the model 
formula), factors and interactions including 
special functions and reserved words (for 
example mv, see (Table 6.1) for which Wald F 
statistics are not required, 

• include large (>100 levels) terms. 

 

6.4 Random and residual terms in the variance 
component model 

The !r conrandom functions have arguments that 
 

• comprise random covariates, factors and 
interactions including special functions and 
reserved words, see Table 6.1. Note that idv() 
may not enclose a contracted at() function (an 
at() function that is expanded by ASReml to 
form multiple model terms) because the result is 
ambiguous. 

 
In Chapter 7 we discuss possible qualifiers that allow specification of initial values and 
constraints. We have given an explicit specification for these variance component models to 
emphasise the form of the syntax. However, an alternative more concise implicit specification 
for these models is to note that idv is a default function and the random terms can be placed 
after !r without explicitly specifying idv. Furthermore, residual idv(units) is the 
default residual specification and may be omitted from the model specification. This is precisely 
the form used in Release 3 for these models.  

NIN Alliance Trial 1989 
variety 

⋮ 
row 22 
column 11 

nin89.asd !skip 1 !mvinclude 
yield ∼ mu variety !r idv(repl), 
!f mv 
Residual idv(units) 

NIN Alliance Trial 1989 
variety 

⋮ 
row 22 
column 11 

nin89.asd !skip 1  
yield ∼ mu variety !r idv(repl), 
!f mv lin(row) 
residual idv(units) 

NIN Alliance Trial 1989 
variety 

⋮ 
row 22 
column 11 

nin89.asd !skip 1  
yield ∼ mu variety !r idv(repl), 
!f mv  
residual idv(units) 
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6.5 Interactions and conditional factors 
 
6.5.1 Interactions 

 
• interactions are formed by joining two or more terms with a ‘.’ (or a ‘:’ which is replaced with 

’.’), for example, a.b is the interaction of factors a and b, 

• interaction levels are arranged with the levels of the second factor nested within the levels of 
the first, 

• labels of factors including interactions are restricted to 47 characters of which only the first 
20 are ever displayed. Thus for interaction terms it is often necessary to shorten the names of 
the component factors in a systematic way, for example, if Time and Treatment are 
defined in this order, the interaction between Time and Treatment could be specified in 
the model as Time.Treat; remember that the first match is taken so that if the label of each 
field begins with a different letter, the first letter is sufficient to identify the term, 

• interactions can involve model functions. 

6.5.2 Expansions 
 

• • + is ignored, except at the end of the line where it indicates the model is continued on the 
next line, 

• - makes sure the following term is defined but does not include it in the model, 

• * indicates factorial expansion (up to 5 way) 
a*b is expanded to a b a.b 
a*b*c*d is expanded to 
a b c d a.b a.c a.d b.c b.d c.d a.b.c a.b.d a.c.d b.c.d a.b.c.d 
 

• / indicates nested expansion 
a/b is expanded to a a.b 
 

• a.(b c d) e is expanded to a.b a.c a.d e. This syntax is detected by the string ‘.(’ 
and the closing parenthesis must occur on the same line and before any COMMA indicating 
continuation. Any number of terms may be enclosed. Each may have ‘-’ prepended to suppress 
it from the model.  
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6.5.3 Conditional factors 
A conditional factor is a factor that is present only when another factor has a particular level. 

 
• individual components are specified using the at(f,n) function (see Table 6.2), for example, 
at(site,1) row will fit row as a factor only for site 1, 

• a complete set of conditional terms are specified by omitting the level specification in the 
at(f) function provided the correct number of levels of f is specified in the field definitions, 

• otherwise, a list of levels may be specified (see Table 6.2), 

• where variable f is coded with alphanumeric level names, the level name may be supplied as 
the second argument. For example at(Type,TEST).Entry where Type is a factor 
variable with level names TEST and CONTROL. 
- at(a).b creates a series of model terms representing b nested within a for any model 

term b. A model term is created for each level of a; each has the size of b. For example, 
if site and geno are factors with 3 and 10 levels respectively, then at(site).geno 
is shorthand for 3 model terms 
at(site,1).genoat(site,2).genoat(site,3).geno , each with 10 levels, 

- this is similar to forming an interaction except that a separate model term is created for 
each level of the first factor; this is useful for random terms when each component can have 
a different variance. The same effect is achieved by using an interaction (e.g. site.geno) 
and associating a DIAG variance structure with the first component (see Section 7.11). 

- any at() term to be expanded MUST be the FIRST component of the interaction. 
geno.at(site) will not work. 
at(site,1).at(year).geno will not work but 
at(year).at(site,1).geno is OK. 

- the at() factor must be declared with the correct number of levels because the model 
line is expanded BEFORE the data is read. Thus if site is declared as site * or 
site!A in the data definitions,  
at(site).geno will expand to  
at(site,01).geno at(site,02).geno 
regardless of the actual number of sites. 

6.5.4 Associated Factors 
Sometimes there is a hierarchical structure to factors which should be recognised as it aids 
formulation of prediction tables (see !ASSOCIATE qualifier Section 10.3.4). Common examples 
are Genotypes grouped into Families and Locations grouped by Region. We call these associated 
factors. The key characteristic of associated factors is that they are coded such that the levels of 
one are uniquely nested in the levels of another. If one is unknown (coded as missing), all 
associated factors must be unknown for that data record. It is typically unnecessary to interact 
associated factors except when required to adequately define the variance structure.  
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6.6 Alphabetic list of model functions 
 

Table 6.2 presents detailed descriptions of the model functions discussed above. Note that some 
three letter function names may be abbreviated to the first letter. 

Table 6.2: Alphabetic list of model functions and descriptions 

model function action 

abs(v) takes the absolute value of the variable v. This function can be used on the response 
variable. 

and(t,r) 

a(t,r) 
overlays (adds) r times the design matrix for model term t to the existing design matrix. 
Specifically, if the model up to this point has p effects and t has a effects, the a columns 
of the design matrix for t are multiplied by the scalar r (default value 1.0) and added to 
the last a of the p columns already defined. The overlaid term must agree in size with 
the term it overlays. This can be used to force a correlation of 1 between two terms as 
in a diallel analysis 
male and(female) 

assuming the ith male is the same individual as the ith female. 
at(f,n) 
@( f,n) 

defines a binary variable which is 1 if the factor f has level n for the record. For example, 
to fit a row factor only for site 3, use the expression at(site,3).row. The string @( 
is equivalent to at( for this function. 

at(f) 
@( f) 

at(f) is expanded to a series of terms like at(f ,i) where i takes the values 01 to 
the number of levels of factor f . Since this command is interpreted before the data is 
read, it is necessary to declare the number of levels of f correctly in its field definition. 
This extended form may only be used as the first term in an interaction. 

at(f,m,n) 
@( f,m,n 

at(f,i,j,k) is expanded to a series of terms at(f,i) at(f,j) at(f,k). 
Similarly, at(f,i).X at(f,j).X at(f,k).X can be written as at(f ,i,j,k).X 
provided at(f ,i,j,k) is written as the first component of the interaction. Any 
number of levels may be listed. Contiguous sets of values can be specified as i:j. 

cos(v,r) forms cosine from v with period r. Omit r if v is radians. If v is degrees, r is 360. 

con(f) 
c(f) 

apply sum to zero constraints to factor f. It is not appropriate for random factors and 
fixed factors with missing cells. ASReml assumes you specify the correct number of 
levels for each factor. The formal effect of the con() function is to form a model term 
with the highest level formally equal to minus the sum of the preceding terms. With 
sum to zero constraints, a missing treatment level will generate a singularity 
but in the first coefficient rather than in the coefficient corresponding to the missing 
treatment. In this case, the coefficients will not be readily interpretable. When 
interacting constrained factors, all cells in the cross-tabulation should have data. 

fac(v) 
fac(v,y) 

fac(v) forms a factor with a level for each value of x and any additional points 
inserted as discussed with the qualifiers !PPOINTS and !PVAL. fac(v,y) forms a 
factor with a level for each combination of values from v and y. The values are 
reported in the .res file. 
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Table 6.2: Alphabetic list of model functions and descriptions 

model function action 

giv(f,n) 
g(f,n) 
grm(f,n) 

associates the nth .giv G-inverse with the factor. This is used when there is a known 
(except for scale) G-structure other than the additive inverse genetic relationship 
matrix. The G-inverse is supplied in a file whose name has the file extension .giv 
described in Section 9.6. grm() and giv() are formally equivalent with grm 
standing for generalized relationship Matrix. 

h(f) h(f ) requests ASReml to fit the model term for factor f using Helmert constraints. 
Neither Sum-to-zero nor Helmert constraints generate interpretable effects if 
singularities occur. ASReml runs more efficiently if no constraints are applied. 
Following is an example of Helmert and sum-to-zero covariables for a factor with 5 
levels. 
 H1 H2 H3 H4 C1 C2 C3 C4 
F1 -1 -1 -1 -1 1 0 0 0 
F2 1 -1 -1 -1 0 1 0 0 
F3 0 2 -1 -1 0 0 1 0 
F4 0 0 3 -1 0 0 0 1 
F5 0 0 0 4 -1 -1 -1 -1 

 

ide(f) 

i(f) 

is used to take a copy of a pedigree factor f and fit it without the genetic relationship 
covariance. This facilitates fitting a second animal effect. Thus, to form a direct, 
maternal genetic and maternal environment model, the maternal environment is 
defined as a second animal effect coded the same as dams. viz. !r !{ animal dam !} 
ide(dam) 

inv(v[,r]) forms the reciprocal of v + r. This may also be used to transform the response variable. 
leg(v,[-]n) forms n+1 Legendre polynomials of order 0 (intercept), 1 (linear). . . n from the values 

in v; the intercept polynomial is omitted if n is preceded by the negative sign. The actual 
values of the coefficients are written to the .res file. This is similar to the pol() 
function described below. 

lin(f) 
l(f) 

takes the coding of factor f as a covariate. The function is defined for f being a simple 
factor, Trait and units. The lin(f) function does not centre or scale the variable. 
Motivation: Sometimes you may wish to fit a covariate as a random factor as well. If the 
coding is say 1. . .n, then you should define the field as a factor in the field definition 
and use the lin() function to include it as a covariate in the model. Do not centre the 
field in this case. If the covariate values are irregular, you would leave the field as a 
covariate and use the fac() function to derive a factor version. 

log(v[,r]) forms the natural log of v + r. This may also be used to transform the response variable. 
ma1  

 

creates a first-differenced design matrix which, when defining a random effect, is 
equivalent to fitting a moving average variance structure in one dimension. The first-
difference operator is coded across all data points (assuming they are in time/space 
order). Previous releases suggested that the form ma1(factor) could be used but this 
caused confusion with the variance function ma1(factor), introduced in Release 3, 
for fitting moving average models. In Release 4.2 ma1(factor) is interpreted as a 
variance function. 

mbf(f,c)  
mbf (f) 

is a term that is predefined by using the !MBF qualifier (see 68) 
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Table 6.2: Alphabetic list of model functions and descriptions 

model function action 

mu is used to fit the intercept/constant term. It is normally present and listed first in the 
model. It should be present in the model if there are no other fixed factors or if all 
fixed terms are covariates or contrasts except in the special case of regression through 
the origin. 

mv is used to estimate missing values in the response variable. Formally this creates a 
model term with a column for each missing value. Each column contains zeros except 
for a solitary -1 in the record containing the corresponding missing value. This is used 
in spatial analyses so that computing advantages arising from a balanced spatial 
layout can be exploited. The equations for mv and any terms that follow are always 
included in the sparse set of equations. 

Missing values are handled in three possible ways during analysis (see Section 6.9). 
In the simplest case, records containing missing values in the response variable are 
deleted. For multivariate (including some repeated measures) analysis, records with 
missing values are not deleted but ASReml drops the missing observation and uses the 
appropriate unstructured R-inverse matrix. For regular spatial analysis, we prefer to 
retain separability and therefore estimate the missing value(s) by including the 
special term mv in the model. 

out(n) 
out(n,t) 

out(n), out(n,t) establishes a binary variable which is: 

out(i) 1 if data relates to observation i, (trait 1), else is 0 

out(i,t) 1 if data relates to observation i, (trait t), else is 0 

The intention is that this be used to test/remove single observations for example to 
remove the influence of an outlier or influential point. Possible outliers will be evident 
in the plot of residuals versus fitted values (see the .res file) and the appropriate 
record numbers for the out() term are reported in the .res file. Note that i relates 
to the data analysed and will not be the same as the record number as obtained by 
counting data lines in the data file if there were missing observations in the data and 
they have not been estimated. (To drop records based on the record number in the 
data file, use the !D transformation in association with the !=V0 transformation.) 

pol(v,n) 
p(v,n) 

forms a set of orthogonal polynomials of order |n| based on the unique values in 
variate (or factor) v and any additional interpolated points, see !PPOINTS and 
!PVAL in Table 5.4. It includes the intercept if n is positive, omits it if n is negative. 
For example, pol(time,2) forms a design matrix with three columns of the 
orthogonal polynomial of degree 2 from the variable time. Alternatively, 
pol(time,-2) is a term with two columns having centred and scaled linear 
coefficients in the first column and centred and scaled quadratic coefficients in the 
second column. 
The actual values (Robson, 1959, Steep and Torrie, 1960) of the coefficients are 
written to the .res file. This factor could be interacted with a design factor to fit 
random regression models. The leg() function differs from the pol() function in 
the way the quadratic and higher polynomials are calculated. 

pow(x, p[,o]) defines the covariable (x + o)p for use in the model where x is a variable in the data, 
p is a power and o is an offset. pow(x,0.5[,o]) is equivalent to sqr(x[,o]); 
pow(x,0[,o]) is equivalent to log(x[,o]); pow(x,-1[,o]) is equivalent to 
inv(x[,o]). 
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Table 6.2: Alphabetic list of model functions and descriptions 

model function action 

qtl(f,r) calculates an expected marker state from flanking marker information at position r 
of the linkage group f (see !MM to define marker locations). r may be specified as 
$TPn where $TPn has been previously internally defined with a predict statement 
(see !TURNINGPOINTS in Table 10.1). r should be given in Morgans. 

sin(v,r) forms sine from v with period r. Omit r if v is radians. If v is degrees, r is 360. 
s(v [,k]) 

spl(v [,k]) 

In order to fit spline models associated with a variate v and k knot points in ASReml, 
v is included as a covariate in the model and spl(v,k) as a random term. The knot 
points can be explicitly specified using the !SPLINE qualifier (Table 5.4). If k is 
specified but !SPLINE is not specified, equally spaced points are used. If k is not 
specified and there are less than 50 unique data values, they are used as knot points. 
If there are more than 50 unique points then 50 equally spaced points will be used. 
The spline design matrix formed is written to the .res file. An example of the use 
of spl() is 

price ∼ mu week !r spl(week) 
sqrt(v[,r]) forms the square root of v + r. This may also be used to transform the response 

variable. 
Trait is used with multivariate data to fit the individual trait means. It is formally 

equivalent to mu but Trait is a more natural label for use with multivariate data. 
It is interacted with other factors to estimate their effects for all traits. 

units creates a factor with a level for every record in the data file. This is used to fit the 
’nugget’ variance when a correlation structure is applied to the residual. 

uni(f [,0[,n]]) creates a factor with a new level whenever there is a level present for the factor f. 
Levels (effects) are not created if the level of factor f is 0, missing or negative. The 
size may be set in the third argument by setting the second argument to zero. 

uni(f,k[,n]) creates a factor with a level for every record subject to the factor level of f equalling 
k, i.e. a new level is created for the factor whenever a new record is encountered 
whose integer truncated data value from data field f is k. Thus uni(site,2) would 
be used to create an independent error term for site 2 in a multi-environment trial 
and is equivalent to at(site,2).units. The default size of this model term is the 
number of data records. The user may specify a lower number as the third 
argument. There is little computational penalty from the default but the .sln file 
may be substantially larger than needed. However, if the units vector is full size, the 
effects are mapped by record number and added back to the fitted residual for 
creating ’residual’ plots. 

vect(v) is used in a multivariate analysis on a multivariate set of covariates (v) to pair them 
with the variates. The test example included 
signal !G 93 # 93 slides 
  background !G 93  
dart.asd !ASUV 
signal ~ Trait Trait.vect(background) ... 
to fit a slide specific regression of signal on background. In this example, 
signal is a multivariate set of 93 variates and background is a set of 93 
covariates. The signal values relate to either the Red or Green channels. So for each 
slide and channel, we need to fit a simple regression of signal ~ mu background. 
But the data for the 93 slides is presented in parallel. If it were presented in series, 
with a factor slide indexing the slides, the equivalent model would be signal~ 
slide slide.background. 
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6.7 Weights 
 

Weighted analyses are achieved by using !WT weight as a qualifier to the response variable. An 
example of this is y !WT wt ~ mu A X where y is the name of the response variable and wt is 
the name of a variate in the data containing weights. If these are relative weights (to be scaled by 
the units variance) then this is all that is required. If they are absolute weights, that is, the 
reciprocal of known variances, use the !GF qualifier to fix the variances in the residual model 
(Section 7.3). When a structure is present in the residuals (Section 7.3) the weights are applied as 
a matrix product. If Σ is the structure and W is the diagonal matrix constructed from the square 
root of the values of the variate weight, then 𝑹𝑹−1  =  𝑾𝑾𝚺𝚺−1𝑾𝑾. Negative weights are treated as 
zeros. 

 
6.8 Generalized Linear (Mixed) Models 

 
ASReml includes facilities for fitting the family of Generalized Linear Models (GLMs, McCullagh 
and Nelder, 1994). A GLM is defined by a mean variance function and a link function. 
In this context 
y is the observation, 
n is the count for grouped data specified by the !TOTAL qualifier, 
φ is a parameter set with the !PHI qualifier, 
µ is the mean on the data scale calculated using the inverse link function from the predicted value η 
on the underlying scale where 𝜼𝜼 =  𝑿𝑿𝑿𝑿 , 
v is the variance under some distributional assumption calculated as a function of µ and n, and 
d is the deviance (-twice the log likelihood) for that distribution. 

Table 6.3: Link qualifiers and functions 

Qualifier Link Inverse Link Available with 

!IDENTITY 𝜼𝜼 = 𝝁𝝁 𝝁𝝁 =  𝜼𝜼 All 
!SQRT 𝜼𝜼 = �𝝁𝝁 𝝁𝝁 =  𝜼𝜼2 Poisson 
!LOGARITHM  𝜼𝜼 = ln(𝝁𝝁) 𝝁𝝁 =  exp(𝜼𝜼) Normal, Poisson, Negative Binomial, 

Gamma 
!INVERSE  𝜼𝜼 = 1/𝝁𝝁 𝝁𝝁 =  1/(𝜼𝜼) Normal, Gamma, Negative Binomial 
!LOGIT 𝜼𝜼 = ln (𝝁𝝁/(1 − 𝝁𝝁))  𝝁𝝁 =

1
(1 + exp(−𝜂𝜂)) 

Binomial, Multinomial Threshold 

!PROBIT 𝜼𝜼 = Φ−1 (𝝁𝝁)  𝝁𝝁 = Φ(𝜼𝜼) Binomial, Multinomial Threshold 
!COMPLOGLOG 𝜼𝜼 = 𝑙𝑙n (− ln(1 − 𝝁𝝁)) 𝝁𝝁 = 1 − 𝑒𝑒−𝑒𝑒𝜂𝜂 Binomial, Multinomial Threshold 

where µ is the mean on the data scale and 𝜼𝜼 =  𝑿𝑿𝑿𝑿 is the linear predictor on the underlying scale. 

GLMs are specified by qualifiers after the name of the dependent variable but before the ~ 
character. Table 6.3 lists the link function qualifiers which relate the linear predictor (η) scale to 
the observation (𝝁𝝁 = E[𝒚𝒚]) scale. Table 6.4 lists the distribution and other qualifiers. 
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Table 6.4: GLM distribution qualifiers 

The default link is listed first followed by permitted alternatives. 

qualifiers action 

!NORMAL [ !IDENTITY | !LOGARITHM | !INVERSE ] 

 allows the model to be fitted on the log/inverse scale but with the 
residuals on the natural scale. !NORMAL !IDENTITY is the default. 

!BINOMIAL [ !LOGIT | !IDENTITY | !PROBIT | COMPLOGLOG ] [ !TOTAL n ] 
𝑣𝑣 = 𝜇𝜇(1 − 𝜇𝜇)/𝑛𝑛 
𝑑𝑑 =  2𝑛𝑛(𝑦𝑦ln(𝑦𝑦/𝜇𝜇) 
+(1 − 𝑦𝑦)ln(1−𝑦𝑦

1−𝜇𝜇
) 

 

Proportions or counts [r = ny] are indicated if !TOTAL specifies the variate 
containing the binomial totals. Proportions are assumed if no response 
value exceeds 1. A binary variate [0, 1] is indicated if !TOTAL is 
unspecified. The expression for d on the left applies when y is proportions 
(or binary). For this distribution, using the qualifier !WT n to carry out a 
weighted analysis and the qualifier !TOTAL n are synonyms. If the user 
wishes to use a weight, w, other than the total, n, the y variable should be 
presented as a proportion to avoid transforming y by dividing by w. The 
logit is the default link function. The variance on the underlying scale is 
𝜋𝜋2/3~3.3 (underlying logistic distribution) for the logit link. 

!MULTINOMIAL k !CUMULATIVE [ !LOGIT | !PROBIT | COMPLOGLOG ] [ !TOTAL n ] 
 
𝑣𝑣𝑖𝑖𝑖𝑖  = 𝜇𝜇𝑖𝑖(1 − 𝜇𝜇𝑗𝑗)/𝑛𝑛 
for 𝑖𝑖 ≤  𝑗𝑗 ≤  𝑡𝑡  
 
𝑑𝑑 =  2𝑛𝑛 ∑𝑖𝑖=1

𝑘𝑘   
(𝑦𝑦𝑖𝑖ln(𝑦𝑦𝑖𝑖/𝑝𝑝𝑖𝑖) 

where 
𝑌𝑌𝑖𝑖  =  ∑𝑗𝑗=1 

𝑖𝑖 𝑦𝑦𝑗𝑗  
𝜇𝜇𝑖𝑖  = E(𝑌𝑌𝑖𝑖) and 
𝑝𝑝𝑖𝑖  = 𝜇𝜇𝑖𝑖 − 𝜇𝜇𝑖𝑖−1   

fits a multiple threshold model with t = k - 1 thresholds to polytomous 
ordinal data with k categories assuming a multinomial distribution. 
Typically, the response variable is a single variable containing the ordinal 
score (1 : k) or a set of k variables containing counts (𝑟𝑟𝑖𝑖) in the k categories. 
The response may also be a series of t binary variables or a series of t 
variables containing counts. If t counts are supplied, the total (including the 
kth category) must be given in another variable indicated by the !TOTAL 
qualifier: the multinomial model requires a particular variance structure 
across the multinomial classes. This is formally specified as residual 
id(units).mthr(Trait). 

The multinomial threshold model is fitted as a cumulative probability 
model. The proportions (𝑦𝑦𝑖𝑖  =  𝑟𝑟𝑖𝑖/𝑛𝑛) in the ordered categories are summed 
to form the cumulative proportions (𝑌𝑌𝑖𝑖) which are modelled with logit 
(!LOGIT), probit (!PROBIT) or Complementary LogLog (!CLOG) link 
functions. The implicit residual variance on the underlying scale is 
𝜋𝜋2 /3 ~ 3.3 (underlying logistic distribution) for the logit link, 1 for the 
probit link. The distribution underlying the Complementary LogLog link is 
the Gumbel distribution with implicit residual variance on the underlying 
scale of 𝜋𝜋2/6 ~ 1.65. 
For example 
Lodging !MULTINOMIAL 4 !CUMULATIVE ~ Trait Variety !r block  
predict Variety 
where Lodging is a variate of ordered lodging scores, or a factor of ordered 
categories 
(if the factor is specified as names with !A or !I then the user may need 
to use 
!SORT or !L to order the levels appropriately, see Section 5.4.3). 
Predicted values are reported for the cumulative proportions. 
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Table 6.4: GLM distribution qualifiers 

qualifier action 

!POISSON [ !LOGARITHM | !IDENTITY | !SQRT ] 

𝑣𝑣 = 𝜇𝜇 
𝑑𝑑 =  2(𝑦𝑦ln(𝑦𝑦/𝜇𝜇) 

−(𝑦𝑦 − 𝜇𝜇) 
 

Natural logarithms are the default link function. 
ASReml assumes the Poisson variable is not negative. 

!GAMMA [ !INVERSE | !IDENTITY | !LOGARITHM ] [ !PHI 𝜙𝜙 ] [ !TOTAL n ] 
𝑣𝑣 =  𝜇𝜇2/(𝜙𝜙𝜙𝜙) 
𝑑𝑑 =  2𝑛𝑛(−𝜙𝜙 ln �𝜙𝜙𝜙𝜙

𝜇𝜇
�   

        + 𝜙𝜙𝜙𝜙−𝜇𝜇
𝜇𝜇

) 

The inverse is the default link function. n is defined with the !TOTAL qualifier 
and would be degrees of freedom in the typical application to mean-squares. The 
default value of 𝜙𝜙 is 1. 

!NEGBIN  [ !LOGARITHM | !IDENTITY | !INVERSE ] [ !PHI 𝜙𝜙 ] 
𝑣𝑣 = 𝜇𝜇 + 𝜇𝜇2/𝜙𝜙 
𝑑𝑑 = 2((𝜙𝜙 + 𝑦𝑦) ln �𝜇𝜇+𝜙𝜙

𝑦𝑦+𝜙𝜙
�   

        +𝑦𝑦ln (𝑦𝑦
𝜇𝜇

)) 

fits the Negative Binomial distribution. Natural logarithms are the default link 
function. The default value of 𝜙𝜙 is 1. 
 

General qualifiers 

!AOD requests an Analysis of Deviance table be generated. This is formed by fitting a 
series of sub models for terms in the DENSE part building up to the full model, 
and comparing the deviances. An example if its use is 
LS !BIN !TOT COUNT !AO ~ D mu SEX GROUP 
!AOD may not be used in association with PREDICT. 

!DISP [h] includes an overdispersion scaling parameter (h) in the weights. If !DISP is 
specified with no argument, ASReml estimates it as the residual variance of the 
working variable. Traditionally it is estimated from the deviance residuals, 
reported by ASReml as Variance heterogeneity. 
An example if its use is 
count !POIS !DISP ∼ mu group 

!OFFSET [o] is used especially with binomial data to include an offset in the model where o is 
the number or name of a variable in the data. The offset is only included in 
binomial and Poisson models (for Normal models just subtract the offset variable 
from the response variable), for example 
count !POIS !OFFSET base !DISP ∼ mu group 
The offset is included in the model as 𝜼𝜼 =  𝑿𝑿𝜏𝜏 + 𝑜𝑜. The offset will often be 
something like ln(n). 

!TOTAL [n] is used especially with binomial and ordinal data where n is the field containing 
the total counts for each sample. If omitted, count is taken as 1. 
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Table 6.4: GLM distribution qualifiers 

qualifier action 

Residual qualifiers control the form of the residuals returned in the .yht file. The predicted 
values returned in the .yht file will be on the linear predictor scale if the 
!WORK or !PVW qualifiers are used. They will be on the observation scale if the 
!DEVIANCE, !PEARSON, !RESPONSE or !PVR qualifiers are used. 

!DEVIANCE produces deviance residuals, the signed square root of d/h from Table 6.4 
where h is the dispersion parameter controlled by the !DISP qualifier. This is 
the default. 

!PEARSON writes Pearson residuals, 𝑦𝑦−𝜇𝜇
√𝑣𝑣

 , in the .yht file 

!PVR writes fitted values on the response scale in the .yht file. This is the default. 

!PVW writes fitted values on the linear predictor scale in the .yht file. 

!RESPONSE produces simple residuals, y − µ 

!WORK produces residuals on the linear predictor scale, 𝑦𝑦−𝜇𝜇
𝑑𝑑𝑑𝑑 / 𝑑𝑑𝑑𝑑

 

 
New R4.2 ASReml 4 allowed a bivariate analysis of a binomially distributed variate and a linear 
model variate (normally distributed variate with an identity link). ASReml 4.2 has extended this 
bivariate analysis of generalized linear models. Both variates are now allowed to be distributed with 
Normal, Binomial, Poisson, Gamma or Negative Binomial distributions. Because multinomial 
threshold models are an extension of GLM with composite link functions they may not be included 
in a bivariate analysis. The GLMM qualifiers related to a variate should be specified immediately 
after the response variate is nominated. If a link function is specified, it must follow the distribution 
qualifier. Examples include: 
Scald !BINOMIAL !PROBIT FootRot !BINOMIAL !PROBIT ~ Trait ... 
Scald !BINOMIAL !PROBIT weight ~ Trait ... 
Although ASReml will provide an analysis of grouped binomial data it is usually more statistically 
efficient, if possible, to expand to the binary data and get a more efficient estimate of the residual 
covariance. The procedure used is to scale the specified residual variance matrix by the inverse 
GLM weights, so the values in the specified residual variance matrix are actually dispersion factors, 
typically initialized with variances of 1.0. For instance: 
residual units.us(Trait !INIT 1 0.5 1) 
#residual units.us(Trait !INIT 1 0.5 1 !GFPF) # to fix the 
dispersion 
The algorithm used is a heuristic extension to the standard PQL method used in the univariate case. 
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6.8.1 Generalized Linear Mixed Models 
This section was written by Damian Collins 

A Generalized Linear Mixed Model (GLMM) is an extension of a GLM to include random terms 
in the linear predictor. Inference concerning GLMMs is impeded by the lack of a closed form 
expression for the likelihood. ASReml currently uses an approximate likelihood technique called 
penalized quasi-likelihood, or PQL (Breslow and Clayton, 1993), which is based on a first order 
Taylor series approximation. This technique is also known as Schalls technique (Schall, 1991), 
pseudo-likelihood (Wolfinger and OConnell, 1993) and joint maximisation (Harville and Mee, 
1984, Gilmour et al., 1985). Implementations of PQL are found in many statistical packages, for 
instance, in the GLMM (Welham, 2005) and the IRREML procedures of Genstat (Keen, 1994), 
the MLwiN package (Goldstein et al., 1998), the GLMMIX macro in SAS (Wolfinger, 1994), and 
in the GLMMPQL function in R. 

 
The PQL technique is well-known to suffer from estimation biases for some types of GLMMs. For 
grouped binary data with small group sizes, estimation biases can be over 50% (e.g. Breslow and 
Lin, 1995, Goldstein and Rasbash, 1996, Rodriguez and Goldman, 2001, Waddington et al., 1994). 
For other GLMMs, PQL has been reported to perform adequately (e.g. Breslow, 2003). McCulloch 
and Searle (2001) also discuss the use of PQL for GLMMs. 

 
The performance of PQL in other respects, such as for hypothesis testing, has received much less 
attention, and most studies into PQL have examined only relatively simple GLMMs. Anecdotal 
evidence suggests that this technique may give misleading results in certain situations. Therefore 
we cannot recommend the use of this technique for general use, and it is included in the current 
version of ASReml for advanced users. If this technique is used, we recommend the use of cross-
validatory assessment, such as applying PQL to simulated data from the same design (Millar and 
Willis, 1999). 

 
The standard GLM Analysis of Deviance (!AOD) should not be used when there are random terms 
in the model as the variance components are re-estimated for each submodel. 
 
6.9 Missing values 

 
6.9.1 Missing values in the response 
It is sometimes computationally convenient to estimate 
missing values, for example, in spatial analysis of 
regular arrays, see example 3a in Section 7.5. Missing 
values are estimated if the model term mv is included in 
the model. mv is formally shown here in the sparse fixed 
effects to emphasise that it is always included in the 
sparse equations. If mv is listed in the fixed effects 
section, it and any following fixed effect terms are 
processed as sparse (see Section 6.10.1).  

  

NIN Alliance Trial 1989 
variety 
⋮ 
row 22 
column 11 
nin89.asd !skip 1 
yield ∼ mu variety !r idv(repl), 
!f mv 
residual idv(units) 
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Formally, mv creates a factor with a covariate for each missing value. The covariates are coded 0 
except in the record where the particular missing value occurs, where it is coded -1. The action 
when mv is omitted from the model depends on whether a univariate or multivariate analysis is 
being performed.  

For a univariate analysis, ASReml discards records which have a missing response. In multivariate 
analyses, all records are retained and the R matrix is modified to reflect the missing value pattern. 

 
6.9.2 Missing values in the explanatory variables 

ASReml will abort the analysis if it finds missing values in the design matrix which are not directly 
associated with missing values for the response or logically excluded from the model by being in 
combination with an at() term which evaluates to ZERO unless !MVINCLUDE or !MVREMOVE 
is specified, see Section 5.8. !MVINCLUDE causes the missing value to be treated as a zero. 
!MVREMOVE causes ASReml to discard the whole record. Records with missing values in 
particular fields can be explicitly dropped using the !DV * transformation, Table 5.1. 

 
Covariates: Treating missing values as zero in covariates is usually only acceptable if the 
covariate is centred (has mean of zero). 

 
Design factors: Where the factor level is zero (or missing and the !MVINCLUDE qualifier is 
specified), no level is assigned to the factor for that record. These effectively defines an extra level 
(class) in the factor which becomes a reference level. 

 
6.10 Some technical details about model fitting in ASReml 

 
6.10.1 Sparse versus dense 
ASReml partitions the terms in the linear model into two parts: a dense set and a sparse set. The 
partition is at the !r point unless explicitly set with the !DENSE data line qualifier or mv is 
included before !r, see Table 5.5. The special term mv is always included in sparse. Thus random 
and sparse terms are estimated using sparse matrix methods which result in faster processing. The 
inverse coefficient matrix is fully formed for the terms in the dense set. The inverse coefficient 
matrix is only partially formed for terms in the sparse set. Typically, the sparse set is large and 
sparse storage results in savings in memory and computing. A consequence is that the variance 
matrix for estimates is only available for equations in the dense portion. 

 
6.10.2 Ordering of terms in ASReml 
The order in which estimates for the fixed and random effects in linear mixed model are reported 
will usually differ from the order the model terms are specified. Solutions to the mixed model 
equations are obtained using the methods outlined Gilmour et al., 1995. ASReml orders the 
equations in the sparse part to maintain as much sparsity as it can during the solution. After 
absorbing them, it absorbs the model terms associated with the dense equations in the order 
specified.  
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6.10.3 Aliassing and singularities 
A singularity is reported in ASReml when the diagonal element of the mixed model 
equations is effectively zero (see the !TOLERANCE qualifier) during absorption. It 
indicates there is either 

 
• no data for that fixed effect, or 

• a linear dependence in the design matrix means there is no information left to estimate 
the effect. 

ASReml handles singularities by using a generalized inverse in which the singular 
row/column is zero and the associated fixed effect is zero. Which equations are singular 
depends on the order the equations are processed. This is controlled by ASReml for the 
sparse terms but by the user for the dense terms. They should be specified with main 
effects before interactions so that the table of Wald F statistics has correct 
marginalization. Since ASReml processes the dense terms from the bottom up, the first 
level (the last level processed) is typically singular. 

 
The number of singularities is reported in the .asr file immediately prior to the REML 
log-likelihood (LogL) line for that iteration (see Section 14.3). The effects (and 
associated standard or prediction error) which correspond to these singularities are zero 
in the .sln file. 
 
Singularities in the sparse_fixed terms of the model may change with changes in the 
random terms included in the model. If this happens it will mean that changes in the 
REML log-likelihood are not valid for testing the changes made to the random model. 
This situation is not easily detected as the only evidence will be in the .sln file where 
different fixed effects are singular. A likelihood ratio test is not valid if the fixed model 
has changed. 

 
6.10.4 Examples of aliassing 
The sequence of models in Table 6.5 are presented to facilitate an understanding of over-
parameterised models. It is assumed that var is a factor with 4 levels, trt with 3 levels 
and rep with 3 levels and that all var.trt combinations are present in the data. 
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Table 6.5: Examples of aliassing in ASReml 

model number of 
singularities 

order of fitting 

yield ∼ var !r idv(rep) 0 rep var 

yield ∼ mu var !r idv(rep) 1 rep mu var 
first level of var is aliassed and set to 
zero 

yield ~ var trt !r idv(rep) 1 rep var trt 
var fully fitted, first level of trt is 
aliassed and set to zero 

yield ∼ mu var trt var.trt, !r 
idv(rep) 

8 rep mu var trt var.trt 

first levels of both var and trt are 
aliassed and set to zero, together with 
subsequent interactions 

yield ∼ mu var trt !r idv(rep), 
!f var.trt 

8 [ var.trt rep ] mu var trt 

var.trt fitted before mu, var and 
trt, var.trt fully fitted; mu, var 
and trt are completely singular and set 
to zero. The order within [ var.trt 
rep ] is determined internally 

 

6.11 Wald F Statistics 
 

The so called ANOVA table of Wald F statistics has 4 forms: 
Source NumDF   F-inc  
Source NumDF   F-inc F-con M  

Source NumDF DDF_inc  F-inc   P-inc 
Source NumDF DDF_con  F-inc F-con M P-con 

depending on whether conditional Wald F statistics are reported (requested by the !FCON 
qualifier) and whether the denominator degrees of freedom are reported. ASReml always reports 
incremental Wald F statistics (F-inc) for the fixed model terms (in the DENSE partition) 
conditional on the order the terms were nominated in the model. Note that probability values 
are only available when the denominator degrees of freedom is calculated, and this must be 
explicitly requested with the !DDF qualifier in larger jobs. Users should study Section 2.5 to 
understand the contents of this table. The ’conditional maximum’ model used as the basis for the 
conditional F statistic is spelt out in the .aov file described in Section 14.4. 

 
 

The numerator degrees of freedom (NumDF) for each term is easily determined as the number of 
non-singular equations involved in the term. However, in general, calculation of the denominator 
degrees of freedom (DDF) is not trivial. ASReml will by default attempt the calculation for small 
analyses, by one of two methods. In larger analyses, users can request the calculation be attempted 
using the !DDF qualifier (Table 5.3). Use !DDF -1 to prevent the calculation to save processing 
time when significance testing is not required. 
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7 Command file: Specifying the 
variance structures 

 
 

In Chapter 2 we presented the general linear mixed model 
 

𝒚𝒚 =  𝑿𝑿𝑿𝑿 +  𝒁𝒁𝒁𝒁 +  𝒆𝒆 
 

where 𝒚𝒚 (𝑛𝑛 × 1) is a vector of observations, 𝝉𝝉 (𝑝𝑝 × 1) is a vector of fixed effects, X (𝑛𝑛 × 𝑝𝑝) is the 
design matrix of full column rank that associates observations with the appropriate combination 
of fixed effects, 𝒖𝒖 (𝑞𝑞 × 1) is a vector of random effects, 𝒁𝒁 (𝑛𝑛 × 𝑞𝑞) is the design matrix that 
associates observations with the appropriate combination of random effects, and 𝒆𝒆 (𝑛𝑛 × 1) is the 
vector of residual errors, see model (2.1). Among the key concepts regarding this model are: 

 
• the sigma parameterization (Section 2.1.1): 

�𝒖𝒖𝒆𝒆 �  ~ 𝑁𝑁�� 𝟎𝟎𝟎𝟎 �  , �𝑮𝑮�𝝈𝝈g� 
𝟎𝟎   

𝟎𝟎
𝑹𝑹𝑣𝑣(𝝈𝝈𝑟𝑟) 

� � 

where the matrices G and 𝑹𝑹𝑣𝑣 are variance matrices for u and e and are functions of parameters 
𝝈𝝈𝑔𝑔 and 𝝈𝝈𝑟𝑟. Under this parameterization 

 
var (𝒚𝒚)  =  𝒁𝒁𝒁𝒁�𝝈𝝈𝑔𝑔�𝒁𝒁⊤ +  𝑹𝑹𝑣𝑣(𝝈𝝈𝑟𝑟) 

 
• G structures for the random model terms (Section 2.1.3) and R structures for the residual error 

term (Section 2.1.5), 

• direct sum structures for G and/or 𝑹𝑹𝑣𝑣 (𝑹𝑹𝑐𝑐, see below) (Sections 2.1.3 and 2.1.5), 

• direct product structures for terms composed of several component factors (Section 2.1.10), 

• the gamma parameterization for estimation of variance structure parameters as ratios relative 
to the residual error variance (Section 2.1.6): 

�𝒖𝒖𝒆𝒆 �  ~ 𝑁𝑁�� 𝟎𝟎𝟎𝟎 �  ,𝜎𝜎𝑒𝑒2  �𝑮𝑮�𝛾𝛾𝑔𝑔� 
𝟎𝟎   

𝟎𝟎
𝑹𝑹𝑐𝑐(𝛾𝛾𝑟𝑟) 

� � 
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where 𝛾𝛾𝑔𝑔  and 𝛾𝛾𝑟𝑟  represent the variance structure parameters associated with scaled (by 𝜎𝜎𝑒𝑒2) variance 
matrices. Under this parameterization 
 

var(𝒚𝒚) =  𝜎𝜎𝑒𝑒2 (𝒁𝒁𝒁𝒁(𝛾𝛾𝑟𝑟)𝒁𝒁⊤ + 𝑹𝑹𝑐𝑐(𝛾𝛾𝑟𝑟)). 

In this chapter we give a detailed account of variance modeling in ASReml. 
 

7.1 Applying variance models to random terms 
 

In the previous chapter we showed how to specify the random model terms 𝒖𝒖𝑖𝑖 in u and associated 
design matrices and we assumed the effects were IID by using an idv() function. We can 
naturally extend this using other functions. Some common variance functions are defined in Table 
7.1, the full range of variance model functions and their detailed definition is presented in Table 
7.6. 

 
The models are classified as variance models if they include a scale parameter, or as correlation 
models if their scale is fixed. Except for the giv models, correlation models take value 1 on the 
diagonal. Names of correlation models can be appended with v (e.g. idv()) to add a common 
variance, i.e. same variance across all rows, or with h (e.g. idh()) to allow a separate variance 
for each row. If all of the variables in a term do not have a variance model specified then the default 
variance model, idv(), will be applied to these variables. We further generalise this in Section 
7.2 and Table 7.2 by introducing the idea of a consolidated model term that simultaneously defines 
both the design matrix (𝒁𝒁𝑖𝑖) and variance model (𝑮𝑮𝑖𝑖), in particular allowing 𝑮𝑮𝑖𝑖 to be the direct 
product of variance structures. In Section 7.4 we further generalise the consolidated model 
specification to allow the residual variance structure to be the direct sum of variance structures. 

 
7.2 Process to define a consolidated model term 

 
Consider a linear model term column.row comprising the interaction between the single factors 
column and row. We refer to column.row as a compound model term. If the variance structure 
for column.row is the direct product of two matrices, the first of which is an IID variance 
structure, that is, a scaled identity matrix, with dimension equal to the number of levels of the 
factor column and the second of which is a matrix with dimension equal to the number of levels 
of the factor row and with elements representing a first order autoregressive correlation structure 
AR1, then we represent this by the consolidated model term idv(column).ar1(row). This 
specifies a two-dimensional separable spatial variance structure for column.row but with spatial 
correlation in the row direction only. A consolidated model term is therefore comprised of 
component terms, each with a variance model function applied to give the required direct product 
form of the variance structure. Table 7.2 demonstrates how to build consolidated terms in ASReml 
for a small selection of examples. The linear model term (single or compound) is first identified 
(column 2) and the individual components that identify the dimension of the individual matrices 
used in forming the direct product variance structure are then written down (column 3). Note that 
in the simplest cases there is only one component.   
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Table 7.1: List of common variance model functions 

Their type (correlation or variance), the form of the variance matrix generated (C for correlation, 
V for variance matrix, S for scaled variance matrix), and a brief description. Parameters 𝜎𝜎𝑖𝑖2 > 0 
are variances, −1 𝜌𝜌𝑖𝑖 < 1 are correlations. Subscript c denotes parameter held in common across 
all rows/columns. 

 

name type variance matrix 
(for set of n effects) 

description 

id() correlation 𝑪𝑪 = 𝑰𝑰 IID with variance 1 
idv() variance 𝑽𝑽 = 𝜎𝜎𝑐𝑐2𝑰𝑰 IID with common variance = default model 
idh() variance 𝑽𝑽 = diag{𝜎𝜎12 …𝜎𝜎𝑛𝑛2} independent with separate variances 
ar1() correlation 𝐶𝐶𝑖𝑖𝑖𝑖 = 𝜌𝜌𝑐𝑐

|𝑖𝑖−𝑗𝑗|  auto-regressive structure of order 1 
ar1v() variance 𝑉𝑉𝑖𝑖𝑖𝑖 = 𝜎𝜎𝑐𝑐2𝜌𝜌𝑐𝑐

|𝑖𝑖−𝑗𝑗| auto-regressive structure of order 1 

ar1h() variance 𝑉𝑉𝑖𝑖𝑖𝑖 = 𝜎𝜎𝑖𝑖𝜎𝜎𝑗𝑗𝜌𝜌𝑐𝑐
|𝑖𝑖−𝑗𝑗| auto-regressive structure of order 1 

corg() correlation 𝐶𝐶𝑖𝑖𝑖𝑖 = 𝜌𝜌𝑖𝑖𝑖𝑖 unstructured correlation matrix 
diag() variance 𝑽𝑽 = diag{𝜎𝜎12 …𝜎𝜎𝑛𝑛2} independent with separate variances (same as 

idh()) 
grm() scaled 

variance 
𝑺𝑺 specified applies a known scaled variance matrix; the 

number of rows in the matrix must be match the 
number of levels of the factor it is applied to and 
the order of the rows must match the order of the 
levels 

nrm() scaled 
variance 

𝑺𝑺 specified applies a generated relationship matrix derived 
from the functions argument associated pedigree 
file 

rrk() variance 𝑽𝑽 = 𝚪𝚪𝚪𝚪⊤  +  𝚿𝚿 factor analytic model of order k with 𝚪𝚪 of size 𝑛𝑛 × 𝑘𝑘 
and 𝚿𝚿 is an 𝑛𝑛 × 𝑛𝑛 diagonal matrix with zero 
elements 

us() variance 𝑉𝑉𝑖𝑖𝑖𝑖 = 𝜎𝜎𝑖𝑖𝑖𝑖 general unstructured, symmetric positive definite 
covariance matrix 

xfak() variance 𝑽𝑽 = 𝚪𝚪𝚪𝚪⊤  +  𝚿𝚿 factor analytic model of order k with 𝚪𝚪 of size 𝑛𝑛 × 𝑘𝑘 
and 𝚿𝚿 is an 𝑛𝑛 × 𝑛𝑛 diagonal matrix  

The variance structure associated with each component has a structure name (column 4) and a 
corresponding variance model function name (column 5) giving the associated component 
variance structures (column 6). The consolidated model term is the term presented in the final 
column of the table. In contrast, in ASReml 3 the linear model terms are defined on the model 
line and subsequently a G structure line is given for each linear model term which specifies the 
component terms and their associated structures. The simplest form of a consolidated model term 
is a single model term with a variance model function applied, e.g. idv(repl) in Table 7.2, 
and the next simplest is a compound model term with a variance model function applied, e.g. 
idv(A.B) in Table 7.2.  
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In summary, the following are rules in forming consolidated model terms and applying variance 
model functions to random model terms: 

• variance model functions can be applied to single model terms (see example 1 in Table 7.2), 
the components in compound model terms (examples 4 to 6) and single model terms with a 
constructed linear model function (example 2),  

• variance model functions can also be applied to compound model terms (example 3) 

Table 7.2: Building consolidated model terms in ASReml 

 linear model term 
(type of term) 

component(s) variance 
structure 
name 

variance 
model 
function 
name 

covariance 
component 

consolidated model 
term 

1 repl 
single 

repl IDV idv() idv(repl) idv(repl) 

2 fac(x) 
single 

fac(x) EXPV expv() expv(fac(x)) expv(fac(x)) 

3 A.B 
compound 

A.B IDV idv() idv(A.B) idv(A.B) 

4 column.row 
compound 

column  
row 

IDV  
AR1 

idv() 
ar1() 

idv(column) 
ar1(row) 

idv(column).ar1 
(row) 

5 site.variety 
compound 

site 
variety 

DIAG 
ID 

diag() 
id() 

diag(site) 
id(variety) 

diag(site).id 
(variety) 

6 Trait.animal 
compound 

Trait 
animal 

US 
NRM 

us() 
nrm() 

us(Trait) 
nrm(animal) 

us(Trait).nrm 
(animal) 

• variance model functions cannot be applied to expandable model terms, for example, to 
- A*B which expands to A B A.B 

- A/B which expands to A A.B 

- at(A,i,j).B which expands to at(A,i).B at(A,j).B 

• a variance function must be specified for one, but only one, component in a compound model 
term. Correlation functions must be defined for the remaining terms. This is due to the 
identifiability issues that occur when multiple variance structures are specified. This is 
explained in NIN example 3a, see Section 7.5. The defined variance function may be 
homogeneous (name ending in v) or heterogeneous variance (name ending in h). This is 
discussed in detail in Section 7.11.1.  
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7.2.1 Modelling a single variance structure over several model terms 
 

This facility was motivated by two considerations. Typically the random effects from any two 
distinct model terms are uncorrelated. However, in some models one G structure may apply across 
several model terms. Sometimes one also wishes to partition the random effects into sets with 
independent variance structures. In ASReml, we can accomplish these two models using the special 
variance model function str(), where the name str is for structure and str() has the 
following general form: 
str(model term(s) variance structure(s)) 
The m individual model terms generate the design matrices 𝒁𝒁𝑖𝑖 and effect vectors 𝒖𝒖𝑖𝑖 of size 𝑏𝑏𝑖𝑖 (i =
1, . . . , m) and the v variance structure terms generate variance structures 𝑮𝑮𝑗𝑗 of size 𝑏𝑏𝑗𝑗∗  (𝑗𝑗 =
 1, . . . , 𝑣𝑣). The function str() generates a combined model design matrix 𝒁𝒁𝑐𝑐 =  [𝒁𝒁1 . . .𝒁𝒁𝑚𝑚] 
and a combined effects vector 𝒖𝒖𝑐𝑐⊤  =  [𝒖𝒖1⊤ . . .𝒖𝒖𝑚𝑚⊤  ] of size 𝑏𝑏𝑐𝑐 = Σ𝑖𝑖=1𝑚𝑚  𝑏𝑏𝑖𝑖 and the variance structure 
for 𝒖𝒖𝑐𝑐 is 𝑮𝑮𝑐𝑐 = ⊕𝑗𝑗=1

𝑣𝑣  𝑮𝑮𝑗𝑗 for 𝒖𝒖𝑐𝑐 and 𝑮𝑮𝑐𝑐 to be conformable Σ𝑗𝑗=1𝑣𝑣  𝑏𝑏𝑗𝑗∗ = 𝑏𝑏𝑐𝑐. If v = 1 then there is one 
variance structure associated with the combined set of effects and if v > 1 we can partition 𝒖𝒖𝑐𝑐 and 
𝑮𝑮𝑐𝑐 with 𝒖𝒖𝑐𝑐⊤ = [𝒖𝒖1∗

⊤ …  𝒖𝒖𝑣𝑣∗
⊤] and 𝑮𝑮𝑐𝑐  =  [𝑮𝑮1∗  . . .𝑮𝑮𝑣𝑣∗  ] and the effect vectors are independent of each 

other and the effects 𝒖𝒖𝑗𝑗∗ have variance structure 𝑮𝑮𝑗𝑗∗. A restriction with str() is that the closing 
parenthesis must be on the same line because of the way ASReml processes the command file. 

 
Example 7.1 Random coefficient regression 
In the first order random coefficient regression model it is required to specify a covariance between 
the intercept and slope for each subject to ensure translation invariance, that is, equivalent variance 
parameter estimates for addition of any constant to the independent variable. For example, in a 
random coefficient regression where a set of random intercepts is specified by the model term 
Animal (with 10 levels) and a set of random slopes is specified by the model term age.Animal, 
translation invariance is achieved using str() as 

str(Animal age.Animal us(2).id(10)) 

The algorithm places the model terms specified using the argument form together in the processed 
random model, here Animal followed by age.Animal. The variance structure(s) begins at the 
start of the first term specified in str() and is expected to exactly span   the whole set of terms 
given within the brackets. The overall size of the variance model is checked against the total 
number of levels of these terms, but the user must verify that the ordering is appropriate for 
(matches) the variance model specified. 

 
In our example, this random model generates a combined set of random effects from the individual 
animal intercepts, 𝒖𝒖𝐼𝐼 = (𝑢𝑢𝐼𝐼1 . . .𝑢𝑢𝐼𝐼10)⊤ and animal slopes, 𝒖𝒖𝑆𝑆 = (𝑢𝑢𝑆𝑆1 . . .𝑢𝑢𝑆𝑆10)⊤, as.  
𝒖𝒖𝐼𝐼𝐼𝐼 = (𝒖𝒖𝐼𝐼⊤ . . .𝒖𝒖𝑆𝑆⊤)⊤ The consolidated term then has variance structure of the form 
 

var (𝒖𝒖𝐼𝐼𝐼𝐼) = var �� 
𝒖𝒖𝐼𝐼
𝒖𝒖𝑆𝑆 �� =  � 

𝜎𝜎𝐼𝐼𝐼𝐼  
𝜎𝜎𝐼𝐼𝐼𝐼 

𝜎𝜎𝐼𝐼𝐼𝐼
𝜎𝜎𝑆𝑆𝑆𝑆 

 � ⊗ 𝑰𝑰10 = � 𝜎𝜎𝐼𝐼𝐼𝐼𝑰𝑰10 
𝜎𝜎𝐼𝐼𝐼𝐼𝑰𝑰10 

𝜎𝜎𝐼𝐼𝐼𝐼𝑰𝑰10
𝜎𝜎𝑆𝑆𝑆𝑆  𝑰𝑰10

 � 
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Here, the set of animal intercepts has a common variance (𝜎𝜎𝐼𝐼𝐼𝐼), and the set of animal slopes has a 
(different) common variance (𝜎𝜎𝑆𝑆𝑆𝑆). Intercepts and/or slopes from two different animals are 
independent, but the intercept and slope from any given animal have covariance 𝜎𝜎𝐼𝐼𝐼𝐼 (or correlation 
𝜎𝜎𝐼𝐼𝐼𝐼 /�𝜎𝜎𝐼𝐼𝐼𝐼𝜎𝜎𝑆𝑆𝑆𝑆  ). In this context, we use integers as arguments to emphasize that the arguments are 
specifying the size of the variance structure. For this example, id(10) can be replaced by 
id(Animal). In order to simplify processing of the str() arguments, ASReml expects at 
least 1 single term in the consolidated model term to be a variance model function with a dimension 
rather than a variable name as the argument, e.g. us(2) in the example. 

Mostly this is quite natural as a suitable factor is not normally available to indicate the number of 
linear model terms being combined (2 in this example). The dummy identity function id(1) 
could be introduced to allow processing if the consolidated model term could only be expressed 
using variable arguments, for example, 
str(Sire and(Dam) id(1).nrm(Animal)) 

This random regression model has been developed to describe the form of the str() function. 
We note that this model is equivalent to 
us(pol(age)).id(Animal) 

Example 7.2 Fitting a genetic covariance between direct and maternal effects 
This example fits direct effects for two traits, but maternal effects for the first trait only 
str(Trait.animal at(Trait,1).dam us(3).nrm(animal)) 

A rather artificial example of using v greater than 1 is when we have 20 levels in a factor A 
and wish to use one variance for the first 8 levels and another for the last 12 levels. Then 
str(A idv(8) idv(12)) 

will do this. 
 
7.3 Applying variance structures to the residual error term 

 
In Release 4 the residual error term is also defined using a consolidated model term, and it now 
appears after a residual statement that has been introduced to specify the associated variance 
structure. We give five examples. Firstly, for the default situation of IID residual errors the error 
model definition line would be 
residual idv(units) 

This second example would specify a separable autoregressive spatial model of order 1 
(𝐴𝐴𝐴𝐴1 × 𝐴𝐴𝐴𝐴1) for the observations from a trial arranged in a rectangular array indexed by the data 
variables column and row. To apply this variance structure the observations would need to cover 
the whole grid, but it would not be necessary to pre-order the data file as rows within columns as 
ASReml uses the information in column and row to put the observations into the appropriate row 
within column order: 
residual ar1v(column).ar1(row)  
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If there were 3 columns and 23 rows in the previous example, then this third example 
residual ar1v(3).ar1(23) 

would be an equivalent coding for the (𝐴𝐴𝐴𝐴1 × 𝐴𝐴𝐴𝐴1) model using the dimensions of the factors 
rather than the factor names.  
 
In this case the data records would need to be sorted in the order rows within columns because 
ASReml does not reorder the data internally when dimensions are used but instead assumes that 
the specified variance structure matches the order of the data as presented in the data file. 
 
The fourth example assumes variance heterogeneity among the data observations, that is, that the 
three groups comprising observations 1. . . 23, 24. . . 50, 51. . . 70 have unequal variances: 
residual idv(23) idv(27) idv(20) 

The fifth and final example is the default residual variance in a multivariate analysis. Specifying 
units as the first component is crucial as ASReml extracts the trait values by trait within unit: 

residual id(units).us(Trait) 

 
 

7.3.1 Special properties and rules in defining the residual error term 
 

There are certain properties and associated rules for this term that require special consideration: 
 

Rule 1 The number of effects in the residual term must be equal to the number of data units included 
in the analysis. 

 
Rule 2 Where a compound model term is specified for the residuals, each combination of levels 
of the single model terms comprising this term must uniquely identify one unit of the data. For 
example, in the spatial analysis of a column trial comprising 4 replicates of 24 varieties arranged 
as a grid of 4 rows by 24 columns (rows are replicates), a first order separable autoregressive spatial 
variance structure for the residuals can be specified by the consolidated model term 
ar1(column).ar1(row), where column and row are the appropriate columns in the data 
file. However, the number of data units must be the product of the number of levels for row and 
the number of levels for column; 96 in this case. If this is not the case, or if more than one unit is 
associated with some row column combination, ASReml will return an error message and it will 
not be possible to use ar1(column).ar1(row) for residual error. If there are fewer than 96 
units and each row-column combination present is associated with one unit, then the 
!COLUMNFACTOR/!ROWFACTOR data file qualifiers (see Table 5.2) can be used to augment the 
data by completing the grid to allow an appropriate analysis. 
 
These rules will always be satisfied for a single section of data with IID errors, that is, 
𝑹𝑹𝑣𝑣 =  𝑹𝑹𝑣𝑣1  =  𝜎𝜎2𝑰𝑰𝑛𝑛, see Example 2.2, defined either by default (i.e. with no residual specified) or 
in terms of the units factor. However, a mismatch in both size and ordering is possible when either 
multiple sections are present (as in multi-environment trial (MET) analysis) or when non-identity 
variance model functions are used.  
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7.3.2 Using sat() to specify the residual model term for data with 
sections 

Section 2.1.4 described partitioning the data observations into data sections to which separate 
variance structures are applied. There are three data sections in the fourth example in Section 7.3. 
When variance structures are specified using dimensions rather than factor names (idv(23) for 
section 1, idv(27) for section 2,. . . in the example), the data must be ordered into sections and 
the variance structures must be ordered to match the order of the sections in the data file. It is 
usually more convenient to use a variable in the data file to identify sections within the data. The 
data will be sorted internally by ASReml (i.e. the data file does not need to be ordered in any 
particular way) and the variance structures for sections can then be specified using the sat 
function, for example 
residual sat(section).idv(units) 

for the simple example with 3 data sections, where section is a new column in the data file to 
separate the data into the three sections: units 1. . . 23, 24. . . 50 and 51. . . 70. The sat function 
(shorthand for section at) is new with Release 4 and performs several different tasks: 

 
- it tells ASReml that the variance structure for the residual error term is a direct sum structure (see 

Section 2.1.5) where the different components of the direct sum apply to the different levels of 
the sectioning variable in the data file 

- it prunes the levels for a section so that only the levels of factors defining the residual variance 
structure for that section are used in forming that variance structure. 

Often sections relate to sites (or trials or experiments) in the case where several related trials are 
analysed together. For example, consider a MET dataset comprising data for three sites. To model 
the residuals at each site by a separate AR1 × AR1 variance structure, we could write 
residual sat(site).ar1v(column).ar1(row) 

 
Alternatively, an AR1 × AR1 variance structure for sites 1 and 3, but an IDV×AR1 structure for 
site 2, could be coded using sat either as 

residual sat(site,1).ar1v(column).ar1(row), 
sat(site,2).idv(column).ar1(row), 
sat(site,3).ar1v(column).ar1(row) 

 
or, more succinctly, as 
residual sat(site,1,3).ar1v(column).ar1(row) sat(site,2).ar1v(column).id(row) 

For each of these definitions, ASReml will determine the particular levels in row and column 
for each site and hence the appropriate sizes of the AR1 matrices.  
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Important point A variance structure needs to be specified for every level of the sectioning 
factor, in which case 
residual sat(site,1,3).ar1(row).ar1(column) 

would fail as there is no variance structure specified for site 2. 

New R4.2 The use of the function sat() allows the concise specification of residual models. In 
some cases, for example, Residual sat(section).ar1v(row) there might only be one 
level of the autoregressive argument in some sections and so the autoregressive parameter cannot 
be estimated. In these sections ASReml now fixes the autoregressive parameter but does not use it. 

 
7.4 Identifiability 

 
Once all variables have a variance model function applied, ASReml attempts to determine whether 
the term is identifiable, that is, the terms that can be separately estimated from (are not confounded 
with) other terms in the model. If the consolidated model term generates a correlation matrix, for 
example, the consolidated model term for A.B is specified as id(A).ar1(B), then it is usually 
the case that one wishes to fit a model with this correlation structure but to also allow the effects 
to have a common variance. When a correlation structure is specified for a consolidated term, 
either for an R or a G structure, ASReml will detect this and add a common scaled variance 
parameter. Some users might find it simpler and reduce confusion by specifying terms as variance 
terms directly. For example, id(A).ar1(B) should become either idv(A).ar1(B) or 
id(A).ar1v(B); it is arbitrary which variable the common variance is attached to. If more 
than one variance model function in the consolidated model term generates a variance structure 
(either homogeneous or heterogeneous), for example idv(A).ar1v(B), then the parameters 
will not all be identifiable and so the user must either change idv(A) to id(A) and leave 
ar1v(B) as it is, or change ar1v(B) to ar1(B) and leave idv(A) as it is. 

 
7.5 A sequence of variance structures for the NIN data 

 
Having outlined the theory and introduced the functional specification, we pause now to consider 
an example. The following is a series of six variance structures of increasing complexity for the 
NIN column trial data (see Chapter 3 for an introduction to these data). For each example we 
present a code box to the right that contains the functional specification and we present a 
discussion of this code to the left. We present the model specification explicitly to help the user 
understand the logic. In some cases, experienced users will wish to take advantage of reducing 
typing and clarity by using default rules. These are discussed in Section 7.10.  
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1 Randomised complete blocks analysis: blocks fixed 
 

The only random term in a traditional randomised 
complete block (RCB) analysis of the NIN data is the 
residual error term 𝒆𝒆 ∼  𝑁𝑁 (𝟎𝟎,𝜎𝜎𝑒𝑒2 𝑰𝑰224 ). The model 
therefore involves just one R structure (IDV) and no G 
structure. The variance model function name is idv 
and there is just one consolidated model term; 
idv(units). 

 
 
 
 
 
2 RCB analysis: blocks random 

 
The random effects RCB model has 2 random terms to 
indicate that the total variation in the data is comprised 
of 2 components; a random replicate term 
𝒖𝒖𝑟𝑟 ~ 𝑁𝑁(𝟎𝟎,𝜎𝜎𝑟𝑟2 𝑰𝑰4) and the residual error term, as in 
example 1. The !r before repl tells ASReml that 
repl is a random term. All random terms must be 
written after !r in the model specification line(s). This 
model involves both the original IDV R structure and 
an IDV G structure for the random replicate term. 
There are now now 2 consolidated model terms; 
idv(repl) and idv(units).  

NIN Alliance Trial 1989 
variety !A 
id 
pid 
raw 
repl 4 

⋮ 
row 22 
column 11 

nin89.asd !skip 1 
yield ∼ mu variety !r idv(repl) 
residual idv(units) 

NIN Alliance Trial 1989 
variety !A 
id 
pid 
raw 
repl 4 

⋮ 
row 22 
column 11 

nin89.asd !skip 1 
yield ∼ mu variety repl 
residual idv(units) 
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3a Two-dimensional spatial model with spatial correlation in one  
direction 

 
The NIN trial was actually laid out in as a rectangular 
array indexed in the data file by row and column. We 
can therefore consider fitting a spatial model for the 
residual term where we allow for autocorrelated errors 
in the row and/or column direction, see Section 7.3. 
However, there are missing plots in the original data. 
Before fitting a spatial analysis, we therefore need to 
fill out the data file to contain records for the missing 
plots (ASReml can now fill out the data file using 
!ROWFACTOR and !COLUMNFACTOR, see Table 
5.2). This allows us to define a separable variance 
structure for the residual error term that is the 
Kronecker product of a structure for rows and a structure for columns. The example in the code 
box 𝒆𝒆 ∼  𝑁𝑁 (𝟎𝟎,  𝜎𝜎𝑒𝑒𝑐𝑐

2  𝑰𝑰11  ⊗  𝚺𝚺𝑟𝑟(𝜌𝜌𝑟𝑟)), that is, a two-dimensional first order separable 
autoregressive spatial structure for error but with spatial correlation in the row direction only 
(IDV×AR1): ar1(row) models the 𝚺𝚺𝑟𝑟(𝜌𝜌𝑟𝑟) correlation structure for rows and idv(column) 
models the IDV variance structure for columns. The consolidated model term  
idv(column).ar1(row) 

directly mirrors the algebraic form var (𝒆𝒆) = 𝜎𝜎𝑒𝑒𝑐𝑐
2  𝑰𝑰11  ⊗  𝚺𝚺𝑟𝑟(𝜌𝜌𝑟𝑟) 

 
Important points 
• the same residual variance structure could be achieved by specifying 

id(column).ar1v(row) which mirrors the alternate but equivalent algebraic form 
var (𝒆𝒆) =  𝑰𝑰11  ⊗𝜎𝜎𝑒𝑒𝑟𝑟

2 𝚺𝚺𝑟𝑟(𝜌𝜌𝑟𝑟) It is arbitrary which variable the common variance is attached to: 
column in the code box, row in the latter, see Section 7.4 on identifiability. 

• if the correlation structure id(column).ar1(row) was specified, ASReml would 
automatically add a common variance to model var (𝒆𝒆) = 𝜎𝜎𝑒𝑒2 𝑰𝑰11  ⊗  𝚺𝚺𝑟𝑟(𝜌𝜌𝑟𝑟), see Section 7.4. 

• !f mv is now included in the model specification. This tells ASReml to estimate the missing 
values. The !f before mv indicates that the missing values are fixed effects in the sparse set of 
terms. An equivalent way of specifying this model is  
yield ~ mu variety mv !r idv(repl)  

where mv is the last fixed effect term and ASReml will include mv and succeeding terms in the 
sparse set.  

• ASReml would report an error if the consolidated model term idv(column).ar1v(row) was 
specified: this would correspond to var (𝒆𝒆) =  𝜎𝜎𝑒𝑒2𝑰𝑰11  ⊗𝜎𝜎𝑒𝑒𝑟𝑟

2 𝚺𝚺𝑟𝑟(𝜌𝜌𝑟𝑟) and 𝜎𝜎𝑒𝑒2 and 𝜎𝜎𝑒𝑒𝑟𝑟
2  are 

unidentifiable in this case, that is, it is not possible to estimate them separately.  

NIN Alliance Trial 1989 
variety !A 
id 
pid 
raw 
repl 4 

⋮ 
row 22 
column 11 

nin89aug.asd !skip 1 
yield ∼ mu variety, 
!r idv(repl) !f mv 
residual idv(column).ar1(row) 
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• this is a univariate analysis in which case ASReml automatically uses the gamma 
parameterization for estimation, see Section 7.6. Consequently, both the sigmas and the 
gammas are reported. The user can force ASReml to use the sigma parameterization by placing 
!SIGMAP immediately after the independent variable and before ~ on the model definition line: 
yield !SIGMAP ∼ mu variety mv, 

!SIGMAP is a new qualifier with Release 4, see also Section 7.6. In this case only the sigmas 
are reported but they appear twice in the output, that is, in both of the columns headed sigma 
in the .asr file, see Chapter 11 for detailed information on output formats in ASReml. 

 
3b Two-dimensional separable autoregressive spatial model 

 
This model extends 3a by specifying a first order 
autoregressive correlation structure for columns. The 
R structure in this case is the Kronecker product of 
two autoregressive correlation matrices, that is,  
var (𝒆𝒆) = 𝜎𝜎𝑒𝑒𝑐𝑐

2  𝚺𝚺𝑐𝑐(𝜌𝜌𝑐𝑐) ⊗𝚺𝚺r(𝜌𝜌𝑟𝑟), giving an 
AR1×AR1 model for error. The consolidated model 
term in this case is ar1v(column).ar1(row) and 
includes ar1v(column) to model the 𝜎𝜎𝑒𝑒𝑐𝑐

2  𝚺𝚺𝑐𝑐(𝜌𝜌𝑐𝑐) 
variance structure for columns. 
 
Important points 
• the same residual variance structure could be achieved by specifying 

ar1(column).ar1v(row) which mirrors the alternate but equivalent algebraic form 
var (𝒆𝒆)  =  𝚺𝚺𝑐𝑐(𝜌𝜌𝑐𝑐)  ⊗  𝜎𝜎𝑒𝑒𝑟𝑟

2  𝚺𝚺𝑟𝑟(𝜌𝜌𝑟𝑟). 

• if the correlation structure ar1(column).ar1(row) was specified, ASReml would 
automatically add a common variance, see Section 7.4. 

• ASReml would report an error if the consolidated model term ar1v(column).ar1v(row) 
was specified as this would correspond to var (𝒆𝒆) = 𝜎𝜎𝑒𝑒𝑐𝑐

2  𝚺𝚺𝑐𝑐(𝜌𝜌𝑐𝑐) ⊗𝜎𝜎𝑒𝑒𝑟𝑟
2  𝚺𝚺𝑟𝑟(𝜌𝜌𝑟𝑟) and 𝜎𝜎𝑒𝑒𝑐𝑐

2  and 𝜎𝜎𝑒𝑒𝑟𝑟
2  

are unidentifiable, that is, it is not possible to estimate them separately, see Section 7.4.  

NIN Alliance Trial 1989 
variety !A 
id 

⋮ 
row 22 
column 11 

nin89aug.asd !skip 1 
yield ∼ mu variety, 
!r idv(repl) !f mv 
residual ar1v(column).ar1(row) 
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3c Two-dimensional separable autoregressive spatial model with  
measurement error 

 

This model extends 3b by adding a random units 
term. Thus  
var (𝒖𝒖𝑟𝑟) =  𝜎𝜎𝑟𝑟2𝑰𝑰4, var �𝒖𝒖𝜂𝜂� = 𝜎𝜎𝜂𝜂2𝑰𝑰242 and  
var(𝒆𝒆) = 𝜎𝜎𝑒𝑒𝑐𝑐

2 𝚺𝚺𝑐𝑐(𝜌𝜌𝑐𝑐) ⊗𝚺𝚺𝑟𝑟(𝜌𝜌𝑟𝑟). The reserved word 
units tells ASReml to construct an additional 
random term with one level for each experimental 
unit, so that a second (independent) error term can 
be fitted. A units term is fitted in the model in 
cases like this where a variance structure is applied 
to the errors. An IDV variance structure is specified for units to model 𝜎𝜎𝜂𝜂2𝑰𝑰242. The units term 
is sometime fitted into spatial models for field trial data to allow for a nugget effect. The model 
now has two terms at the plot (experimental unit) level, that is, a correlated structure defined as an 
R structure and an uncorrelated structure defined in the G structure. There are now three 
consolidated model terms; idv(repl), idv(units) and ar1v(column).ar1(row). This 
order is reversed in 4. 

 
4 Two-dimensional separable autoregressive spatial model defined as 

a G structure 
 

This model is equivalent to 3c but with the spatial 
model defined as a G structure rather than an R 
structure. The algebraic form is written 
alternatively, but equivalently, to the form in 3c, 
that is 
var (𝒖𝒖𝑟𝑟) = 𝜎𝜎𝑟𝑟2𝑰𝑰4, 
var (𝒖𝒖𝑐𝑐𝑐𝑐) = 𝜎𝜎𝑐𝑐𝑟𝑟𝑐𝑐

2  𝚺𝚺𝑐𝑐(𝜌𝜌𝑐𝑐) ⊗𝚺𝚺𝑟𝑟 (𝜌𝜌𝑟𝑟) and  
var (𝒆𝒆) = 𝜎𝜎𝑒𝑒2𝑰𝑰242 
 
Important points 
• the same G structure could be achieved by specifying ar1(column).ar1v(row), see 

similar comment in example 3b 

• if the variance structure ar1v(column).ar1v(row) was specified ASReml would report an 
error, see identical comment in example 3b 

• estimation is based on the gamma parameterization in which case both the estimated sigmas 
and the estimated gammas are reported. The user can force ASReml to use the sigma 
parameterization by placing the !SIGMAP qualifier immediately after the independent variable 
and before ~ on the model definition line. In this case only the sigmas would be reported, but 
they would be reported twice in the output, see Important points under example 3a.  

NIN Alliance Trial 1989 
variety !A 
id 

⋮ 
row 22 
column 11 

nin89aug.asd !skip 1 
yield ∼ mu variety, 
!r idv(repl) idv(units) !f mv 
residual ar1v(column).ar1(row) 

NIN Alliance Trial 1989 
variety !A 
id 

⋮ 
row 22 
column 11 

nin89aug.asd !skip 1 
yield ∼ mu variety !r idv(repl), 
ar1v(column).ar1(row) !f mv 
residual idv(units) 
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7.6 Sigma versus gamma parameterization 
 

From Section 2.4, the variance matrix of 𝒚𝒚 is 
 

var (𝒚𝒚)  =  𝒁𝒁𝒁𝒁�𝝈𝝈𝑔𝑔�𝒁𝒁⊤ +  𝑹𝑹𝑣𝑣(𝝈𝝈𝑟𝑟), 

see model (2.3). This is referred to as the sigma parameterization and the individual variance 
structure parameters in 𝝈𝝈𝑔𝑔 and 𝝈𝝈𝑟𝑟 are referred to as sigmas. For the case when the variance 
structure for the residual error term is a scaled correlation matrix, that is, 𝑹𝑹𝑣𝑣(𝝈𝝈𝑟𝑟) = 𝜎𝜎𝑒𝑒2𝑹𝑹𝑐𝑐(𝛾𝛾𝑟𝑟), the 
variance matrix of y can be written alternatively as 

 
var (𝒚𝒚) =  𝜎𝜎𝑒𝑒2(𝒁𝒁𝒁𝒁�𝛾𝛾𝑔𝑔� 𝒁𝒁⊤ + 𝑹𝑹𝑐𝑐(𝛾𝛾𝑟𝑟)) 

 

see (2.8). This is referred to as the gamma parameterization and the variance structure parameters 
in 𝛾𝛾𝑔𝑔  and 𝛾𝛾𝑟𝑟 are referred to as gammas, see Section 2.1.6. 

 
7.6.1 Which parameterization does ASReml use for estimation? 

 
By default, ASReml uses either the gamma or sigma parameterization for estimation depending on 
the residual specification. The current default for univariate, single section data sets is the gamma 
parameterization. It is possible to override this default as discussed in the following section. 
ASReml reports both the gammas and the sigmas when the gamma parameterization is used for 
estimation. For historical reasons, the sigmas are presented twice (two identical columns) when 
the sigma parameterization is used for estimation. 

 
ASReml uses the sigma parameterization for analyses other than univariate single site analyses, 
examples including multi-section analyses, multivariate analyses and repeated measures analysis 
using R structures that are not the default variance model (i.e. scaled identity). 

 
7.6.2 Switching from the gamma to the sigma parameterization 

 
ASReml uses the gamma parameterization by default for univariate single section analyses, see 
above. However, !SIGMAP is a new qualifier with Release 4 that enables the user to force ASReml 
to use the sigma parameterization this case. This is achieved by placing !SIGMAP immediately 
after the independent variable and before ~ on the model definition line. For example, 
yield !SIGMAP ∼ mu variety !r idv(repl) !f mv  
residual idv(units) 

would force ASReml to use the sigma parameterization in NIN example 3a, see Section 7.5. 

Table 7.3 gives the variance model specification for each of the six NIN examples (column 3), the 
individual terms in 𝑮𝑮(𝝈𝝈𝑔𝑔) and 𝑹𝑹𝑣𝑣(𝝈𝝈𝑟𝑟) under the sigma parameterization (column 4), the sigmas 
that are estimated under this parameterization (column 5), the individual terms in 𝑮𝑮(𝛾𝛾𝑔𝑔) and 
𝑹𝑹𝑣𝑣(𝛾𝛾𝑟𝑟) under the gamma parameterization (column 6) and the gammas that are estimated under 
this parameterization (column 7). 
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Table 7.3: G structure for the random terms (magenta) and R structure for the residual error term (cyan) under both the sigma and gamma 
parameterizations, and the corresponding sigma(s)/gamma(s) under each parameterization for the series of NIN data examples 
 

   sigma parameterization gamma parameterization 
no. definition variance model  

specification 
𝑮𝑮(𝝈𝝈𝑔𝑔) 
𝑹𝑹𝑣𝑣(𝝈𝝈𝒓𝒓) 

sigma(s) 𝑮𝑮(𝛾𝛾𝑔𝑔) 
𝑹𝑹𝑐𝑐(𝛾𝛾𝑟𝑟) 

gamma(s) 

1 RCB analysis: 
blocks fixed 

residual idv(units) 𝜎𝜎𝑒𝑒2𝑰𝑰224 𝜎𝜎𝑒𝑒2 𝑰𝑰224 none 

2 RCB analysis 
blocks random 

!r idv(repl) 
residual idv(units) 

𝜎𝜎𝑟𝑟2𝑰𝑰4 
𝜎𝜎𝑒𝑒2𝑰𝑰224 

𝜎𝜎𝑟𝑟2 
𝜎𝜎𝑒𝑒2 

𝛾𝛾𝑟𝑟𝑰𝑰4 
𝑰𝑰224 

𝛾𝛾𝑟𝑟 

3a Two-dimensional 
spatial model 
correlation in one 
direction 

!r idv(repl) 
residual idv(column). ar1(row) 

𝜎𝜎𝑟𝑟2𝑰𝑰4 
𝜎𝜎𝑒𝑒𝑐𝑐
2 𝑰𝑰11 ⊗ 𝜮𝜮𝑐𝑐(𝜌𝜌𝑟𝑟) 

𝜎𝜎𝑟𝑟2 
𝜎𝜎𝑒𝑒𝑐𝑐,
2 𝜌𝜌𝑟𝑟 

𝛾𝛾𝑟𝑟𝑰𝑰4 
𝑰𝑰11 ⊗ 𝜮𝜮𝑟𝑟(𝜌𝜌𝑟𝑟) 

𝛾𝛾𝑟𝑟 
𝜌𝜌𝑟𝑟 

3b Two-dimensional 
separable 
autoregressive 
spatial model 

!r idv(repl) 
residual ar1v(column). ar1(row) 

𝜎𝜎𝑟𝑟2𝑰𝑰4 
𝜎𝜎𝑒𝑒𝑐𝑐
2 𝜮𝜮𝑐𝑐(𝜌𝜌𝑐𝑐) ⊗𝜮𝜮𝑟𝑟(𝜌𝜌𝑟𝑟) 

𝜎𝜎𝑟𝑟2 
𝜎𝜎𝑒𝑒𝑐𝑐,
2 𝜌𝜌𝑟𝑟 ,𝜌𝜌𝑐𝑐 

𝛾𝛾𝑟𝑟𝑰𝑰4 
𝜮𝜮𝑐𝑐(𝜌𝜌𝑐𝑐) ⊗𝜮𝜮𝑟𝑟(𝜌𝜌𝑟𝑟) 

𝛾𝛾𝑟𝑟 
𝜌𝜌𝑟𝑟 ,𝜌𝜌𝑐𝑐 

 Two-dimensional 
separable 
autoregressive 
spatial model with 
measurement 
error 

!r idv(repl), 
idv(units) 
residual ar1v(column). ar1(row) 

𝜎𝜎𝑟𝑟2𝑰𝑰4 
𝜎𝜎𝜂𝜂2𝑰𝑰224 
𝜎𝜎𝑒𝑒𝑐𝑐
2 𝜮𝜮𝑐𝑐(𝜌𝜌𝑐𝑐) ⊗𝜮𝜮𝑟𝑟(𝜌𝜌𝑟𝑟) 

𝜎𝜎𝑟𝑟2 
𝜎𝜎𝜂𝜂2 
𝜎𝜎𝑒𝑒𝑐𝑐,
2 𝜌𝜌𝑟𝑟 ,𝜌𝜌𝑐𝑐 

𝛾𝛾𝑟𝑟𝑰𝑰4 
𝛾𝛾𝜂𝜂𝑰𝑰234 
𝜮𝜮𝑐𝑐(𝜌𝜌𝑐𝑐) ⊗𝜮𝜮𝑟𝑟(𝜌𝜌𝑟𝑟) 

𝛾𝛾𝑟𝑟 
𝛾𝛾𝜂𝜂 
𝜌𝜌𝑟𝑟 ,𝜌𝜌𝑐𝑐 

4 Two-dimensional 
separable 
autoregressive 
spatial model 
defined as a G 
structure 

!r idv(repl), 
ar1v(column). ar1(row) 
residual idv(units) 

𝜎𝜎𝑟𝑟2𝑰𝑰4 
𝜎𝜎𝑐𝑐𝑐𝑐𝑐𝑐
2 𝜮𝜮𝑐𝑐(𝜌𝜌𝑐𝑐) ⊗𝜮𝜮𝑟𝑟(𝜌𝜌𝑟𝑟) 

𝜎𝜎𝑒𝑒2𝑰𝑰224 

𝜎𝜎𝑟𝑟2 
𝜎𝜎𝑐𝑐𝑟𝑟𝑐𝑐
2 ,𝜌𝜌𝑟𝑟 ,𝜌𝜌𝑐𝑐  

𝜎𝜎𝑒𝑒2 

𝛾𝛾𝑟𝑟𝑰𝑰4 
𝛾𝛾𝑐𝑐𝑟𝑟𝑐𝑐𝜮𝜮𝑐𝑐(𝜌𝜌𝑐𝑐) ⊗𝜮𝜮𝑟𝑟(𝜌𝜌𝑟𝑟) 
𝑰𝑰224 

𝛾𝛾𝑟𝑟 
𝛾𝛾𝑐𝑐𝑟𝑟𝑐𝑐 ,𝜌𝜌𝑟𝑟 ,𝜌𝜌𝑐𝑐 
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7.7 Variance model function qualifiers 
 
A consolidated model term is comprised of one or more covariance components, where a 
covariance component is a component of the model term to which a variance model function has 
been applied, see Section 2.1.8 and Table 7.2. All of the covariance components so far have been 
of the form 
vmfname(component) 
where vmfname is the variance model function name (in this font in first column of Table 
7.6) and component is a component in the model term. Two single covariance components are 
idv(repl) and ar1(row), see Table 7.2. 

A general form for a covariance component is 
vmfname(component qualifiers) 
where qualifiers is an optional list of one or more qualifiers to be applied to the variance structure 
being defined. A simple example of this is the extension of idv(repl) to idv(repl 

!INIT 0.65) which specifies an IDV structure of dimension 4 for replicates (NIN example 2) 
with an initial variance of 0.65 for the variance component associated with replicates under the 
sigma parameterization, or an initial variance component ratio of 0.65 for the variance component 
ratio associated with replicates under the gamma parameterization. 
Note that a variance structure of a particular dimension, ω say, can been specified directly as 
vmfname(ω qualifiers) 

For example, idv(3) defines the IDV variance structure of dimension 3, that is, 𝜎𝜎2𝑰𝑰3 , and 
idv(3 !INIT 1.1) specifies an initial value of 1.1 for the associated variance component 
under the sigma parameterization or variance ratio under the gamma parameterization. Likewise, 
ar1(10) specifies an autoregressive correlation structure (AR1) of order 10 and ar1(10 !INIT 
0.4) specifies this same structure with an initial autocorrelation parameter of 0.4. A simple 
variance component 𝜎𝜎2 would be defined as idv(1). Note that an integer value for the first 
argument is only valid in variance model functions associated with residual terms and str(). 

The full list of variance model function qualifiers is in Table 7.4. 

7.7.1  Parameter equality constraints !=s 
 
Parameters in a variance model can be set to be equal using the !=s qualifier (Table 7.4) where 
s is a string of letters and/or zeros. Positions in the string correspond to the position of the 
parameters in the list of parameters for the particular variance model:  
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Table 7.4: Variance model function qualifiers available in ASReml 

status qualifier description 

existing !=s s is a list of codes that link parameters sharing a common value; 
details in Section 7.8.2. 

New R4.2 !ARLIMIT [p]    where the correlation parameter in an ar1() model goes to the 
boundary (±0.999); the qualifier resets the boundary limit for the 
magnitude of the AR parameter to p (default 0.75). 

New R4 !COORD v provides coordinates for mapping the effects so that a spatial model 
can be applied to the effects. It is needed when the coordinates are 
not in the data file, for example 
exp(Trait !COORD 1 2.5 3.5 5 8), see Section 7.7.2 

existing !Fi is used with the own() variance model function, see Section 7.7.3 
The argument i is passed to your own program. 

existing !Gs s is a list of codes F, Z, P or U, one for each parameter, specifying 
whether 
the parameter is to be Fixed at its initial value, held at Zero (if legal), 
kept in the Parameter space or is Unrestricted, see Section 7.7.4 

New R4 !INIT v v is the list of initial values for the variance structure parameters. If. 
initial values can be obtained from the .msv, .rsv or .tsv file, 
they override these values, see Section 7.7.5 

existing !SUBSECTION f f is a factor in the data that breaks the section into independent 
subsections, with subsections having common variance parameters, 
see Section 7.7.6 

existing !Ts is used with the own() variance model function to set the parameter 
types, see Sections 7.7.7 and 7.7.3 

existing !USE t t is a compound model term component used elsewhere in the model; 
allows this variance structure and its parameters to be the same as 
that used for t, see Section 7.7.8 for an example. 

 
• all parameters with the same letter in the structure are constrained to be equal 
• 1-9, a-z and A-Z are all unique so that 61 equalities can be specified. 0 and . indicate 

that the corresponding parameter is not related to any other parameter. A colon generates a 
sequence, that is, a:e is the same as abcde 

• putting % as the first character in s makes the interpretation of codes absolute (so that they 
apply across structures) 

• putting * as the first character in s indicates that numbers are for repeat counts, A-Z are 
equality codes and are not different from a-z giving only 26 equalities. In this case only . 
represents unrelated to any other parameter. Thus !=*.3A2. is equivalent to !=.AAA.. 
or !=0aaa00 or !=BAAACD. Some users might find the contractions appealing, other users 
find an explicit definition less error prone. 

Examples are presented in Table 7.5.  

Important This syntax is limited in that it cannot apply relationships to simple variance 
components (random terms that do not have an explicit variance structure) or to implicit residual 
variance parameters. The !VCC syntax is required for these cases.  
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Table 7.5: Examples of constraining variance parameters in ASReml 

ASReml code action 

!=ABACBADCBA constrains all parameters corresponding to A to be equal; 
similarly for B and C. The fourth parameter symbol D is 
only associated with one parameter and can be replaced 
by 0 to indicate that it is unconstrained. This sequence 
applied to an unstructured (US) 4 4 matrix would make it 
banded, that is 
A  
B A 
C B A 
D C B A 

us(site !GP !=0A0AA0, 
!INIT .3 .1 .4 .1 .1 .3) 

this example defines a structure for the genotype by site 
interaction effects in a multi-environment trial with 3 
sites, in which the genotypes are independent random 
effects within sites but are correlated across sites with 
equal covariance. The initial value for the common 
covariance is 0.1. 

fa2(site !G4PZ3P4P 
!=00000000VVVV, 
!INIT 4*.9 0 3*.1 4*.2).gen 

a factor analytic model of order 2 for 4 sites, with equal 
variance across sites, is specified using this code. For the 
fak variance model functions, ASReml orders the 
parameters as the loadings followed by the specific variances. 
In this example, the first loading in the second factor is 
constrained to be equal to zero for identifiability. P 
restricts the magnitude of the loadings and the variances 
to be positive. 

xfa2(site !=VVVV00000000, 
#contracted form  
#!=*4V8. 
!4P4PZ3P, 
!INIT 4*0.2 4*1.2 0 3*0.3).gen 

code for a factor analytic model of order 2 for 4 sites, in 
which the specific variances are all equal. For the xfak 
variance model functions, ASReml orders the parameters 
as the specific variances followed by the loadings (note that 
this is different to the ordering for the fak variance 
model functions, see previous example). In this example, 
the first loading in the second factor is constrained to be 
equal to zero for identifiability. 

 
7.7.2 New R4 Ways to supply distances in one-dimensional  

metric-based models !COORD v 

Power models rely on the definition of distance for the associated term. Information for 
determining distances is supplied either implicitly by applying the variance model function to the 
fac() of the coordinate variables, for example 
expv(fac(X)) 

where X contains the positions, or explicitly with the !COORD qualifier, for example 
expv(Time !COORD x) 

where x is a vector of distances which has to be of length the number of levels of Time. For 
computational reasons it is useful to have the range of x between 5 and 50.  



7.7 Variance model function qualifiers 

126 
 

7.7.3 Your own program !Fi 
 

The OWN variance structure is a facility whereby (advanced) users may specify their own 
variance structure. This facility requires the user to supply a program MYOWNGDG that reads the 
current set of parameters, forms the G matrix and a full set of derivative matrices, and writes 
these to disk. Before each iteration, ASReml writes the own parameters to a file, runs MYOWNGDG 
(it assumes MYOWNGDG forms the G and derivative matrix) and then reads the matrices back in. 
An example of MYOWNGDG.f90 is distributed with ASReml. It duplicates the AR1 and AR2 
variance structures. The following job fits an AR2 structure using this program. 
Example of using the OWN structure  

rep 

blcol  

blrow  

variety 25  

yield 

barley.asd !skip 1 !OWN MYOWN.EXE  

y ∼ variety 
residual ar1(10).own2(15 !INIT .2 .1 !TRR !F1) 

The file written by ASReml has extension .own and appears as follows: 
15 2 1 

0.6025860D+000.1164403D+00 
This file was written by asreml for reading by your MYOWNGDG program  
asreml writes this file, runs your program and then reads 
shfown.gdg 
which it presumes has the following format: 
The first lines should agree with the top of this file  
specifying the order of the matrices ( 15)  
the number of variance structure parameters ( 2) 

and a control parameter you can specify ( 1). 
These are written in (3I5) format. They are followed by 
the list of variance parameters written in (6D13.7) format.  
Follow this with 3 matrices written in (6D13.7) format.  
These are to be each of    120 elements being lower triangle 
row-wise of the G matrix and its derivatives with respect 
to the parameters in turn. 

This file contains details about what is expected in the file written by your program. The filename 
used has the same basename as the job you are running with extension .own for the file written 
by ASReml and .gdg for the file your program writes. The type of the parameters is set with the 
!T qualifier, see Section 7.7.7, and the control parameter is set using the !F qualifier. 
 
- !F1 applies to the own variance model function. With own, the argument of !F is passed 

to the MYOWNGDG program as an argument the program can access. This is the mechanism 
that allows several OWN models to be fitted in a single run. 

- !Ts is used to set the type of the parameters. It is primarily used in conjunction with the own 
variance model function as ASReml knows the type of the parameters in other cases. The valid 
type codes are given in Section 7.7.7.  
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7.7.4 Parameter space constraints !Gs 
 

Each parameter has an associated constraint code which may be expressed explicitly with the 
qualifier !Gs, where s is the code. The following is a list of the possible constraint codes. 

 

code constraint type description 

P in the space P is the default in most cases and attempts to keep the parameter in 
the theoretical parameter space. It is activated when the update of a 
parameter would take it outside its space. For example, if an update 
would make a variance negative, the negative value is replaced by a 
small positive value. Under the !GP condition, repeated attempts to 
make a variance negative are detected and the value is then fixed at 
a small positive value. This is shown in the output in that the 
parameter will have the code B rather than P reported in the 
variance component table. 

U unrestricted U does not limit the updates to the parameter. This allows variance 
parameters to go negative and correlation parameters to exceed ±1. 
Negative variance components may lead to problems; the mixed 
model coefficient matrix may become non-positive definite. In this 
case the sequence of REML log-likelihoods may be erratic and you 
may need to experiment with starting values. 

F fixed F fixes the parameter at its starting value. 

H  fixed/in the 
 space 
New R4.2 

H holds the parameter for the first h iterations and then the code 
changed to P so that the parameter can be estimated. H has a default 
value of 3; the value can be set with the !FREEGH data line qualifier. 
This was introduced to facilitate calculation in GLM models when 
there is sometimes the need in the first few iterations to focus on 
there is sometimes the need in the first few iterations to focus on 
constructing the working variables. 

Z zero Z mainly applies to factor analytic models where specific variances 
and/or loadings may be fixed at zero. 

For structures with multiple parameters, the form !GXXXX can be used to specify F, P, U 
or Z for the parameters individually. A shorthand notation allows a repeat count before a 
code letter. Thus !GPPPPPPPPPPPPPPZPPPZP could be written as !G14PZ3PZP. 

For a US model, !GP makes ASReml attempt to keep the matrix positive definite. After each 
AI update, it extracts the eigenvalues of the updated matrix. If any are negative or zero, the AI 
update is discarded and an EM update is performed. If the highest LogL value relates to a non-
positive definite form for the matrix, ASReml may perform hundreds of iterations and never 
converge. Several forms of EM update are possible (see !EMFLAG) and the PXEM option will 
converge faster. Note that this option is not available with the nrm or grm functions. Note 
also, that the EM update is applied to all of the variance parameters in the particular US model 
and cannot be applied to only a subset of them. EM updates can be slow to converge and an 
alternative parameterization using a factor analysis may converge faster and give a more 
parsimonious parameterization. It may be that there is no variance associated with some levels 
of the matrix, in which case the dimension of the matrix should be reduced.  
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7.7.5 New R4 Initial values !INIT v 
 

Prior to Release 4 it was necessary to supply initial values for variance structure parameters except 
for the default IDV variance structure for a random model term, where the default initial variance 
(ratio) parameter value was 0.1. In Release 4, it is not generally necessary to supply initial values. 
In this release, ASReml provides starting or initial values for variance structure parameters based 
on knowledge of the phenotypic variance of the response. Occasionally these initial values are not 
adequate and more appropriate values will need to be supplied by the user. In this case the user 
may have good prior information that can be utilized in forming initial values. 

 
There are several ways to provide initial values. The particular choice will depend on how many 
values and other variance model function qualifiers are to be specified. The initial values can be 
provided in a number of ways: 

• in the variance structure specification, for example 

ar1(row !INIT 0.35) 

sets the initial value of the autocorrelation parameter for ar1(row) at 0.35; when this form is 
used, all of the values required by the structure must be specified 

 
• by modifying the .tsv or .msv file created in a preliminary run (Section 7.9.1) 

• by supplying an .rsv file using !CONTINUE, Section 7.9.2. 

Important points 
• when initial values are supplied using !INIT, there must be the correct number of values and 

they must be in the appropriate order, for example, for us() the initial values need to be 
supplied in the order lower triangle row-wise 

• for the gamma parameterization (Section 7.6), the variance structure parameters will be 
gammas; in this case the initial values for the gammas that are variance component ratios will 
be interpreted by ASReml as ratios.  
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7.7.6 About subsections !SUBSECTION f 
 

The !SUBSECTION qualifier provides an extension to the sat function of Section 7.3.2 for 
modelling the residual variance. It allows the case of modelling multiple independent sections of 
correlated observations with a common variance structure and common parameters within 
sections. The sections can be of different sizes and any homogeneous variance correlation model 
in Table 7.6 may be used for the variance structure. This gives an R structure of the form 
 

𝑹𝑹𝑣𝑣 = ⊗𝑖𝑖=1
𝑠𝑠 𝑹𝑹𝑣𝑣𝑖𝑖  where 𝑹𝑹𝑣𝑣𝑖𝑖 =  ⊗𝑗𝑗=1

𝑠𝑠𝑖𝑖 ∑𝑖𝑖𝑖𝑖(𝜙𝜙𝑖𝑖) 
 
so 𝑹𝑹𝑣𝑣𝑖𝑖  may have a direct sum structure with common parameters. Note that, !SUBSECTION is 
only available when the residual variance function is expressed in terms of one variance function. 
!SUBSECTION f performs two tasks similar to those described in Section 7.3.2, that is, defining 
a direct sum structure for the residual vector in a section, with the number of subsections in 
section i, 𝑠𝑠𝑖𝑖  , given by the number of levels of the factor f , and pruning the levels of the factor 
defining the variance structure within each section but allowing common variance parameters 
across sections. The data needs to be sorted in order of the variable f. The following code would 
specify a common AR1 structure across sections, assumed sorted into the appropriate order within 
the section variable, with an initial spatial autocorrelation parameter of 0.5 
residual ar1(units !INIT 0.5 !SUBSECTION section) 

If there was data sorted on date within plot then we might use 
residual exp(date !INIT 0.2 !SUBSECTION plot) 

to, specify a common EXP structure across plots. 

 
7.7.7 Parameter types !Ts 

 
Each variance parameter also has a type which may be set explicitly with the qualifier !Ts, where 
s is the type code. The following is a list of the possible parameter types and their code. They are 
usually set internally, are reported in the .tsv file and are used to define the parameter space. 

 
type code action if !GP is set 

variance V forced positive 
variance ratio G forced positive 
correlation R -1 < r < 1 
covariance C  
positive correlation P 0 < r < 1 
loading L  
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7.7.8 Equating variance structures !USE t 
 

In some plant breeding applications, it can be convenient to define a variance structure as the 
sum of two simpler terms. For example, given 1000 entries representing 50 related 
families, where relationships were derived from markers, the full relationship matrix 
(inverse) is dense. But it can be well approximated as the sum of a family component and a 
diagonal entry component. The reformulation gives a sparser (faster) formulation. But now we 
have two terms to interact with xfa1(dtrial) and both must have the same parameters. 
That is, instead of fitting 
xfa1(dTrial).grm3(entry) 
we fit 
xfa1(dTrial).grm1(family) xfa1(dTrial).grm2(entry) 

requiring both xfa1 terms have the same parameters. 

If there are only a few parameters, this can be achieved directly as follows: 
!ASSIGN QP !GPFPFP 
!ASSIGN QE !=%ABCDEFGH 
!ASSIGN QI !INIT 0.72631 0.000 .242713 0.000 .882465 .846305 .04419 .743393 
xfa1(dTrial $QP $QE $QI).grm1(family),  
xfa1(dTrial $QP $QE $QI).grm2(entry) 

 
However, for a larger term, the number of parameters required may exceed the available letters 
in the alphabet. In this case !VCC can be used: 
<DATAFILE NAME> !VCC 1 
... 
xfa1(dTrial $QP $QI).grm1(family),  
xfa1(dTrial $QP $QI).grm2(entry) 
21 29 !BLOCKSIZE 8 #parameters 21:28 are equal to parameters 29:36 pairwise 

 
A better option in this case is to use just one structure twice. The following code associates 
xfa1(dTrial) in xfa1(dTrial).giv2(entry) 
with xfa1(dTrial) in xfa1(dTrial).giv1(family), that is, both terms point to the 
one structure definition: 
xfa1(dTrial $QP $QI).grm1(family),  
xfa1(dTrial !USE xfa1(dTrial)).grm2(entry) 

 

Table 7.5 gives examples of constraining variance parameters in ASReml.  
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7.8 Setting relationships among variance structure 
parameters 

 
7.8.1 Simple relationships among variance structure parameters 
It is possible to define simple equality relationships between variance structure parameters using 
the !=s qualifier, see Section 7.8.2 and Table 7.4. More general relationships between variance 
structure parameters can be defined by placing the !VCC c qualifier on the data file definition line. 
Unlike the case of parameter equality, all parameters can be accessed and the linear relationship is 
not limited to equality. However, identification of the parameters is not as easy. Each variance 
structure parameter (𝛾𝛾_𝑖𝑖 ) is allocated a number i internally. These numbers are reported in the 
.tsv file and some are reported in the structure input section of the .asr file. These numbers 
are used to specify which parameters are to be constrained using this method. Warning: 
Unfortunately, the parameter numbers usually change if the model is changed. New R4.2 
Therefore an !OFFSET qualifier has been introduced that allows adjustment by addition of all the 
parameter numbers on a line and subsequent lines until reset. This enables relationships that are 
set up on one model to be easily modified if the variance model changes. We note that Section 
7.8.2 discusses an alternative way of setting up relationships using a linear model that sometimes 
makes it easier to change parameter numbers from model to another. 
• !VCC c specifies that there are c lines defining parameter relationships, 

• If !VCC is used a residual line is required and the parameter relationship lines must occur after 
this residual line, 

• each relationship is specified in a separate line of the form 
𝑖𝑖 𝑘𝑘 ∗  𝑣𝑣_𝑘𝑘  simple case 
𝑖𝑖 𝑘𝑘 ∗  𝑣𝑣_𝑘𝑘  …   𝑝𝑝 ∗  𝑣𝑣_𝑝𝑝 !BLOCKSIZE n general case 

In this specification, 
- i and k...p are the numbers of the specific variance model parameters and 𝑣𝑣_𝑚𝑚,𝑚𝑚 =  𝑘𝑘. . .𝑝𝑝 are 

the associated scale coefficients such that 𝛾𝛾_𝑚𝑚 × 𝑉𝑉_𝑚𝑚 is equal in value to 𝛾𝛾_𝑖𝑖, for example 
 
5 7 * 1 indicates that 𝛾𝛾_7 × 1 = 𝛾𝛾_5 i.e. parameter 7 is equal to parameter 5 
5 7 * .1 indicates that parameter 7 is a tenth of parameter 5 

- * indicates the presence of the scale coefficient 𝑣𝑣_𝑚𝑚 for the parameter 𝑚𝑚; 
- if the coefficient is 1 indicating parameter equality, the * 1 can be omitted, for example 5 7 

is a simplified coding of the first example 
- if the coefficient is -1 
𝑖𝑖 𝑘𝑘 ∗  −1 can be simplified to 
𝑖𝑖 −  𝑘𝑘 
for example, 5 -7 indicates that parameter 7 has the same magnitude but opposite sign to 
parameter 5 

- the !BLOCKSIZE n qualifier is used when constraints of the same form are required on 
blocks of n contiguous parameters, for example, 

21 29 !BLOCKSIZE 8 equates parameters 29 with 21, 30 with 22, ... 36 with 28.  
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- a variance structure parameter may only be included in one relationship line; to equate several 
components, put them all in one list on one line 
 

- where the relationship applies among simple model terms (those without an explicit variance 
structure, for example units), the model term name may be given rather than the parameter 
number. 

These examples are summarized in the following table: 
 

ASReml code action 

5 7 * 1 parameter 7 equals parameter 5 

5 7 simple coding for 5 7 * 1 

5 7 * .1 parameter 7 is a tenth of parameter 5 

5 -7 parameter 7 is the negative of parameter 5 

32 34 35 37 38 39 for a (4 × 4) US matrix given by parameters 31 . . . 40, the 
covariances (parameters 32 … 39) are forced to be equal 

21 29 !BLOCKSIZE 8 equates parameters 29 with 21, 30 with 22, ... 36 with 28. 

14 23 !OFFSET 10 sets offset 10 and equates parameter number 24 with 33. 

24 28 uses offset 10 and equates parameter number 34 with 38. 

40 50 !OFFSET 0 resets offset to 0 and equates parameter number 40 with 50. 

units -uni(check) parameter associated with model term uni(check) has the same 
magnitude but opposite sign to the parameter associated with model 
term units. 

 
7.8.2 Fitting linear relationships among variance structure 

parameters 
 

The user may wish to define relationships between particular variance parameters. For example, consider 
an experiment in which two or more separate trials are sown adjacent to one another at the same trial site, 
with trials sharing a common plot boundary. In this case it might be sensible to fit the same spatial 
parameters and error variances for each trial. In other situations it can be sensible to define the same 
variance structure over several model terms. ASReml 3 catered for equality and multiplicative 
relationships among variance parameters. In ASReml 4 linear relationships among variance structure 
parameters can be defined through a simple linear model and by supplying a design matrix for a set of 
parameters. The design matrix is supplied as an ascii file containing a row for each parameter in a set 
of contiguous parameters and a column for each new parameter. This design matrix is associated with the 
job through a statement after the residual model definition line(s), of the form: 

VCM parameter_number_list new filename 

where parameter_number_list is a list of parameters in the set, and can be abbreviated to first 
and last if all the intermediate parameters are in the set, new is the number of new parameters and 
filename is the name of the file containing the design matrix.   
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For example, the Wolfinger rats example involves modelling a 5 × 5 symmetric residual matrix. 
Wolfinger Rat data  
treat !A 
wt0 wt1 wt2 wt3 wt4 
subject * !=V0  
wolfrat.dat !skip 1 

wt0 wt1 wt2 wt3 wt4 ∼ Trait treat Trait.treat 
residual units.us(Trait) 
#uses 15 parameters numbered 5-19 generating symmetric matrix  
#5 
#6 7 
#8 9 10 
#11 12 13 14 
#15 16 17 18 19 

Wolfinger(1996) reports the fitting of the HuynhFeldt variance structure to this data. This 
structure is of the form 

𝝈𝝈𝑖𝑖𝑖𝑖 = 𝝈𝝈𝑛𝑛𝑛𝑛 
𝝈𝝈𝑖𝑖𝑖𝑖 = 1/2 (𝝈𝝈𝑛𝑛𝑛𝑛  + 𝝈𝝈𝑛𝑛𝑛𝑛  − 𝝈𝝈𝑛𝑛𝑛𝑛 𝑗𝑗 <  𝑖𝑖 ≤  𝑝𝑝 

In the rats example, the relationship between the original and new parameters is σ = Mσn 
where σ and σn are 15 × 1 and 6 × 1 vectors respectively, and M is a 15 × 6 matrix: 

 
1 0 0 0 0 0 
0.5 0.5 0 0 0 -1 
0 1 0 0 0 0 
0.5 0 0.5 0 0 -1 
0 0.5 0.5 0 0 -1 
0 0 1 0 0 0 
0.5 0 0 0.5 0 -1 
0 0.5 0 0.5 0 -1 
0 0 0.5 0.5 0 -1 
0 0 0 1 0 0 
0.5 0 0 0 0.5 -1 
0 0.5 0 0 0.5 -1 
0 0 0.5 0 0.5 -1 
0 0 0 0.5 0.5 -1 
0 0 0 0 1 0 

A way of fitting this model would be to put the matrix values in a file HuynhFeldt.vcm and 
replace the model specification lines by  

 
#Supply start values because raw SSP generates bad initial values  
#for HuynhFeldt structure because it does not fit well 
!ASSIGN HFvcm !GU !INIT 45 20 45 20 20 45 20 20 20 45 20 20 20 20 45 

wt0 wt1 wt2 wt3 wt4 ∼ Trait treat Trait.treat  
residual units.us(Trait $HFvcm) 
VCM 5 19 6 HuynhFeldt.vcm #parameters 5 to 19 explained in terms of 6 parameters  
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Note that if the user fits another model with differing numbers of variance structure parameters so 
that the variance structure parameters are renumbered, then all the user needs to do to continue 
with the same relationships is to change the parameter_number_list parameters on the VCM line. 
 
Important The VCM statement must be placed after any residual definition line(s). 

The new qualifier !DESIGN on the datafile line causes ASReml to write the design matrix, not 
including the response variable, to a .des file. It allows ASReml to create the design matrix 
required by the VCM process, see Section 7.8.2 above. For example, using a control file 
vcmdes.as containing 
Create VCM Design for H-F model  
Row * 
Col *  
Off 
Y !=V0 

vcmdes.asd !DESIGN 

Y ∼ Row and(Row,-0.5) and(Col,0.5) Off 

and a data file vcmdes.asd containing 
1 1 0 
2 1 -1 
2 2 0 
3 1 -1 
3 2 -1 
3 3 0 
4 1 -1 
4 2 -1 
4 3 -1 
4 4 0 
5 1 -1 
5 2 -1 
5 3 -1 
5 4 -1 
5 5 0 

then the file vcmdes.des will be generated which contains the values used in fitting the 
variance model for the HuynhFeldt model given in Section 7.8.2.  
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7.9 Ways to present initial values to ASReml 
 

In complex models, the Average Information algorithm can have difficulty maximising the REML 
log-likelihood when starting values are not reasonably close to the REML solution. ASReml has 
several internal strategies to cope with this problem. When the user needs to provide better 
starting values than those generated by ASReml three of the methods are: 

- inserting explicit initial values in the .as file (for example using !INIT), 

- doing a preliminary run to obtain .tsv or .msv files and then modifying the parametric 
information in one of those files, Section 7.9.1. 

- fitting a simpler model and using parameter values derived from the simpler model, through 
the .rsv file, Section 7.9.1. 

7.9.1 Using templates to set parametric information associated 
with variance structures using .tsv and .msv files 

ASReml 3 needed initial values for most variance structure parameters and allowed specification 
of parametric constraints and relationships (equality and scale) between parameters to be defined. 
This parametric information was interspersed within the structure definition. Release 4 allows an 
alternative way of specifying this parametric information, essentially constructing a table in a 
.tsv file, with the rows labelled by the specific parameters, columns for initial values and 
parametric constraints, and two columns that allow specification of relationships. This .tsv file 
is written by ASReml after the input file has been parsed; using * to represent initial values and 
setting !MAXITER 0 gives an easy construction. Once the .tsv file has been edited it can be 
read by inserting !TSV on the data file line. As an example 

Wolfinger Rat data  
treat !A 
wt0 wt1 wt2 wt3 wt4  
subject * !=V0 
wolfrat.dat !skip 1 !ASUV !MAXITER 0 
wt0 wt1 wt2 wt3 wt4 Trait treat Trait.treat  

1 2 0 
27 0 ID #error variance 
Trait 0 US * #* indicates generates initial values 

generates a .tsv file. 
# This .tsv file is a mechanism for resetting initial parameter values  
# by changing the values here and rerunning the job with !TSV 
# You may only change values in the last 4 fields.  
# Fields are: 
# GN, Term, Type, PSpace, Initial value, RP GN, RP_scale  
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5, "units.us(Trait);us(Trait)_1", G, P, 4.7911110 , 5, 1 
6, "units.us(Trait);us(Trait)_2", G, P, 5.0231481 , 6, 1 
7, "units.us(Trait);us(Trait)_3", G, P, 15.298889 , 7, 1 
8, "units.us(Trait);us(Trait)_4", G, P, 4.8438271 , 8, 1 
9, "units.us(Trait);us(Trait)_5", G, P, 11.264815 , 9, 1 
10, "units.us(Trait);us(Trait)_6", G, P, 26.095692 , 10, 1 
11, "units.us(Trait);us(Trait)_7", G, P, 4.6882715 , 11, 1 
12, "units.us(Trait);us(Trait)_8", G, P, 10.824074 , 12, 1 
13, "units.us(Trait);us(Trait)_9", G, P, 27.332887 , 13, 1 
14, "units.us(Trait);us(Trait)_10", G, P, 71.875403 , 14, 1 
15, "units.us(Trait);us(Trait)_11", G, P, 3.9083333 , 15, 1 
16, "units.us(Trait);us(Trait)_12", G, P, 10.292592 , 16, 1 
17, "units.us(Trait);us(Trait)_13", G, P, 34.137962 , 17, 1 
18, "units.us(Trait);us(Trait)_14", G, P, 69.287036 , 18, 1 
19, "units.us(Trait);us(Trait)_15", G, P, 141.97296 , 19, 1 

Parameter constraints and initial values can be changed by editing the values in the PSpace and 
Initial_value columns. Scale relationships can be introduced by noting that the full set of 
parameters can be related to a subset of parameters and scale factors such as 
parameter = subset parameter * scale 
or 
GN column parameter, RP_GN column parameter * RP_scale value 

where GN, RP_GN and RP_scale are columns in the .tsv file. The relationships generated 
by 
VCC 2 
5 6 8 11 15 7 * 2 9 * 2 12 * 2 16 * 2 #parameters 6 8 11 15 are equal to 5 
#7 9 12 16 are twice 5 
10 13 17 #parameters 13 and 17 are equal to 10 
#the full set of parameters 5-19 can therefore be expressed in terms of the subset parameters 
5, 10 ,14, 18 and 19 

can be introduced by editing the RN_GN and RP_scale columns. Some users would prefer to 
insert initial values into this .tsv file under the Initial_value column. As an example, the 
file below contains values based on using 4.8, 26, 70, 35 and 70 for parameters 5, 10, 14, 18 and 
19. The data values in the .tsv file become 
# GN, Term, Type, PSpace, Initial value, RP GN, RP scale. 
5, "units.us(Trait);us(Trait)_1", G, P, 4.8 , 5, 1.0000 
6, "units.us(Trait);us(Trait)_2", G, P, 4.8 , 5, 1.0000 
7, "units.us(Trait);us(Trait)_3", G, P, 9.6 , 5, 2.0000 
8, "units.us(Trait);us(Trait)_4", G, P, 4.8 , 5, 1.0000 
9, "units.us(Trait);us(Trait)_5", G, P, 9.6 , 5, 2.0000 
10, "units.us(Trait);us(Trait_6", G, P, 26 ,10, 1.0000 
11, "units.us(Trait);us(Trait_7", G, P, 4.8 , 5, 1.0000 
12, "units.us(Trait);us(Trait_8", G, P, 9.6 , 5, 2.0000 
13, "units.us(Trait);us(Trait)_9", G, P, 26 , 10, 1.0000  
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14, "units.us(Trait);us(Trait)_10", G, P, 70 , 14, 1.0000 
15, "units.us(Trait);us(Trait)_11", G, P, 4.8 , 5, 1.0000 
16, "units.us(Trait);us(Trait)_12", G, P, 9.6 , 5, 2.0000 
17, "units.us(Trait);us(Trait)_13", G, P, 26 , 10, 1.0000 
18, "units.us(Trait);us(Trait)_14", G, P, 35 , 18, 1.0000 
19, "units.us(Trait);us(Trait)_15", G, P, 70 , 19, 1.0000 

Sometimes users wish to rerun a job making changes to the final values, parametric constraints 
and relationships (equality and scale) between parameters. A file .msv is produced, similar to 
.tsv but containing final values that can be edited and used with !MSV. If !TSV (or !MSV) is 
specified ASReml will read the current (created with the same PART number) .tsv (or .msv) 
file. If there is no current .tsv (or .msv file), a non-current (produced from a different PART 
of the same job) .tsv (or .msv) file will be read. 

Alternative ways of specifying !TSV and !MSV are !CONTINUE 2 and !CONTINUE 3 and 
these qualifiers can be used as options on the command line as -C2 and -C3. Note that the 
constraints in the .tsv/.msv files take precedence over those in the .as file. 

 
7.9.2 Using estimates from simpler models 

 
Sometimes we have estimates from simpler models and we wish to reduce the need for the user 
to type in updated starting values. The !CONTINUE command line qualifier instructs ASReml to 
update initial parameter values from a .rsv file. When it is specified, ASReml first looks for a 
current .rsv file, and if found will read it and report the constructed initial values in the .tsv 
file. If there is no current .rsv file, it looks for the most recent noncurrent .rsv file and uses 
that to construct initial values. As discussed below, ’current’ means having the same ’basename’ 
and ’run number’. A non-current file will have the same ’basename’ but a different ’run number’. 
When reading the .rsv file, if the variance structure for a term has changed, ASReml will take 
results from some structures as supplying starting values for other structures. The transitions 
recognised are 
CORUH to FA1 and XFA1 
CORGH to US 
DIAG to CORUH 
DIAG to FA1  
DIAG to XFA1  
FAi to CORGH  
FAi to FAi+1  
FAi to US 
XFAi to XFAi+1  
XFAi to US 
US to XFA1, XFA2, XFA3 

Users may wish to keep output from a series of runs. This can be done by using !RENAME 1 
!ARG runnumber on the first line of the command file or alternatively -R1 basename runnumber 
on the command line. This ensures that the output from the various parts has runnumber appended 
to the base filename.   
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If an .rsv file does not exist for the particular runnumber you are running, ASReml will retrieve 
starting values from the most recent .rsv file formed by that job. You can, of course, copy an 
.rsv file building the new runnumber into its name so that ASReml uses that particular set of 
values. The .asr file keeps track of which .rsv files have been formed. If the user wishes to 
use different models with different runs then using !DOPART $1 and specifying the different 
models in different parts will achieve this aim. 
 
7.10 Default variance structures in ASReml 
 
There are default variance structures in ASReml that allow the linear mixed model to be specified 
more succinctly. IDV is the default variance structure for random model terms and for the residual 
error terms. For example 
- A will be interpreted as idv(A) 

- A.B will be interpreted as idv(A.B) 

- A.B.C will be interpreted as idv(A.B.C) 

- sat(Expt,1).A will be interpreted as sat(Expt,1).idv(A) 

- sat(Expt,1).A.B will be interpreted as sat(Expt,1).idv(A.B) 

- sat(Expt,1).A.B.C will be interpreted as sat(Expt,1).idv(A.B.C) 

In these cases the model term can be followed by an initial value and/or a parametric qualifier, 
for example 
- A 1 !GP is interpreted as idv(A !INIT 1 !GP) 

There is always a residual error term in the model but if it is not explicitly specified it is assumed 
to be idv(units) for univariate data and id(units).us(Trait) for multivariate data. 
If the consolidated model term definition is incomplete, that is, if some but not all of the 
components have a variance model function specified, the variance model functions idv() or 
id() will be applied to these components depending on the variance model functions specified. 
For example 
- idv(A).B will be interpreted as idv(A).id(B) 

- id(A).B will be interpreted as id(A).idv(B 

- id(A).B.C will be interpreted as id(A).idv(B.C) 

- idv(A).B.C will be interpreted as idv(A).id(B.C) 

Similarly, at the residual level as sat() cannot be converted into a variance function 

- sat(Expt,1).id(A).B will be interpreted as sat(Expt,1).id(A).idv(B)  
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- sat(Expt,1).id(A).B.C will be interpreted as sat(Expt,1).id(A).idv(B.C) 

- sat(Expt,1).idv(A).B.C will be interpreted as sat(Expt,1).idv(A).id(B.C) 

However, it is good practice to specify variance model functions for the components in model 
terms and we encourage the user to do this. ASReml will automatically add a common variance 
to consolidated model terms that are specified as correlation models for both R and G structures, 
for example, 
- id(A) will be converted to idv(A) 

- sat(Expt,1).id(units) will be converted to sat(Expt,1).idv(units) 

- id(A).ar1(B) will be converted to idv(A).ar1(B) 

- ar(A).ar1(B) will be converted to ar1v(A).ar1(B) 

- sat(Expt,1).id(A).ar1(B) will be converted to sat(Expt,1).idv(A).ar1(B) 

- sat(Expt,1).ar1(A).ar1(B) will be converted to sat(Expt,1).ar1v(A).ar1(B) 

Using NIN example 2 for demonstration (Section 7.5), a more succinct coding of the model 
definition would be 
yield ∼ mu variety !r repl  
residual units 

which would result in identical output to the original example. The model could be relaxed further 
to 
yield ∼ mu variety !r repl 

 
7.11 Variance model functions available in ASReml 

 
The full range of variance models, that is, correlation, homogeneous variance and heterogeneous 
variance models available in ASReml is presented in Table 7.6 which is located at the end of this 
chapter for easy access, see Section 7.12. This presents the variance structure name (in 
UPPERCASE), the corresponding variance model function name (in lowercase) used to 
associate the variance structure with the appropriate component  of a model term, a brief 
description, the algebraic form of the model and the number of associated variance structure 
parameters. 

 
The models span correlation (base) models (diagonal elements equal to 1 and correlations on the 
off diagonals), the extension of these to variance models (variances on the diagonals and 
covariance on the off diagonals), additional models that are parameterized as variance matrices 
rather than as correlation matrices and some special cases where the covariance structure is 
known except for the scale. 

See Sections 7.2 and 7.10 for important points to note in defining variance structures in ASReml. 
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7.11.1 Forming variance models from correlation models 
The variance function models presented under correlation models in Table 7.6 (id...matk) are 
used to specify the correlation models for the corresponding variance structures. The 
corresponding homogeneous and heterogeneous variance models are specified by appending v and 
h to the variance model function names respectively, and appending the corresponding variance 
parameters to the corresponding list of parameters. This convention holds for most models. It does 
not make sense to append v or h to the variance model function names for the heterogeneous 
variance models from diag...xfak. 
In summary: 

• to specify a correlation model, provide the variance model function name given in Table 7.6, 
for example, for a factor row 
exp(row) 

is an exponential correlation model with a single correlation parameter, 
• to specify an homogeneous variance model, append a v to the variance model function name, 

for example 
expv(row) 

is an exponential variance model with 2 parameters (correlation and variance), 
• to specify a heterogeneous variance model, append an h to the variance model function name, 

for example 
coruh(site) 

is a variance matrix with different variances for each site but the same correlation for all pairs 
of sites. 

 
Important See Section 7.4 for rules on combining variance models and Section 7.7.5 for 
important notes regarding initial values. 
 
7.11.2 Non singular variance matrices 
For REML estimation, ASReml needs to invert each variance matrix. For this it requires that the 
matrices be negative definite or positive definite. They must not be singular. Negative definite 
matrices will have negative elements on the diagonal of the matrix and/or its inverse. There are 
two exceptions: the XFA model which has been specifically designed to fit singular matrices 
(Thompson et al. 2003, Section 7.11.6), and singular relationship matrices described in Chapter 9. 
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If an estimated matrix comes too close to being singular, ASReml will stop iterating. 
 
Let 𝒙𝒙⊤𝑨𝑨𝑨𝑨 represent an arbitrary quadratic form for 𝒙𝒙 = (𝑥𝑥1, . . . , 𝑥𝑥𝑛𝑛)⊤. The quadratic form is said 
to be nonnegative definite if 𝒙𝒙⊤𝑨𝑨𝑨𝑨 ≥ 𝟎𝟎 for all 𝒙𝒙 𝜖𝜖 𝑹𝑹𝑛𝑛. If xTAx is nonnegative definite and in 
addition the null vector 0 is the only value of x for which 𝒙𝒙⊤𝑨𝑨𝑨𝑨 =  𝟎𝟎, then the quadratic form is 
said to be positive definite. Hence the matrix A is said to be positive definite if 𝒙𝒙⊤𝑨𝑨𝑨𝑨 is positive 
definite, see Harville (1997), pp 211. 

 
7.11.3 Notes on the variance models 
These notes provide additional information on the variance models defined in Table 7.6. 

 
• the IDH and DIAG models fit the same diagonal variance structure, 

• the CORGH and US are equivalent variance structures parameterised differently. Both may fail 
to converge if the starting values are not good and/or if the maximum REML likelihood occurs 
at parameter values outside the parameter space. The us model is likely to be better when the 
matrix is of order 3 or higher. 

• in CHOLk models 𝚺𝚺 =  𝑳𝑳𝑳𝑳𝑳𝑳⊤ where L is lower triangular with ones on the diagonal, D is 
diagonal and k is the number of non-zero off diagonals in L, 

• in CHOLkC models 𝚺𝚺 =  𝑳𝑳𝑳𝑳𝑳𝑳⊤ where L is lower triangular with ones on the diagonal, D is 
diagonal and k is the number of non-zero sub diagonal columns in L. This is somewhat similar 
to the factor analytic model. 

• in ANTEk models 𝚺𝚺−𝟏𝟏  =  𝑼𝑼𝑼𝑼𝑼𝑼⊤ where U is upper triangular with ones on the diagonal, D is 
diagonal and k is the number of non-zero off diagonals in U , 

• the CHOLk and ANTEk models are equivalent to the US structure, that is, the full variance 
structure, when k is ω − 1, 

• initial values for US, CHOL and ANTE structures are given in the form of a US matrix which 
is specified lower triangle row-wise, viz  
 

�
𝜎𝜎11
𝜎𝜎21 𝜎𝜎22
𝜎𝜎31 𝜎𝜎32 𝜎𝜎33

�’ 

 
that is, initial values are given in the order, 1 =  𝜎𝜎11  

, 2 =  𝜎𝜎21, 3 =  𝜎𝜎22  
, . .. 

 
• the US model is associated with several special features of ASReml. There is a process to update 

its values by EM (see !EMFLAG rather than AI when its AI updates make the matrix non positive 
definite. Also, when used in the R structure for multivariate data, ASReml automatically 
recognises patterns of missing values in the responses (see Chapter 8).  
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7.11.4 Notes on Matérn 
The Matérn class of isotropic covariance models is now described. ASReml uses an extended  class 
which accommodates geometric anisotropy and a choice of metrics for random fields observed in 
two dimensions. This extension, described in detail in Haskard (2006), is given by 

𝜌𝜌(𝒉𝒉;𝜙𝜙 ) = 𝜌𝜌𝜌𝜌 (𝑑𝑑(𝒉𝒉;  𝛿𝛿,𝛼𝛼, 𝜆𝜆);  𝜙𝜙, 𝜈𝜈) 
where 𝒉𝒉 = �ℎ𝑥𝑥, ℎ𝑦𝑦�

⊤
 is the spatial separation vector, (𝛿𝛿,𝛼𝛼) governs geometric anisotropy, (𝜆𝜆) 

specifies the choice of metric and (𝜙𝜙, 𝜈𝜈) are the parameters of the Matérn correlation function. The 
function is 

𝜌𝜌𝜌𝜌(𝑑𝑑;𝜙𝜙, 𝑣𝑣) = {2𝑣𝑣−1Γ(𝑣𝑣)}−1  �𝑑𝑑
𝜙𝜙

 �
𝑣𝑣
𝐾𝐾𝑣𝑣  �𝑑𝑑

𝜙𝜙
 �,  (7.1) 

where 𝜙𝜙 > 0 is a range parameter, 𝜈𝜈 > 0 is a smoothness parameter, Γ(∙) is the gamma function, 
𝐾𝐾𝜈𝜈(∙) is the modified Bessel function of the third kind of order 𝜈𝜈 (Abramowitz and Stegun, 1965, 
section 9.6) and 𝑑𝑑 is the distance defined in terms of X and Y axes: ℎ𝑥𝑥  = 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗; 
ℎ𝑦𝑦 = 𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑗𝑗; 𝑠𝑠𝑥𝑥 = 𝑐𝑐𝑐𝑐𝑐𝑐(𝛼𝛼)ℎ𝑥𝑥 + 𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼)ℎ𝑦𝑦; 𝑠𝑠𝑦𝑦 = 𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼)ℎ𝑥𝑥 − 𝑐𝑐𝑐𝑐𝑐𝑐(𝛼𝛼)ℎ𝑦𝑦;𝑑𝑑(𝛿𝛿|𝑠𝑠𝑥𝑥|𝜆𝜆 + |𝑠𝑠𝑦𝑦|𝜆𝜆/𝛿𝛿)1/𝜆𝜆 . 
 
For a given 𝜈𝜈, the range parameter 𝜙𝜙 affects the rate of decay of 𝜌𝜌(∙) with increasing 𝑑𝑑. The 
parameter ν > 0 controls the analytic smoothness of the underlying process 𝒖𝒖𝑠𝑠, the process being 
[𝜈𝜈 ] − 1 times mean-square differentiable, where [𝜈𝜈 ] is the smallest integer greater than or equal 
to ν (Stein, 1999, page 31). Larger 𝜈𝜈 correspond to smoother processes. ASReml uses numerical 
derivatives for ν when its current value is outside the interval [0.2,5]. 
 
When 𝜈𝜈 = 𝑚𝑚 + 1

2
 with 𝑚𝑚 a non-negative integer, 𝜌𝜌𝜌𝜌 (·) is the product of 𝑒𝑒𝑒𝑒𝑒𝑒(−𝑑𝑑/𝜙𝜙) and a 

polynomial of degree 𝑚𝑚 in 𝑑𝑑. Thus 𝜈𝜈 = 1
2
 yields the exponential correlation function, 

𝜌𝜌𝜌𝜌 (𝑑𝑑;𝜙𝜙, 1
2
 )  = 𝑒𝑒𝑒𝑒𝑒𝑒(𝑑𝑑/𝜙𝜙), and 𝜈𝜈 = 1 yields Whittle’s elementary correlation function, 

𝜌𝜌𝜌𝜌 (𝑑𝑑;𝜙𝜙, 1)  =  (𝑑𝑑/𝜙𝜙)𝐾𝐾1 (𝑑𝑑/𝜙𝜙) (Webster and Oliver, 2001). 
When ν = 1.5 then 

𝜌𝜌𝜌𝜌(𝑑𝑑;𝜙𝜙, 1.5) = 𝑒𝑒𝑒𝑒𝑒𝑒(−𝑑𝑑/𝜙𝜙)(1 + 𝑑𝑑/𝜙𝜙) 
which is the correlation function of a random field which is continuous and once differentiable. This has 
been used recently by Kammann and Wand (2003). As 𝜈𝜈 → ∞ then 𝜌𝜌𝑀𝑀 (∙) tends to the gaussian correlation 
function. 
 
The final metric parameter λ is not estimated by ASReml; it has default value of 2 for Euclidean 
distance. Setting λ = 1 provides the cityblock metric, which together with 𝜈𝜈 = 0.5 models a 
separable AR1 × AR1 process. Cityblock metric may be appropriate when the dominant spatial 
processes are aligned with rows/columns as occurs in field experiments. Geometric anisotropy is 
discussed in most geostatistical books (Webster and Oliver, 2001, Diggle et al., 2003) but rarely 
are the anisotropy angle or ratio estimated from the data. Similarly, the smoothness parameter 𝜈𝜈 is 
often set a-priori (Kammann and Wand, 2003, Diggle et al., 2003). However, Stein (1999) and 
Haskard (2006) demonstrate that 𝜈𝜈 can be reliably estimated even for modest sized data sets, 
subject to caveats regarding the sampling design.  
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The syntax for the Matérn class in ASReml is given by MATk where k is the number of parameters 
to be specified; the remaining parameters take their default values. Use the !G qualifier to control 
whether a specified parameter is estimated or fixed. The order of the parameters in ASReml, with 
their defaults, is (𝜙𝜙, 𝜈𝜈 = 0.5, 𝛿𝛿 = 1,𝛼𝛼 = 0, 𝜆𝜆 = 2). For example, if we wish to fit a Matérn model 
with only 𝜙𝜙 estimated and the other parameters set at their defaults then we use MAT1. MAT2 
allows 𝜈𝜈 to be estimated or fixed at some other value, for example 
mat2(fac(xcoord,ycoord) !INIT 0.2 1.0 !GPF ). 

The parameters 𝜙𝜙 and 𝜈𝜈 are highly correlated so it may be better to manually cover a grid of 𝜈𝜈 
values. 

We note that there is non-uniqueness in the anisotropy parameters of this metric 𝑑𝑑(∙) since 
inverting 𝛿𝛿 and adding 𝜋𝜋

2
 to 𝛼𝛼 gives the same distance. This non-uniqueness can be removed by 

considering 0 ≤ 𝛼𝛼 < 𝜋𝜋
2

 and δ > 0, or by considering 0 ≤ 𝛼𝛼 < 𝜋𝜋 and either 0 < 𝛿𝛿 ≤ 1 or 𝛿𝛿 ≥ 1. 
With 𝜆𝜆 = 2, isotropy occurs when 𝛿𝛿 = 1, and then the rotation angle 𝛼𝛼 is irrelevant: correlation 
contours are circles, compared with ellipses in general. With 𝜆𝜆 = 1, correlation contours are 
diamonds. 

 
7.11.5 Notes on power models 
Power models rely on the definition of distance for the associated term, for example, 
- the distance between time points in a one-dimensional longitudinal analysis, 

- the spatial distance between plot coordinates in a two-dimensional field trial analysis. 

Information for determining distances is supplied either implicitly by applying the model to the 
fac() of the coordinate variables, or explicitly with the !COORD qualifier. 
- For one dimensional cases, either 

• expv(fac(X)) where X contains the positions, 

• expv(Trait !COORD x) where x is a vector of positions. 

- In two directions (IEXP, IGAU, IEUC, AEXP, AGAU, MAT𝑛𝑛) 
• For a 𝑮𝑮 structure relating to the model term fac(𝑥𝑥,𝑦𝑦), use fac(𝑥𝑥,𝑦𝑦). For example 

⋮ 
yield ∼ mu ...!r ieucv(fac(xcoord,ycoord !INIT 0.7 1.3) 
 

7.11.6 Notes on Factor Analytic models 
FAk, FACVk, RRk and XFAk are different parameterizations of the factor analytic model in 
which Σ is modelled as 𝚺𝚺 = 𝚪𝚪𝚪𝚪⊤  +  𝚿𝚿 where 𝜞𝜞(𝜔𝜔×𝑘𝑘) is a matrix of loadings on the covariance 
scale and 𝚿𝚿 is a diagonal vector of specific variances. See Smith et al. (2001) and Thompson et 
al. (2003) for examples of factor analytic models in multi-environment trials.   
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The general limitations are 

- that Ψ may not include zeros except in the XFAk and RRk formulations 

- in the XFA form some or all of the diagonal elements of 𝚿𝚿 may be zero and in the RR (reduced 
rank) form, all of the diagonal elements of 𝚿𝚿 are zero. 

- constraints are required in Γ for 𝑘𝑘 > 1 for identifiability. These are automatically set unless 
the user formally constrains one parameter in the second column, two in the third column, etc. 

- the total number of estimated parameters (𝑘𝑘𝑘𝑘 + 𝜔𝜔 − 𝑘𝑘(𝑘𝑘 − 1)/2) may not exceed 𝜔𝜔(𝜔𝜔 + 1)/2.  

In FAk models the variance-covariance matrix 𝚺𝚺(𝜔𝜔×𝜔𝜔) is modelled on the correlation scale as  
𝚺𝚺 = 𝑫𝑫𝑫𝑫𝑫𝑫, where 
- 𝑫𝑫(𝜔𝜔×𝜔𝜔) is diagonal such that 𝑫𝑫𝑫𝑫 = diag (𝚺𝚺) , 

- 𝑪𝑪(𝜔𝜔×𝜔𝜔) is a correlation matrix of the form 𝑭𝑭𝑭𝑭⊤ + 𝑬𝑬 where 𝑭𝑭(𝜔𝜔×𝑘𝑘) is a matrix of loadings on 
the correlation scale and E is diagonal and is defined by difference, 

- the parameters are specified in the order loadings for each factor (F) followed by the variances 
(diag (Σ)); when k is greater than 1, constraints on the elements of F are required, see Table 
7.5, 

FACVk models (CV for covariance) are an alternative formulation of FA models in which Σ is 
modelled as 𝚺𝚺 = 𝚪𝚪𝚪𝚪⊤ + 𝚿𝚿 where 𝚪𝚪(𝜔𝜔×𝑘𝑘) is a matrix of loadings on the covariance scale and Ψ 
is diagonal. The parameters in FACV 
- are specified in the order loadings (Γ) followed by variances (Ψ); when 𝑘𝑘 is greater than 1, 

constraints on the elements of Γ are required, see Table 7.5, 

- are related to those in FA by 𝚪𝚪 = 𝑫𝑫𝑫𝑫 and 𝚿𝚿 = 𝐃𝐃𝐃𝐃𝐃𝐃, 
 
XFAk (X for extended) is the third form of the factor analytic model and has the same 
parameterisation as for FACV, that is, 𝚺𝚺 = 𝚪𝚪𝚪𝚪⊤ +  𝚿𝚿. However, XFA models 
- have parameters specified in the order diag(Ψ) and vec(Γ); when 𝑘𝑘 is greater than 1, 

constraints on the elements of  Γ are required, see Table 7.5, 
- may not be used in R structures, 
- return the factors as well as the effects. 
- permit some elements of Ψ to be fixed to zero, 

- are computationally faster than the FACV formulation for large problems when 𝑘𝑘 is much 
smaller than 𝜔𝜔. 

With multiple factors, some constraints are required to maintain identifiability. Traditionally, this 
has simply been to set the leading loadings of new factors to zero. Loadings then need to be 
rotated to orthogonality. If no loadings are constrained, ASReml will rotate the loadings to 
orthogonality, after holding the loadings of lower factors fixed for a few iterations. The 
orthogonalization process occurs at the beginning of the iteration (so the final returned values 
have not been formally rotated).   
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New R4.2 The xfak() variance structure model function can fit reduced rank variance 
structures by setting specific variances to zero. A new form of this function, rrk(), is available 
which automatically sets all the specific variances (𝚿𝚿) to zero. rrk() is formally just a synonym 
for xfak() which means that if you explicitly supply initial values, you need to supply the 𝚿𝚿 
values as zero. An almost equivalent way of fitting an xfak() structure is to fit an rrk() term 
and a diag() term, for example rrk(trial).entry + diag(trial).entry in place 
of xfak() (trial).entry. The rr+diag form may run faster when there is a relationship 
matrix associated with entry. 
 
Finding the REML solutions for multifactor Factor Analytic models can be difficult. The first 
problem is specifying initial values. When using !CONTINUE and progressing XFA(k) to 
XFA(k + 1), ASReml 3 initialises the factor 𝑘𝑘 + 1 at √(𝚿𝚿 ∗ 0.2), changing the sign of the 
(relatively) largest loading to negative. One strategy which sometimes works in this context is to 
hold the previously estimated factor loadings fixed for a few iterations so that the factor 𝑘𝑘 +  1 
initially aims to explain variation previously incorporated in 𝝍𝝍. Then allow all loadings to be 
updated in the remaining rounds. A second problem, at present unresolved but somewhat 
improved, is that sometimes the LogL rises to a relatively high value and then drifts away. 
  
In an attempt to make the process easier, these two processes have been linked as an additional 
meaning for the !AILOADING 𝑛𝑛 qualifier. When fitting 𝑘𝑘 factors with 𝑁𝑁 > 𝑘𝑘, the first 𝑘𝑘 − 1 
loadings are held fixed (no rotation) for the first 𝑘𝑘 iterations. Then for iterations 𝑘𝑘 + 1 to 𝑛𝑛, 
loadings vectors are updated in pairs, and rotated. If !AILOADING is not set by the user and the 
model is an upgrade from a lower order XFA, !AILOADING is set to 4. 

 
The problem of XFA loadings going off-scale has been reduced by adding a variable penalty to 
the loading part of the AI matrix, see !AIPENALTY Table 5.5. 
 
It is not unusual for users to have trouble comprehending and fitting extended factor analytic 
models, especially with more than two factors. Two examples are developed in a separate 
document available on request.  
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7.12 Variance models available in ASReml 
Table 7.6: Details of the variance models available in ASReml 

variance 
structure 
name 

description algebraic form number of parameters† 

variance 
model 
function 
name 

  corr hom 
variance 

het 
variance 

correlation models     
One-dimensional, equally spaced    
ID      
Id identity 𝐶𝐶𝑖𝑖𝑖𝑖 = 1,𝐶𝐶𝑖𝑖𝑖𝑖 = 0, 𝑖𝑖 ≠  𝑗𝑗 0 1 𝜔𝜔  

AR1      
ar1 1st order 

autoregressive 
𝐶𝐶𝑖𝑖𝑖𝑖  =  1,𝐶𝐶𝑖𝑖+1,𝑖𝑖  = 𝜙𝜙1 
𝐶𝐶𝑖𝑖𝑖𝑖  

= 𝜙𝜙1 
𝐶𝐶𝑖𝑖−1  

, 𝑗𝑗 , 𝑖𝑖 >  𝑗𝑗 + 1 
|𝜙𝜙1| < 1 

1 2 1 + 𝜔𝜔 

AR2      
ar2 2nd order 

autoregressive 
𝐶𝐶𝑖𝑖𝑖𝑖  =  1, 
𝐶𝐶𝑖𝑖+1,𝑖𝑖 = 𝜙𝜙1 /(1 − 𝜙𝜙2 ) 
𝐶𝐶𝑖𝑖𝑖𝑖 =  𝜙𝜙1 𝐶𝐶𝑖𝑖−1,𝑗𝑗 + 𝜙𝜙2 𝐶𝐶𝑖𝑖−2,𝑗𝑗, 𝑖𝑖 > 𝑗𝑗 + 1 
|𝜙𝜙1| < (1 −  𝜙𝜙2 ), |𝜙𝜙2 | < 1 

2 3 2 + 𝜔𝜔 

AR3      
ar3 3rd order 

autoregressive 
𝐶𝐶𝑖𝑖𝑖𝑖 = 1,Ω = 1 − 𝜙𝜙2 − 𝜙𝜙3 (𝜙𝜙1 + 𝜙𝜙3 ), 
𝐶𝐶𝑖𝑖+1,𝑖𝑖 = (𝜙𝜙1 + 𝜙𝜙2𝜙𝜙3 )/Ω, 

3 4 3 + 𝜔𝜔 

  𝐶𝐶𝑖𝑖+2,𝑖𝑖 = (𝜙𝜙1(𝜙𝜙1 + 𝜙𝜙3 ) + 𝜙𝜙2(1 − 𝜙𝜙2))/Ω, 
𝐶𝐶𝑖𝑖𝑗𝑗 = 𝜙𝜙1𝐶𝐶𝑖𝑖−1,𝑗𝑗 + 𝜙𝜙2𝐶𝐶𝑖𝑖−2,𝑗𝑗 + 𝜙𝜙3𝐶𝐶𝑖𝑖−3,𝑗𝑗 𝑖𝑖 > 𝑗𝑗 + 2 
|𝜙𝜙1| < (1 −  𝜙𝜙2 ), |𝜙𝜙2 | < 1, |𝜙𝜙3| < 1 

 

SAR      
sar1 symmetric 

autoregressive 
𝐶𝐶𝑖𝑖𝑖𝑖 = 1, 
𝐶𝐶𝑖𝑖+1,𝑖𝑖 = 𝜙𝜙1/(1 + 𝜙𝜙12/4) 
𝐶𝐶𝑖𝑖+1,𝑖𝑖 = 𝜙𝜙1/(1 + 𝜙𝜙12/4) 

1 2 1 + 𝜔𝜔 

  𝐶𝐶𝑖𝑖𝑗𝑗 = 𝜙𝜙1𝐶𝐶𝑖𝑖−1,𝑗𝑗 − 𝜙𝜙1
2/4 𝐶𝐶𝑖𝑖−2,𝑗𝑗, 𝑖𝑖 > 𝑗𝑗 + 1  

|𝜙𝜙1| < 1 
 

SAR2      
sar2 constrained 

autoregressive 
3 used for 
competition 

as for AR3 using 
𝜙𝜙1 = 𝛾𝛾1 + 2𝛾𝛾2, 
𝜙𝜙2 = −𝛾𝛾2(2𝛾𝛾1 + 𝛾𝛾2), 
𝜙𝜙3 = 𝛾𝛾1𝛾𝛾22, 

2 3 2 + 𝜔𝜔 
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Table 7.6 Details of the variance models available in ASReml 

variance 
structure name 

description algebraic form number of parameters† 

variance 
model 
function 
name 

  corr hom 
variance 

het 
variance 

      

MA1      
ma1 1st order moving 

average 
𝐶𝐶𝑖𝑖𝑖𝑖  =  1,  
𝐶𝐶𝑖𝑖+1,𝑖𝑖  = 𝜃𝜃1/(1 + 𝜃𝜃12) 
𝐶𝐶𝑗𝑗𝑗𝑗  

= 0, 𝑗𝑗 > 𝑖𝑖 + 2 
|𝜃𝜃1| < 1 
Some authors replace the moving 
average 𝜃𝜃𝑖𝑖 by −𝜃𝜃𝑖𝑖 

1 2 1 + 𝜔𝜔 

MA2      
ma2 2nd order 𝐶𝐶𝑖𝑖𝑖𝑖  =  1, 2 3 2 + 𝜔𝜔 

 moving average 𝐶𝐶𝑖𝑖+1,𝑖𝑖 = −𝜃𝜃1 /(1− 𝜃𝜃2)/(1 + 𝜃𝜃1 
2 + 𝜃𝜃22) 

𝐶𝐶𝑖𝑖+2,𝑖𝑖 = −𝜃𝜃2 /(1 + 𝜃𝜃12 + 𝜃𝜃22) 
𝐶𝐶𝑗𝑗𝑗𝑗 = 0, 𝑗𝑗 > 𝑖𝑖 + 2 
𝜃𝜃2 ± 𝜃𝜃1 < 1 
|𝜃𝜃1| < 1, |𝜃𝜃2 | < 1 

 

ARMA      
arma autoregressive  𝐶𝐶𝑖𝑖𝑖𝑖 = 1, 2 3 2 + 𝜔𝜔 
 moving average 𝐶𝐶𝑖𝑖+1,𝑖𝑖 = (𝜃𝜃 − 𝜙𝜙)(1 − 𝜃𝜃𝜃𝜃)(1 + 𝜃𝜃2 − 2𝜃𝜃𝜃𝜃) 

𝐶𝐶𝑗𝑗𝑗𝑗 = 𝜙𝜙𝐶𝐶𝑗𝑗−1,𝑖𝑖, 𝑗𝑗 > 𝑖𝑖 + 1 
|𝜃𝜃| < 1, |𝜙𝜙| < 1 

 

CORU      
coru uniform 

correlation 
𝐶𝐶𝑖𝑖𝑖𝑖 = 1,𝐶𝐶𝑖𝑖𝑖𝑖 = 𝜙𝜙, 𝑖𝑖 ≠ 𝑗𝑗 
 

1 2 1 + 𝜔𝜔 

CORB      
corb banded 

correlation 
𝐶𝐶𝑖𝑖𝑖𝑖 = 1 
𝐶𝐶𝑖𝑖+𝑗𝑗,𝑖𝑖 = 𝜙𝜙𝑗𝑗, 1 ≤ 𝑗𝑗 ≤ 𝜔𝜔 − 1 
|𝜙𝜙𝑖𝑖𝑖𝑖| < 1  

𝜔𝜔 − 1 𝜔𝜔 2𝜔𝜔 − 1 

CORG      
corg general 

correlation 
CORGH=US 

𝐶𝐶𝑖𝑖𝑖𝑖 = 1 
𝐶𝐶𝑖𝑖𝑖𝑖 = 𝜙𝜙𝑖𝑖𝑖𝑖 , 𝑖𝑖 ≠ 𝑗𝑗 
|𝜙𝜙𝑖𝑖𝑖𝑖| < 1 

𝜔𝜔(𝜔𝜔 − 1)
2

 
 

𝜔𝜔(𝜔𝜔 − 1)
2

+ 1 
𝜔𝜔(𝜔𝜔 − 1)

2
 

+𝜔𝜔 
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Table 7.6 Details of the variance models available in ASReml 

variance 
structure 
name 

description algebraic form number of parameters† 

variance 
model 
function 
name 

  corr hom 
variance 

het 
variance 

      

One-dimensional unequally spaced 
EXP      
exp exponential 𝐶𝐶𝑖𝑖𝑖𝑖 = 1,  

𝐶𝐶𝑖𝑖𝑖𝑖 = 𝜙𝜙�𝑥𝑥𝑖𝑖−𝑥𝑥𝑗𝑗�, 𝑖𝑖 ≠  𝑗𝑗 
𝑥𝑥𝑖𝑖 are 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
0 < 𝜙𝜙 < 1 

1 2 1 + 𝜔𝜔  

GAU      
gau gaussian 𝐶𝐶𝑖𝑖𝑖𝑖 = 1,  

𝐶𝐶𝑖𝑖𝑖𝑖 = 𝜙𝜙(𝑥𝑥𝑖𝑖−𝑥𝑥𝑥𝑥)2 , 𝑖𝑖 ≠  𝑗𝑗 
𝑥𝑥𝑖𝑖 are 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
0 < 𝜙𝜙 < 1 

1 2 1 + 𝜔𝜔 

Two-dimensional irregularly spaced 
  𝒙𝒙 and 𝒚𝒚 vectors of coordinates 

𝜃𝜃𝑖𝑖𝑖𝑖 = min (𝑑𝑑𝑖𝑖𝑖𝑖/𝜙𝜙1, 1) 
𝑑𝑑𝑖𝑖𝑖𝑖  is euclidean distance 

   

IEXP      
iexp isotropic 

exponential 
𝐶𝐶𝑖𝑖𝑖𝑖  =  1, 
𝐶𝐶𝑖𝑖𝑖𝑖 =  𝜙𝜙�𝑥𝑥𝑖𝑖−𝑥𝑥𝑗𝑗|+|𝑦𝑦𝑖𝑖−𝑦𝑦𝑗𝑗�, 𝑖𝑖 ≠ 𝑗𝑗 
0 < 𝜙𝜙 < 1 

1 2 1 + 𝜔𝜔 

IGAU      
igau isotropic 

gaussian 
𝐶𝐶𝑖𝑖𝑖𝑖  =  1,  
𝐶𝐶𝑖𝑖𝑖𝑖 = 𝜙𝜙�𝑥𝑥𝑖𝑖−𝑥𝑥𝑗𝑗�

2+�𝑦𝑦𝑖𝑖−𝑦𝑦𝑗𝑗�
2
, 𝑖𝑖 ≠ 𝑗𝑗 

0 < 𝜙𝜙 < 1 

1 2 1 + 𝜔𝜔 

IEUC      
ieuc isotropic 

euclidian 
𝐶𝐶𝑖𝑖𝑖𝑖  =  1, 

𝐶𝐶𝑖𝑖𝑖𝑖 = 𝜙𝜙
��𝑥𝑥𝑖𝑖−𝑥𝑥𝑗𝑗�

2+�𝑦𝑦𝑖𝑖−𝑦𝑦𝑗𝑗 �
2

, 𝑖𝑖 ≠ 𝑗𝑗  
0 < 𝜙𝜙 < 1 

1 2 1 + 𝜔𝜔 

LVR      
lvr linear variance 𝐶𝐶𝑖𝑖𝑖𝑖 = (1 − 𝜃𝜃𝑖𝑖𝑖𝑖) 

0 < 𝜙𝜙1 
1 2 1 + 𝜔𝜔 
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Table 7.6 Details of the variance models available in ASReml 

variance 
structure 
name 

description algebraic form number of parameters† 

variance 
model 
function 
name 

  corr hom 
variance 

het 
variance 

SPH      
sph spherical 𝐶𝐶𝑖𝑖𝑖𝑖 = 1 −

3
2
𝜃𝜃𝑖𝑖𝑖𝑖 +

1
2
𝜃𝜃𝑖𝑖𝑖𝑖3  

0 < 𝜙𝜙1 

1 2 1 + 𝜔𝜔  

CIR      
cir circular (Webster & 

Oliver, 2001,p113) 
𝐶𝐶𝑖𝑖𝑖𝑖 = 1,  

−
2
𝜋𝜋

(𝜃𝜃𝑖𝑖𝑖𝑖�1 − 𝜃𝜃𝑖𝑖𝑖𝑖2 + sin−1 𝜃𝜃𝑖𝑖𝑖𝑖) 

0 < 𝜙𝜙 < 1 

1 2 1 + 𝜔𝜔 

AEXP      
aexp anisotropic 

exponential 
𝐶𝐶𝑖𝑖𝑖𝑖  =  1, 
𝐶𝐶𝑖𝑖𝑖𝑖 =  𝜙𝜙1�𝑥𝑥𝑖𝑖−𝑥𝑥𝑗𝑗�𝜙𝜙2

�𝑦𝑦𝑖𝑖−𝑦𝑦𝑗𝑗� 
0 < 𝜙𝜙1 < 1, 0 < 𝜙𝜙2 < 1 

2 3 2 + 𝜔𝜔 

AGAU      
agau anisotropic gaussian 𝐶𝐶𝑖𝑖𝑖𝑖  =  1,  

𝐶𝐶𝑖𝑖𝑖𝑖 = 𝜙𝜙1�𝑥𝑥𝑖𝑖−𝑥𝑥𝑗𝑗�
2
𝜙𝜙2
�𝑦𝑦𝑖𝑖−𝑦𝑦𝑗𝑗�

2

 
0 < 𝜙𝜙1 < 1, 0 < 𝜙𝜙2 < 1 

2 3 2 + 𝜔𝜔 

MAT𝑘𝑘      
mat𝑘𝑘 Matérn with first 

1 ≤ 𝑘𝑘 ≤ 5 
parameters specified 
by the user 

𝐶𝐶𝑖𝑖𝑖𝑖  =  Matérn: see text 
𝜙𝜙 > 0 range, 𝑣𝑣 shape(0.5) 
𝛿𝛿 > 0 anistropy ratio(1) 
𝛼𝛼 anistrophy angle(0) 
𝜆𝜆(1|2) metric(2) 

k k+1 𝑘𝑘 +𝜔𝜔 

heterogeneous variance models 

DIAG      
diag diagonal = IDH idh ∑𝑖𝑖𝑖𝑖 = 𝜙𝜙𝑖𝑖 ∑𝑖𝑖𝑖𝑖 = 0, 𝑖𝑖 ≠ 𝑗𝑗 - - 𝜔𝜔 

US      
us unstructured general 

covariance matrix 
∑𝑖𝑖𝑖𝑖 = 𝜙𝜙𝑖𝑖𝑖𝑖  - - 𝜔𝜔(𝜔𝜔 + 1)

2
 

OWN𝑘𝑘      
ownk user explicitly forms 

𝑽𝑽 and 𝜕𝜕𝑽𝑽 
 - - k 
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Table 7.6 Details of the variance models available in ASReml 

variance 
structure 
name 

description algebraic form number of parameters† 

variance 
model 
function 
name 

  corr hom 
variance 

het 
variance 

ANTE1 1st  k order ∑−1 = 𝑼𝑼𝑼𝑼𝑼𝑼⊤ - - 𝜔𝜔(𝜔𝜔 + 1)
2

  
ante1 kth antedependence 𝐷𝐷𝑖𝑖𝑖𝑖 = 𝑑𝑑𝑖𝑖 ,𝐷𝐷𝑖𝑖𝑖𝑖 = 0, 𝑖𝑖 ≠ 𝑗𝑗   

ANTE𝑘𝑘 1 ≤ 𝑘𝑘 ≤ 𝜔𝜔 − 1 𝑈𝑈𝑖𝑖𝑖𝑖 = 1,𝑈𝑈𝑖𝑖𝑖𝑖 = 𝑢𝑢𝑖𝑖𝑖𝑖 , 1 ≤ 𝑗𝑗 − 𝑖𝑖 ≤ 𝑘𝑘    

ante𝑘𝑘  𝑼𝑼𝑖𝑖𝑖𝑖 = 0, 𝑖𝑖 > 𝑗𝑗    

CHOL1 1st k order ∑ = 𝐿𝐿𝑫𝑫𝑳𝑳⊤ - - 𝜔𝜔(𝜔𝜔 + 1)
2

 
chol1 kth cholesky 𝐷𝐷𝑖𝑖𝑖𝑖 = 𝑑𝑑𝑖𝑖 ,𝐷𝐷𝑖𝑖𝑖𝑖 = 0, 𝑖𝑖 ≠ 𝑗𝑗   

CHOL𝑘𝑘 1 ≤ 𝑘𝑘 ≤ 𝜔𝜔 − 1 𝐿𝐿𝑖𝑖𝑖𝑖 = 1,𝐿𝐿𝑖𝑖𝑖𝑖 = 𝑙𝑙𝑖𝑖𝑖𝑖, 1 ≤ 𝑖𝑖 − 𝑗𝑗 ≤ 𝑘𝑘    

chol𝑘𝑘      

FA1 1st k order ∑  = 𝑫𝑫𝑫𝑫𝑫𝑫 - - 𝜔𝜔 + 𝜔𝜔 
fa1 kth factor analytic 𝑪𝑪 = 𝑭𝑭𝑭𝑭⊤ + 𝑬𝑬   𝑘𝑘𝑘𝑘 + 𝜔𝜔 

FA𝑘𝑘   𝑭𝑭 contains 𝑘𝑘 correlation factors     
fa𝑘𝑘   𝑬𝑬 diagonal    
   𝑫𝑫𝑫𝑫 = diagonal(∑)    

FACV[1] 1st k order ∑ = 𝚪𝚪𝚪𝚪⊤ + Ψ  - - 𝜔𝜔 + 𝜔𝜔 
facv1 kth factor analytic 

covariance form 
𝚪𝚪 contains covariance factors   𝑘𝑘𝑘𝑘 + 𝜔𝜔 

FACV𝑘𝑘  𝚿𝚿 contains specific variance    
facv𝑘𝑘      

XFA1 1st k order ∑ = 𝚪𝚪𝚪𝚪⊤ + Ψ - - 𝜔𝜔 + 𝜔𝜔 
xfa1 kth extended factor 

analytic 
𝚪𝚪 contains covariance factors   𝑘𝑘𝑘𝑘 + 𝜔𝜔 

XFA𝑘𝑘  𝚿𝚿 contains specific variance    
xfa𝑘𝑘      

RR1 1st k order ∑ = 𝚪𝚪𝚪𝚪⊤ + Ψ - - 𝜔𝜔 + 𝜔𝜔 
rr1 kth random 

regression 
𝚪𝚪 contains covariance factors   𝑘𝑘𝑘𝑘 + 𝜔𝜔 

RR𝑘𝑘  𝚿𝚿 contains specific variances 
set to zero (see Section 7.11.6) 

   
Rr𝑘𝑘 
New R4.2 
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Table 7.6 Details of the variance models available in ASReml 

variance 
structure 
name 

description algebraic form number of parameters† 

variance 
model 
function 
name 

  corr hom 
variance 

het 
variance 

relationship matrices‡ 

AINV inverse relationship matrix derived from pedigree 0 1 - 
NRM relationship matrix derived from pedigree 0 1 - 
nrm     

GIV1 generalized inverse number 1 0 1 - 
giv1      

⋮ ⋮ ⋮ ⋮ ⋮  
GIV8 generalized inverse matrix 8 0 1 - 
giv8      
GRM1 generalized relationship number 1 0 1 - 
grim1      

⋮ ⋮ ⋮ ⋮ ⋮  
GRM8 generalized relationship matrix 8 0 1 - 
grim8      

 
† This is the number of variance structure parameters, ω is the dimension of the matrix. The 
homogeneous variance form is specified by appending V to the correlation basename; the heterogeneous 
variance form is specified by appending H to the correlation basename. 
‡ These will be associated with 1 variance parameter unless used in direct product with another 
structure that provides the variance. Appending a v to a name makes it explicit that a variance 
parameter is fitted. 
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8 Command file: Multivariate analysis 
 
 

8.1 Introduction 
 

Multivariate analysis is used here in the narrow sense of a multivariate mixed model. There are 
many other multivariate analysis techniques which are not covered by ASReml. Multivariate 
analysis is used when we are interested in estimating the correlations between distinct traits, for 
example, fleece weight and fibre diameter in sheep, and for repeated measures of a single trait. 

 
8.1.1 Repeated measures on rats 

 
Wolfinger (1996) summarises a range of variance 
structures that can be fitted to repeated measures 
data and demonstrates the models using five 
weights taken weekly on 27 rats subjected to 3 
treatments. This command file demonstrates a 
multivariate analysis of the five repeated 
measures. Note that the two-dimensional 
structure for residual errors meets the 
requirement of independent units and corresponds to the data being ordered traits within units. 

  

Wolfinger rat data 
treat !A 
wt0 wt1 wt2 wt3 wt4  
rat.dat 
wt0 wt1 wt2 wt3 wt4 ∼ Trait, 
treat Trait.treat 
residual id(units).us(Trait !GP) 
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8.1.2 Wether trial data 
Three key traits for the Australian wool 
industry are the weight of wool grown 
per year, the cleanness and the diameter 
of that wool. Much of the wool is 
produced from wethers and most major 
producers have traditionally used a 
particular strain or bloodline. To assess 
the importance of bloodline differences, 
many wether trials were conducted. One 
trial, conducted from 1984 to 1988 at 
Borenore near Orange, involved 35 teams of wethers representing 27 bloodlines. The file 
wether.dat shown below contains greasy fleece weight (kg), yield (percentage of clean fleece 
weight to greasy fleece weight) and fibre diameter (microns). The code (wether.as) to the 
right performs a basic bivariate analysis of this data.  

 

8.1 Model specification 
 

The syntax for specifying a multivariate linear model in ASReml is 

Y-variates ~ fixed [!r conrandom ] [!f sparse_fixed ]  
[residual conresidual ] 

• Y-variates is a list of up to 20 traits (there may be more than 20 actual variates if the list 
includes sets of variates defined with !G – see Section 5.4.1),  

SheepID Site Bloodline Team Year GFW Yield 
FD 0101 3 21 1 1 5.6 74.3 18.5 
0101 3 21 1 2 6.0 71.2 19.6 
0101 3 21 1 3 8.0 75.7 21.5 
0102 3 21 1 1 5.3 70.9 20.8 
0102 3 21 1 2 5.7 66.1 20.9 
0102 3 21 1 3 6.8 70.3 22.1 
0103 3 21 1 1 5.0 80.7 18.9 
0103 3 21 1 2 5.5 75.5 19.9 
0103 3 21 1 3 7.0 76.6 21.9 

⋮ 
4013 3 43 35 1 7.9 75.9 22.6 
4013 3 43 35 2 7.8 70.3 23.9 
4013 3 43 35 3 9.0 76.2 25.4 
4014 3 43 35 1 8.3 66.5 22.2 
4014 3 43 35 2 7.8 63.9 23.3 
4014 3 43 35 3 9.9 69.8 25.5 
4015 3 43 35 1 6.9 75.1 20.0 
4015 3 43 35 2 7.6 71.2 20.3 
4015 3 43 35 3 8.5 78.1 21.7 

Orange Wether Trial 1984-8 
SheepID !I  
TRIAL 
BloodLine !I  
TEAM * YEAR *  
GFW YLD FDIAM 

wether.dat !skip 1 
GFW FDIAM ∼ Trait Trait.YEAR, 
!r us(Trait).id(TEAM) us(Trait).id(SheepID) 
residual id(units).us(Trait !GP)  
predict YEAR Trait 
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• fixed, conrandom and sparse_fixed are as in the univariate case (see Chapter 6) but involve 
the special term Trait and interactions with Trait. 

The design matrix for Trait has a level (column) for each trait. 

- Trait by itself fits the mean for each variate, 

- in an interaction Trait.Fac fits the factor Fac for each variate and Trait.Cov fits the 
covariate Cov for each variate. An explanatory factor or covariable associated with Trait 
i can be fitted using at(Trait,i).Fac or at(Trait,i).Cov. 

ASReml internally arranges the data so that n data records containing t traits each becomes n sets 
of t analysis records indexed by the internal factor Trait i.e. nt analysis records ordered Trait 
within data record. If the data is already in this long form, use the !ASMV t qualifier to indicate 
that a multivariate analysis is required. 

8.2 Residual variance structures 
 

Using the notation of Section 2.1.11, consider a multivariate analysis with t traits and n units in 
which the data are ordered traits within units. An algebraic expression for the residual variance 
matrix in this case is 

𝑰𝑰𝑛𝑛 ⊗ 𝚺𝚺 
where 𝚺𝚺(𝑡𝑡×𝑡𝑡) is an unstructured variance matrix. This is the general form of residual variance 
structures required for multivariate analysis. 

8.2.1 Specifying multivariate variance structures in ASReml 
A standard multivariate analysis is 
achieved using the us() variance model 
function for the two random Trait 
components, and specifying the R 
structure for the residual error term as 
residual id(units).us(Trait). 

• if provided, the initial values are for the 
lower triangle of the (symmetric) 
matrix specified row-wise, 

• finding reasonable initial values can be 
a problem. When no initial values are provided (as in code box), ASReml takes half of the 
phenotypic variance matrix of the data as an initial value. 

Since the variance component matrices for the TEAM and SheepID strata are not specified, ASReml 
will plug in values derived from the observed phenotypic variance matrix. !GP requests that the 
resulting estimated matrix be kept within the parameter space, i.e. it is to be positive definite: 

  

Orange Wether Trial 1984-8 
SheepID !I  
TRIAL 
BloodLine !I  
TEAM *  
YEAR *  
GFW YLD FDIAM 
wether.dat !skip 1 
GFW FDIAM ∼ Trait Trait.YEAR, 
!r us(Trait).id(TEAM) us(Trait).id(SheepID) 
residual id(units).us(Trait !GP)  
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The special qualifiers relating to multivariate analysis are !ASUV and !ASMV t, see Table 5.4 
for details: 
• to use an error structure other than US for the residual stratum you must also specify !ASUV 

(see Table 5.4) and include mv in the model if there are missing values, 

• to perform a multivariate analysis when the data have already been expanded use !ASMV t 
(see Table 5.4), 

• t is the number of traits that ASReml should expect 

• the data file must have t records for each multivariate record although some may be coded 
missing. 

Note that, if no residual line is inserted the id(units).us(Trait) variance structure is 
assumed for multivariate data.
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9 Command file: Genetic analysis 
 
 

9.1 Introduction 
 

In genetic analysis using an ‘animal model’ or ‘sire model’, we have data on subjects that are 
genetically related. The relationships are defined via a pedigree. The subject effects are therefore 
correlated and, assuming normal modes of inheritance, the correlation expected from additive 
effects can be computed from the pedigree provided all the direct links are in the pedigree. The 
matrix of such relationships is called the numerator relationship matrix. It is actually the inverse 
relationship matrix that is required for analysis and that is formed by ASReml. Users new to this 
subject might find notes Mixed Models for Genetic analysis 1 by Julius van der Werf helpful. 

For the more general situation where the pedigree-based relationship matrix is not the 
appropriate/required matrix, the user can provide a general relationship matrix (GRM) matrix 
explicitly in a .grm file, or its inverse in a .giv file. 

As an example for this chapter, we consider data presented in Harvey (1977) using the command 
file harvey.as. 

9.2 The command file 
 

In ASReml the !P data field qualifier 
indicates that the corresponding data field 
has an associated pedigree. The file 
containing the pedigree (harvey.ped in 
the example) for animal is specified after 
all field definitions and before the datafile 
definition. See below for the first 20 lines of 
harvey.ped together with the 
corresponding lines of the data file 
harvey.dat. All individuals appearing in 
the data file must appear in the pedigree file. 
When all the pedigree information 
(individual, male_parent, female_parent) 
appears as the first three fields of the data file, the data file can double as the pedigree file. 

 

1https://jvanderw.une.edu.au/aabc_materialsp2.htm  

Pedigree file example 
Animal !P  
Sire !A  
Dam 
Line 2  
AgeOfDam  
adailygain  
Y2 
Y3 
harvey.ped !ALPHA  
harvey.dat 
adailygain ∼ mu Line,#fixed model 
!r nrmv(Animal !INIT 0.25)#random model 
residual idv(units) 

https://jvanderw.une.edu.au/aabc_materialsp2.htm
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In this example the line harvey.ped !ALPHA could be replaced with harvey.dat 
!ALPHA. Often the pedigree file will include individuals for which there is no data, individuals 
that define genetic links between individuals with data. The nrm in nrmv(Animal) indicates 
that an additive (or numerator) relationship matrix (nrm) variance structure is constructed from 
the pedigree associated with Animal. The v in nrmv indicates that the nrm matrix is scaled by 
a variance parameter. 

 
9.3 The pedigree file 

 
The pedigree file is used to construct the genetic relationships for fitting a genetic animal model 
and is required if the !P qualifier is associated with a data field. The pedigree file: 
 
• has three fields; the identities of an individual and its parents (or sire and maternal grand sire 

if the !MGS qualifier is specified (Table 9.1), Typically for animals, the male parent is listed 
first, but for trees, the mother tree may be first. 

• an optional fourth field may supply inbreeding/selfing information used if the !FGEN qualifier 
is specified (Table 9.1), 

• an additional field specifying the sex of the individual is required if the !XLINK qualifier is 
specified (Table 9.1), 

• is ordered by generation so that the line giving the pedigree of an individual appears above 
any line where that individual appears as a parent, 

• is read free format; it may be the same file as the data file if the data file is free format and 
has the necessary identities in the first three fields, see below, 

• is specified on the line immediately after all field definitions and before the data file line in 
the command file, 

• use 0 or * to represent unknown parents.  
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harvey.ped harvey.dat 

 
 

9.4 Reading in the pedigree file 
 

The syntax for specifying a pedigree file in the ASReml command file is 
pedigree_file [qualifiers] [pedigree modification qualifiers] 

 
• the qualifiers are listed in Table 9.1, 

• the identities (individual, parent_1, parent_2) are merged into a single list and the inverse 
relationship is formed before the data file is read, 

• parent_1 is typically male for animal pedigrees (sire) but often female for plant pedigrees; it 
must be the XY parent if the !XLINK qualifier is specified, 

• when the data file is read, data fields with the !P qualifier are recoded according to the 
combined identity list, 

• the inverse relationship matrix is automatically associated with factors coded from the 
pedigree file unless some other covariance structure is specified. The inverse relationship 
matrix is specified with the variance model name NRM, the variance model function name 
nrm(), 

• the inverse relationship matrix is written to ainverse.bin,  

101 SIRE 1 0 
102 SIRE 1 0 
103 SIRE 1 0 
104 SIRE 1 0 
105 SIRE 1 0 
106 SIRE 1 0 
107 SIRE 1 0 
108 SIRE 1 0 
109 SIRE 2 0 
110 SIRE 2 0 
111 SIRE 2 0 
112 SIRE 2 0 
113 SIRE 2 0 
114 SIRE 2 0 
115 SIRE 2 0 
116 SIRE 2 0 
117 SIRE 3 0 
118 SIRE 3 0 
119 SIRE 3 0 
120 SIRE 3 0 
⋮ 

101 SIRE 1 01 3 192 390 2241 
102 SIRE 1 01 3 154 403 2651 
103 SIRE 1 01 4 185 432 2411 
104 SIRE 1 01 4 183 457 2251 
105 SIRE 1 01 5 186 483 2581 
106 SIRE 1 01 5 177 469 2671 
107 SIRE 1 01 5 177 428 2711 
108 SIRE 1 01 5 163 439 2471 
109 SIRE 2 01 4 188 439 2292 
110 SIRE 2 01 4 178 407 2262 
111 SIRE 2 01 5 198 498 1972 
112 SIRE 2 01 5 193 459 2142 
113 SIRE 2 01 5 186 459 2442 
114 SIRE 2 01 5 175 375 2522 
115 SIRE 2 01 5 171 382 1722 
116 SIRE 2 01 5 168 417 2752 
117 SIRE 3 01 3 154 389 2383 
118 SIRE 3 01 4 184 414 2463 
119 SIRE 3 01 5 174 483 2293 
120 SIRE 3 01 5 170 430 2303 
⋮ 
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-  if ainverse.bin already exists ASReml assumes it was formed in a previous run and has 
the correct inverse 

- ainverse.bin is read, rather than the inverse being reformed (unless !MAKE is 
specified); this saves time when performing repeated analyses based on a particular pedigree,  

- delete ainverse.bin or specify !MAKE if the pedigree is changed between runs, 

• identities are printed in the .sln and the .aif file, 

- identities should be whole numbers less than 200,000,000 unless !ALPHA is specified, 

- pedigree lines for parents must precede their progeny, 

- unknown parents should be given the identity number 0, 

- if an individual appearing as a parent does not appear in the first column, it is assumed to 
have unknown parents, that is, parents with unknown parentage do not need their own line 
in the file, 

- identities may appear as both male and female parents, for example, in forestry. 

We refer the reader to the sheep genetics example in Section 16.11. 

Table 9.1: List of pedigree file qualifiers 

qualifier description 

!ALPHA indicates that the identities are alphanumeric with up to 225 characters; otherwise 
by default they are numeric whole numbers < 200,000,000. If using long alphabetic 
identities, use !SLNFORM to see the full identity in the .sln file. 

!DIAG 

!AIF 

causes the pedigree identifiers, the diagonal elements of the Inverse of the 
Relationship and the inbreeding coefficients for the individuals (calculated as the 
diagonal of A-I), and a factor with levels Parent and Nonparent indicating if the 
individual is a parent (with progeny in the pedigree) or a non-parent (with no 
progeny in the pedigree) to be written to basename.aif. 

!CSKIP c 
New R4.2 
 

this qualifier instructs ASReml to ignore the first c columns of the pedigree file. A 
pedigree file typically has 3 or 4 fields being the identifiers for the individual: its 
Sire, its Dam and maybe its sex or inbreeding value (f). This qualifier is intended to 
facilitate reading a data file as a pedigree file when the file has c other fields at the 
beginning of each line. 

!FGEN [f ] indicates the pedigree file has a fourth field containing the level of selfing or the 
level of inbreeding in a base individual. In the fourth field, 0 indicates a simple cross, 
1 indicates selfed once, 2 indicates selfed twice, etc. A value between 0 and 1 for a 
base individual is taken as its inbreeding value. If the pedigree has implicit 
individuals (they appear as parents but not in the first field of the pedigree file), they 
will be assumed base non-inbred individuals unless their inbreeding level is set with 
!FGEN f where 0 < f < 1 is the inbreeding level of such individuals. Individuals with 
one or both parents unknown, and without a specific non-zero inbreeding 
coefficient provided in the fourth filed of the pedigree, will are assigned an 
inbreeding coefficient f . 
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Table 9.1 List of pedigree file qualifiers 

qualifier description 

!GIV 
!GIV 2 

 

instructs ASReml to write out the A-inverse in the format of .giv files. !GIV 2 
writes the pedigree of the parents to basename_Parent.ped and the diagonal 
elements of the A-inverse to basename_Q.giv with offspring identifiers (see 
Section 9.7). If !GROUPS is also specified, this .giv file will include the 
!GROUPSDF qualifier on its first line. 

!GOFFSET o An alternative to group constraints (see !GROUPS below) is to shrink the group 
effects by adding the constant o (> 0) to the diagonal elements of A−1 pertaining to 
groups. When a constant is added, no adjustment of the degrees of freedom is made 
for genetic groups. 
Use !GOFFSET -1 to add no offset but to suppress insertion of constraints where 
empty groups appear. The empty groups are then not counted in the DF 
adjustment. 

!GROUPS g includes genetic groups in the pedigree. The first g lines of the pedigree identify 
genetic groups (with zero in both parent fields). All other lines must specify one of 
the genetic groups as parent if the actual parent is unknown. 
You may insert groups identifiers with no members to define constraints on 
groups, that is to associate groups into supergroups where the supergroup fixed 
effect is formally fitted separately in the model. A constraint is added to the inverse 
which causes the preceding set of groups which have members to have effects 
which sum to zero. The issue is to get the degrees of freedom correct and to get the 
correct calculation of the Likelihood, especially in bivariate cases where DF 
associated with groups may differ between traits. The !LAST qualifier (see Table 
5.5) is designed to help as without it, reordering may associate singularities in the 
A matrix with random effects which at the very least is confusing. When the A 
matrix incorporates fixed effects, the number of DF involved may not be obvious, 
especially if there is also a sparsely fitted fixed HYS factor. The number of Fixed 
effects (degrees of freedom) associated with GROUPS is taken as the declared 
number less twice the number of constraints applied. This assumes all groups are 
represented in the data, and that degrees of freedom associated with group 
constraints will be fitted elsewhere in the model. 

!INBRED Each cross is assumed to be selfed several times to stabilize as an inbred line as is 
usual for cereals such as wheat, before being evaluated or crossed with another line. 
Since inbreeding is usually associated with strong selection, it is not obvious that a 
pedigree assumption of covariance of 0.5 between parent and offspring actually 
holds. Do not use the !INBRED qualifier with the !MGS or !SELF qualifiers. 

!LONGINTEGER indicates the identifiers are numeric integer with less than 16 digits. The default is 
integer values with less than 9 digits. The alternative is alphanumeric identifiers 
with up to 255 character indicated by !ALPHA. 

!MAKE forces ASReml to make the A-inverse (rather than trying to retrieve it from the 
ainverse.bin file). 

!MEUWISSEN The default method for forming A−1 is based on the algorithm of Meuwissen and 
Luo (1992). 

!MGS indicates that the third identity is the sire of the dam rather than the dam. 

!QUAAS The original routine for calculating A−1 in ASReml was based on Quaas (1976) 

!REPEAT tells ASReml to ignore repeat occurrences of lines in the pedigree file. 
Warning Use of this option will avoid the check that animals occur in generational 
order, but generational order is still required. 
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Table 9.1 List of pedigree file qualifiers 

qualifier Description 

!SARGOLZAEI an alternative procedure for computing A−1 was developed by Sargolzaei et al.(2005). 

!SELF s allows partial selfing when second parent is unknown. It indicates that progeny from a 
cross where the second parent (male_parent) is unknown, is assumed to be from 
selfing with probability s and from outcrossing with probability (1-s). This is 
appropriate in some forestry tree breeding studies where seed collected from a tree may 
have been pollinated by the mother tree or pollinated by some other tree (Dutkowski 
and Gilmour, 2001). Do not use the !SELF qualifier with the !INBRED or !MGS 
qualifiers. 

!SKIP n allows you to skip n header lines at the top of the file. 

!SORT causes ASReml to sort the pedigree into an acceptable order, that is parents before 
offspring, before forming the A-Inverse. The sorted pedigree is written to a file whose 
name has .SRT appended to its name. Genetic groups with no members will be 
dropped by the !SORT process. In an effort to save pre-processing effort, if  pedigreefile 
is specified as basename .SRT and this file already exists, ASReml will assume the 
sorting has already been performed to create the file and ignore !SORT. However if  
basename .SRT does not exist, this sorted file will be created from the file basename 
whether or not !SORT is included. 

!UPPER 
New R4.2 

all lower-case characters are converted to upper case. This qualifier was introduced for 
the case of a pedigree where names had not been recorded consistently with respect to 
case. 

!XLINKR requests the formation of the (inverse) relationship matrix for the X chromosome as 
described by Fernando and Grossman (1990) where the first parent is XY and the 
second is XX. This NRM inverse matrix is formed in addition to the usual A−1 and can 
be accessed as GRM1 or as specified in the output. The pedigree must include a fourth 
field which codes the SEX of the individual. The actual code used is up to the user and 
deduced from the first line which is assumed to be a an XY individual. Thus, whatever 
string is found in the fourth field on the first line of the pedigree is taken to mean XY 
and any other code found on other records is taken to mean XX. 

 
 

9.5 New R4.2 Pedigree modification qualifiers 
 
Pedigree pre-processing has been extended to allow removal of unnecessary individuals: those 
with no data or descendants with data, sometimes called trimming, and recursive removal of base 
individuals (individuals with unknown parents) that have no data and only one offspring, 
sometimes called pruning. Both these operations do not change the likelihood or parameter 
estimates but can save computation. There is the facility to also limit the number of generations of 
ancestors in the pedigree. This again can save computation but can change estimates as it implicitly 
assumes the ancestors left out have no genetic variation. There is an option to form and use a sparse 
inverse relationship matrix just on a specified set of individuals. 
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The extended syntax is of the form 
Pedigreefile [qualifiers] [!TRIM filename [field] [!SKIP k] [!NOPRUNE] [!KEEP g] [!REDUCE]] 
with the optional qualifiers !SKIP, !NOPRUNE, !KEEP, !REDUCE appearing after the !TRIM 
qualifier. The pedigree modification qualifiers are listed and described in Table 9.2.  

Table 9.2: Pedigree modification qualifiers 

qualifier description 

!TRIM filename 
[field] 

constructs a trimmed pedigree. Individuals with data are identified from field 
(default 1) of filename (typically the data file). It does not check if whether any 
particular response variable for that record. The qualifier !KEEP g identifies the 
number of generations of ancestors to include. The pedigree is then pruned. The 
modified pedigree is written to the file pedigreefile .TRM. The pedigree lines are 
flagged either !RETAIN or !REMOVE to distinguish those in filename from their 
ancestors. Genetic groups will generally be lost under trimming. 

!SKIP k 

 

skips the first k lines of filename. Note that this qualifier should occur after 
filename and that to skip lines of pedigreefile the !SKIP qualifier should  appear 
before !TRIM. 

!NOPRUNE instructs ASReml not to prune the trimmed pedigree. 

!KEEP g identifies the number of generations of ancestors to include (without !KEEP all 
ancestors are included. 

!REDUCE specifies that the inverse relationship matrix is based on just individuals with data. 
The flags !RETAIN and !REMOVE in the trimmed pedigree file are used to 
identify individuals with data. Generally this will make the reduced inverse 
relationship matrix much denser and so is only useful in special situations where 
family size is small or the number of ancestors retained is small (definitely less 
than 10,000). 
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9.6 Genetic groups 
 

If all individuals belong to one genetic group, then use 0 as the identity of the parents of base 
individuals. However, if base individuals belong to various genetic groups this is indicated by the 
!GROUPS qualifier and the pedigree file must begin by identifying these groups. All base 
individuals should have group identifiers as parents. In this case the identity 0 will only appear on 
the group identity lines, as in the following example where three sire lines are fitted as genetic 
groups.  

 

 

 
 
 
 
Important It is usually appropriate to allocate a genetic group identifier where the parent is 
unknown. 

 
9.7 Reading a user defined (inverse) relationship matrix 

 
Sometimes a relationship matrix is required other than the one ASReml can produce from the 
pedigree file. We call this a GRM (General Relationship Matrix). The inverse of a GRM is a GIV 
matrix. The user can provide the relationship matrix in a .grm file and ASReml will invert it to 
form the GIV matrix (since it is the inverse that is used in the mixed model equations). 
Alternatively, the user can provide a .giv file containing the inverted GRM matrix. 

The syntax for specifying a GRM file (say name.grm) or the GIV file (say name.giv) is 

name.[s|d]grm[!SKIP n [!GROUPDF n][!ND|!PSD|!NSD][!PRECISION [n]] 
[SAVEGIV [f]][!ADD d [!NONULL]] 

or 

name.[s|d]giv[!SKIP n ][!GROUPDF n ][!LET r ] 

• the named file must have a .giv, .grm, .sgiv, .sgrm, .dgiv or .dgrm extension, 

• .giv and .grm are ASCII files read in either sparse or dense format and ASReml recognises the 
format from the first line read, 

Genetic group example 
Animal !P  
Sire !A  
Dam 
Line 2  
AgeOfDam  
adailygain  
Y2 
Y3 
harveyg.ped !ALPHA !GROUPS 3  
harvey.dat 
adailygain ∼ mu Line, # fixed model 
!r grm1v(Animal !INIT 0.25)) # random model 
residual idv(units) 
 

G1 0 0 
G2 0 0 
G3 0 0 
SIRE_1G1 G1  
SIRE_2 G1 G1  
SIRE_3 G1 G1  
SIRE_4 G2 G2  
SIRE_5 G2 G2  
SIRE_6 G3 G3  
SIRE_7 G3 G3  
SIRE_8 G3 G3  
SIRE_9 G3 G3 
101 SIRE_1 G1 
102 SIRE_1 G1 
103 SIRE_1 G1 
⋮ 
163 SIRE_9 G3 
164 SIRE_9 G3 
165 SIRE_9 G3 
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• a dense format file has the matrix presented row by row with each row beginning on a new line, 
and may contain the lower triangle part of the full row; ASReml just reads the row-wise 
triangular part, 

• a sparse format file must be free format with three 
numbers per line, namely 
row column value 
defining the lower triangle row-wise of the matrix, 

 
• the file must be sorted column within row, 

• every diagonal element must be present; missing 
off-diagonal elements are assumed to be zero 
cells, 

• .sgiv and .sgrm files are binary, dense format 
single precision files, 

• .dgiv and .dgrm files are binary, dense format double precision files, 

• the G (inverse) files must be specified on the line(s) immediately prior to the data file line after 
any pedigree file, 

• up to 98 G (inverse) matrices may be defined, 

• the file is used by associating it with a factor in 
the model. The number and order of the rows 
must agree with the size and order of the 
associated factor, 

• the !SKIP n qualifier tells ASReml to skip n header lines in the file. 

The .giv file presented in the code box gives the G inverse 
matrix on the right. 

 
 
The easiest way to ensure the variable is coded to match the order of the GRM file is to supply a 
list of level names in the variable definition. For example, genotype !A !L Gorder.txt would 
code the variable genotype to agree with the order of level names present in the file 
Gorder.txt which would be the order used in creating the GRM/GIV matrix. 

 
If the file has a .grm file extension, ASReml will invert the GRM matrix. If it is not Positive 
Definite, the job will abort unless an appropriate qualifier !ND, !PSD or !NSD is supplied. These 
qualifiers do not modify the matrix, they just instruct ASReml to proceed regardless. If the matrix 
has positive and negative eigenvalues, !ND instructs ASReml to ignore the condition and proceed 
anyway. If the matrix is positive semi-definite (positive and zero eigenvalues), !PSD allows 
ASReml to introduce Lagrangian multipliers to accommodate linear dependencies and rows with 
zero elements, and allows ASReml to proceed.  

1 1 1 
2 2 1 
3 3 1 
4 4 1 
5 5 1.0666667 
6 5 -0.2666667 
6 6 1.0666667 
7 7 1.0666667 
8 7 -0.2666667 
8 8 1.0666667 
9 9 1.0666667 
10 9 -0.2666667 
10 10 1.0666667 
11 11 1.0666667 
12 11 -0.2666667 
12 12 1.0666667 
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Linear dependencies occur, for example, when the list of individuals includes clones. Rows with 
zero elements occur when the GRM represents a dominance matrix, and the list of individuals 
includes fully inbred individuals which, by definition, have zero dominance variance. If the matrix 
has positive, zero and negative eigenvalues, !NSD may be used to allow ASReml to continue. The 
zero eigenvalues are handled as for !PSD. Sometimes, with negative eigenvalues, the iteration 
sequence may fail as some parameter values will result in a negative residual sum of squares. 
 
!PRECISION [n] changes the value used to declare a singularity when inverting a GRM file from 
1E-10 to 1E-n (n>3). A default value of 7 is used for n if it is not set. !PRECISION also allows 
the use of Lagrangian multipliers to accommodate linear dependencies to allow matrices with 
singularities to run. 
 
If !SAVEGIV [ f ] is specified the inverse of the GRM matrix is written to a file written as a lower 
triangular row-wise format. If f  = 1, 2 or -1 the matrix inverse is written to a .giv file. with f  = 1 
the sparse format is used and with f  = 2 the dense format is used. If f  = -1 ASReml decides the 
format depending if the number of non-zero elements is greater than (dense) or less than (sparse) 
half the number of elements in the matrix. If f  = 3 the inverse matrix is written as a binary .sgiv 
file in single precision and f  - 4 writes the inverse matrix as a binary .dgiv file in double precision. 
The default value of f is 3. The written file also includes on the first line !LDET r where r is the 
log determinant of the grm matrix used in the computation of the log-likelihood. New R4.2 The 
qualifier !LDET r with a .giv file specification allows the user to specify the log determinant of 
the corresponding .grm file if the user has constructed the .giv file independently of ASReml. 
This can save computation time 

 
If the specified .giv file does not exist but there is a .grm file of the same name, ASReml will 
read and invert the .grm file, and write the inverse to the .giv file. 
 
New R4.2 !ADD d adds a constant 0.000001 * d to non-zero diagonal elements of the GRM matrix 
supplied. !NONULL in conjunction with !ADD d to add 0.000001 * d to all diagonal elements. 
This is intended for when the matrix elements are not of sufficient precision resulting in the matrix 
not being positive definite.  
 
New R4.2 !HINV IDfile [!OMEGA ω] [!TAU τ] forms an additional special G inverse 
known as an H inverse. A pedigree from which to form an A inverse must have already been 
specified. The genotype identifiers in the G matrix are to be specified as a list in the ascii file 
provided as the argument to the !HINV qualifier. All identifiers must also be present in the 
pedigree. The H inverse is like the A inverse except that the cells present in the G inverse are 
adjusted by ω G inverse - τ A* where A* is the inverse of the relationship matrix pertaining to 
these animals. ω and τ have default values of 1. 
 
For example: 
 
!ARG 1 !REN 
 H inverse   !DOPART $1 
   ID !P SR DM Y 
 pedigree.csv   !SKIP 1 
 Gmatrix.grm       !HINV Gid.txt 
 data.csv   !skip 1 
  Y  ~ mu !r grm2(ID) 
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A GRM can be associated with a factor i by using the variance model function grmi( f ); which 
associates the ith GRM with factor f, for example, 
grm1v(animal !INIT 0.12)  

or  
coruh(site).grm2(variety) 

It is imperative that the GIV/GRM matrix be defined with the correct row/column order, the order 
that matches the order of the levels in the factor it is associated with. The easiest way to check this 
is to compare the order used in the GIV/GRM file with the order reported in the .sln file when 
the model is fitted.  

 
Another example of !L (Section 5.4.1) is in analysis on data with 2 relationship matrices based 
on two separate pedigrees. ASReml only allows one pedigree file to be specified but can create an 
inverse relationship matrix and store the result in a GIV file. So, 2 relationship matrices based on 
two separate pedigrees may be used by generating a GIV file from one pedigree and then using 
that GIV file and the other pedigree in a subsequent run. To process the GIV file properly, we must 
also generate a file with identities as required for the GIV matrix. An example of this is if the file 
Hybrid.as includes 

!PART 1 
Mline !P  
Fline !A 
... 
Mline.ped !GIV !DIAG #!GIV generates the file Hybrid1A.giv and !DIAG  
#generates Hybrid1.aif which contains the identifier names 
!PART 2 #reads in inverse additive relationship matrix generated in !PART 1  
Mline !A !L Hybrid1.aif !SKIP 1#associates identifier names with levels of Mline  
#used in giv file 
Fline !P 
... 
Fline.ped !GIV !DIAG 
Hybrid1_A.giv #formed in part 1 from Mline.ped  

Hybrid.asd !SKIP 1 
... 
... grm1(Mline) nrm(Fline) #using new synonyms and functions 

 

9.7.1 Genetic groups in GIV matrices 
 

If a user creates a GIV file outside ASReml which has fixed degrees of freedom associated with it, 
a !GROUPSDF n qualifier is provided to specify the number of fixed degrees of freedom (n) 
incorporated into the GIV matrix. The !GROUPSDF qualifier is written into the first line of the 
.giv matrix produced by the !GIV qualifier of the pedigree line if the pedigree includes genetic 
groups, and will be honoured from there, when reusing a GIV matrix formed from a pedigree with 
genetic groups in ASReml. 

 
When groups are constrained, then it will be the number of groups less the number of constraints. 
For example, if the pedigree file qualified by !GROUPS 7 begins 
A 0 0 
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B 0 0 
C 0 0 
ABC 0 0 # ABC is not present in the subsequent pedigree lines  
D 0 0 
E 0 0 
DE 0 0 # DE is not present in the subsequent pedigree lines 

there are actually only 5 genetic groups and two constraints so that the fixed effects for A, B and 
C sum to zero, and for D and E sum to zero leaving only 3 fixed degrees of freedom fitted. 
Therefore, if the A inverse for this pedigree was saved, it will contain !GROUPSDF 3 in the GIV 
file. 
 
9.7.2 The example continued 
Below is an extension of harvey.as to use harvey.giv which is partly shown to the right. 
This G inverse matrix is an identity matrix of order 74 scaled by 0.5, that is, 0.5𝑰𝑰74. This model 
is simply an example which is easy to verify.  

Note that harvey.giv is specified on the line immediately preceding harvey.dat. 

command file .giv file 
 

 
 
 

 

 

 

 

 

 

 

Model term specification associating the harvey.giv structure to the coding of sire takes 
precedence over the relationship matrix structure implied by the !P qualifier for sire. In this case, 
the !P is being used to amalgamate animals and sires into a single list, and the .giv matrix must 
agree with the list order. 
 
9.8 The reduced animal model (RAM) 
 
The reduced animal model was devised to reduce the computation involved in fitting a large animal 
model. When there is at most one record per individual, a large proportion of the individuals are 
non-parents and have no progeny and there is interest in predictions for parents alone. This can 
happen in large forestry trials. The reduced animal model expresses the non-parent genetic effect in 
terms of parent effects and a Mendelian sampling term that is combined with the residual effect for 
the residual. We consider the case when there is data on parents and non-parents and some 
individuals are inbred. 

giv file example 
Animal !P  
Sire !P  
Dam 
Line 2  
AgeOfDam  
adailygain  
Y2 
Y3 
harvey.ped !ALPHA  
harvey.giv # giv structure file 
harvey.dat 
adailygain ∼ mu Line, # fixed model 
!r grm1v(Sire !INIT 0.25)) # random model 
residual idv(units) 
 

01 01 .5 
02 02 .5 
03 03 .5 
04 04 .5 
05 05 .5 
. 
. 
. 
72 72 .5 
73 73 .5 
74 74 .5 
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An example tree model for a single trait and a single site might be 
DBH ~ mu !r nrmv(tree) plot ar1v(column).ar1(row)  
residual idv(units) 

since trees are often planted in plots of say 5 trees. This is a spatial analysis; the idv(units) 
term is required so that error variance is not transferred to the nrmv(tree) term since trees are 
unreplicated. 
This analysis requires a pedigree file, say TreePed.csv, and if the !DIAG qualifier is specified 
on the pedigree line, the resulting .aif file will contain the inbreeding level for every tree in the 
pedigree, the diagonal of the A−1 matrix and a N/P code distinguishing parents (with progeny) from 
non-parents (without progeny). 
To analyse the data using the RAM, we need to incorporate these last two columns into the data file 
(which can be done with the !MERGE statement). If there is data on parents, further processing of the 
data file is required: create a copy of the ’tree’ field, call it say ’parent’, and change it to ’0’ for the 
progeny records. 
 
Assume our data file ramdbh.txt has fields tree mum dad row column plot DBH 
AIdiag OP parent and we have deleted the non-parent rows from the full pedigree file to 
form ParentPed.txt. If you have a pedigree file for all trees, processing that pedigree with 
the !GIV 2 qualifier will create a pedigree file just containing the parents and also the Q.giv 
file for the non-parent referred to below. If we assume a heritability of 0.1111 so that the ratio of 
genetic variance to residual variance is 0.125, the following model will estimate the breeding 
values for the parents directly: 
RAM BLUP model  
tree ! 
mum !P !*V21  
dad !P !*V21  
row *  
column *  
plot * 
DBH 
AIdiag !*V21 
NP !A !L Nonparent Parent  
parent !P 
filter !=NP !==1 # create Nonparent filter  
mum !*filter 
dad !*filter  
AIdiag !*filter 
WT !=0.125 !+AIdiag !^-1 !*AIdiag !+1 !-filter  
ParentPed.txt 
ramdbh.txt 
DBH !WT WT ∼ mu, 
!r str(parent and(mum,0.5) and(dad.0.5) id(1).nrmv(parent !0.125)),  
plot ar1v(column).ar1(row) 
residual idv(units) 

In this model, 
• NP !A !L Nonparent Parent ensures the NP data field is coded 1 for non-parents and 2 

for parents. 

• filter !=NP !==1 creates a variable that is 1 for non-parents and zero for parents. 
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• The !*filter transformations put mum, dad and AIdiag information to zero for parents. 

• WT !=0.125 !+AIdiag !^-1 !*AIdiag !+1 !-V21 creates a weight variable which is 1 
for parent records, 𝑞𝑞/(𝑞𝑞 + 𝛾𝛾) for a non-parent record with 𝑞𝑞 the respective diagonal element 
of AIdiag, with 𝑞𝑞 = 2 for non-inbred non-parents, and γ is the variance ratio 𝜎𝜎𝑔𝑔2/𝜎𝜎𝑒𝑒2, 
0.125 in this case. This weighting corresponds to a residual variance for a non-parent record 
of �𝜎𝜎𝑔𝑔2 / 𝑞𝑞� + 𝜎𝜎𝑒𝑒2. 

 
• If there is no direct information on parents, the parent term is replaced by zero, where zero is a 

variable with zero elements. 

• If dad is unknown, the and(dad) term is dropped. 

• The BLUPs of a non-parent will need to be calculated outside ASReml by adding [γ/(q +γ)] times 
its residual to the average of the parental BLUPs. 

Prediction of parental values with assumed heritability was the main motivation for the 
development of the reduced animal model. Estimation of genetic variance parameters is a little 
more complicated and the computational gains of removing non-parent genetic values from the 
estimation procedure only apply if it is reasonable to form a small number of groups with roughly 
similar AIdiag values. If AIG is this group factor then one can estimate residual variances in 
each group using sat(AIG).idv(units) and use the variance parameter linear model 
facilities to constrain the residual variances and the parent variance to be a function of the genetic 
and residual variances. 

 
9.9 Factor effects with large Random Regression Models 

 
One use of the GRM matrix is to allow more computationally efficient fitting of random regression 
models associating u, a vector of f factor effects with v a vector of m regression effects through 
the model u = Mv where the matrix M contains m regressor variables for each of the f levels of 
the factor. Direct fitting of the regression effects is facilitated by using the my basis function (mbf 
function) associating the regressor variables to the levels of the factor, essentially fitting ZMv 
where Z is the design matrix linking observations to the levels of the factor. But if m is much 
bigger than f , it is more computational efficient to fit an equivalent model Zu with a variance 
structure for u based on M M/. ASReml can read the matrix M associated with a factor and group 
of regressor variables from a .grr file, construct a GRM matrix (G = MM//s with s a scaling 
term), fit the equivalent model and report both factor and regressor predictions. One common case 
of this model is when u represents genotype effects, the regressors represent SNP marker counts 
(typically 0/1/2 representing allele counts and 0 and 2 representing homozygotes) and v are marker 
effects. 

 
The .grr file is specified after any pedigree file and before the data file (with any other GRM 
files). There may only be one .grr file. It is assumed to contain a row for each level of the factor, 
each row containing m regressor values. Optionally the factor level name associated with the i-th 
row can be included before the relevant regressor values. Also a heading row might include a name 
for each field/regressor variable. Superfluous fields before the factor or regressor fields can be 
skipped and superfluous rows before the regressor information can be skipped. 
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The syntax for specifying and reading the .grr file is 
M.grr [!CSKIP 𝑐𝑐1] Factor [f] [!NOID] [!CSKIP 𝑐𝑐2] Regressors [m]  
[!NONAMES] [!SKIP s] where 
M.grr is the name of the file to be read, !CSKIP 𝑐𝑐1 indicates 𝑐𝑐1 fields are to be skipped before 
the factor identifiers are read, 
Factor is the name of the variable in the data that is associated with the regressors, 
f sets the maximum number of levels (default 1000) of Factor with regressor data; ASReml 
will count the actual number, 
!NOID indicates that the factor identifiers are not present in the .grr file, 
!CSKIP 𝑐𝑐2 indicates 𝑐𝑐2 fields are to be skipped before the regressor variables are read, 
Regressors is the name for the set of regressor variables, 
m sets the number of regressor variables (default is the number of names found); must be set if 
there are extraneous fields to be ignored, 
!SKIP s specifies how many lines are to be skipped before reading the regressor data, 
!NONAMES indicates there is no line containing the individual names of the regressor variables; 
otherwise names are taken from the first (non-skipped) line in the file. 
If the factor identifiers are not present (!NOID), ASReml assumes that the order of the factor 
classes in the data file matches the order in the .grr file. If the factor identifiers are present, 
ASReml uses the identifiers obtained from the .grr file to define the order of the factor classes 
when the data is read; any extra identifiers in the data not in the .grr file are appended at the 
end of the factor level name list. If !NOID is set, identifiers in the .grr file are not needed and 
if present should be skipped using !CSKIP. 

Values are typically TAB, COMMA or SPACE separated but may be packed (no separator) when all 
values are integers 0/1/2. Missing values in the regression variables may be represented by *, NA. 
Invalid data is also treated as missing. Missing values are replaced by the mean of the respective 
regressor. Alternative missing data methods that involve imputation from neighbouring markers 
have not been implemented. 
Some general qualifiers are: 
!SAVEGIV instructs ASReml to write the G matrix in .dgiv format, 
!PSD s declares that the derived variance matrix may have up to s singularities, 
!PEV requests calculation of Prediction Error Variance of marker effects which are reported in 
the .mef file. Calculation of Prediction error variances was computationally very expensive. 
The algorithm has been drastically improved and the recommendation is to always use !PEV 
!CENTRE [c] requests ASReml to centre the regressors at c if c is specified else at the 
individual regressor means; otherwise the G matrix is formed from uncentered regressors. Note 
that centring introduces a singularity in the G matrix and !PSV s will need to be set. 

Other qualifiers relate specifically to whether the regressors are markers. Markers are typically 
coded 0/1/2 being counts of the minor allele. However, if they are imputed, they will take real 
values between 0 and 2. 
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Since marker files may be huge, 
!SMODE 𝑏𝑏 sets the storage mode for the regressor data, indicating whether it is marker data:  
𝑏𝑏 = 2 sets 2bit storage for strictly 0/1/2 marker data, 𝑏𝑏 = 8 (the default) sets 8bit storage useful 
for marker data with imputed values having 2 digits after the decimal, 𝑏𝑏 = 16 sets 16bit storage 
useful for marker data with imputation with more than 2 digits and 𝑏𝑏 = 32 sets 32bit real storage 
and should be used for non-marker data, 
!RANGE l h indicates the marker scores range l : h and are to be transformed to have a range 0:2, 
!GSCALE s, controls the scaling of the GRM matrix. If unspecified 𝑠𝑠 =  Σ2𝑝𝑝(1 − 𝑝𝑝) is used for 
marker data, s = 1 for non-marker data (!SMODE 32). Scaling is often used with centred marker 
data to scale the MM/ matrix so that it is a genomic matrix. 
Example 
!WORK 1 
Nassau Clone Data  
Nfam 71 !A 
Nfemale 26 !A 
Nmale 37 !A 
Clone !A 860 
rep 8 !A 
iblk 80 !A  
tree 
row  
col 
prop 1 !A 
culture 2 !A 
treat 2 !A 
measure 1 !A  
SURV 
DBH6  
HT6  
HT8 
CWAC6 !M-9 

snpData.grr Clone !SKIP 1 !HEAD 0 !CENTRE !MARKERS 4854 !IDS 923 !PEV 

nassau_cut v3.csv !MAXIT 30 !SKIP 1 !GDENSE !PEV 
HT6 ∼ mu culture culture.rep !r grm1(Clone) idv(Clone) idv(rep.iblk) 

where snpData.grr is first used to declare Clone identifiers (taken from the first field) in the 
correct order, and then contains the marker scores; it looks like 
Genotype,0-10024-01-114,0-10037-01-257,0-10040-02-394,... 
140099,2,2,1,2,2,2,2,2,2,1,2,1,2,1,1,2,1,2,2,2,2,2,1,2... 
141099,2,2,0,0,2,2,1,2,2,1,2,1,2,2,0,2,2,2,2,1,2,2,1,1... 
... 

547853,2,2,1,2,2,2,1,2,2,0,2,1,2,2,2,2,2,2,2,1,2,... 
547966,2,2,1,1,1,2,0,2,2,1,2,2,2,2,2,2,2,2,2,1,2,... 
548082,2,2,1,2,2,2,1,2,1,2,2,1,2,2,1,2,2,2,2,1,2,... 
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The primary output follows. 
 

Nfam 71 !A 
Nfemale 26 !A 
Nmale 37 !A 
Clone !A 860 
MatOrder 914 !A 
rep 8 !A 
iblk 80 !A 
prop 1 !A 
culture 2 !A 
treat 2 !A 
measure 1 !A  
CWAC6 !M-9 
Parsing: snpData.grr Clone !SKIP 1 !HEAD 0 !CENTRE !IDS 923  
Class names for factor "Clone" are initialized from the .grr file. 
Notice: SNP data line begins: 140099,2,2,1,2,2,2,2,2,2,1,2,1,2,1,1,  
Notice: Markers coded -9 treated as missing. 
Marker data [0/1/2] for 923 genotypes and 4854 markers read from snpData.grr  

160414 missing Regressor values ( 3.6%) replaced by column average! 
Regressor values ranged 0.00 to 2.00 
Regressor  Means ranged 1.00 to 2.00  

Regressors centered at their respective means 
Sigma2p(1-p) is 1057.12558 

GIV1 snpData.grr 923 9 -963.89 
QUALIFIERS: !MAXIT 30 !SKIP 1 !GDENSE 
QUALIFIER: !DOPART 3 is active 
Reading nassau_cut_v3.csv FREE FORMAT skipping 1 lines 

 
Univariate analysis of HT6 
Summary of 6399 records retained of 6795 read 

 
Model term Size #miss #zero MinNon0 Mean MaxNon0 StndDevn 
1 Nfam 71 0 0 1 36.3379 71  
2 Nfemale 26 0 0 1 12.8823 26  
3 Nmale 37 0 0 1 15.2285 37  

Warning: More levels found in Clone than specified 
4 Clone 926 0 0 1 464.6765 926 
Warning: Fewer levels found in MatOrder than specified 
5 MatOrder 914 0 0 1 432.5760 860  
6 rep 8 0 0 1 4.4837 8 
7 iblk 80 0 0 1 40.1164 80 
8 tree  0 0 1.0000 7.473 14.00 4.018 
9 row  0 0 1.0000 28.52 56.00 16.09 
10 col  0 0 1.0000 10.50 20.00 5.760 
Warning: Fewer levels found in prop than specified   
11 prop 2 0 0 1 1.0000 1  
12 culture 2 0 0 1 1.4945 2  
13 treat 2 0 0 1 1.4945 2  
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Warning: Fewer levels found in measure than specified 
14 measure 2 0  0 1 1.0000 1  

15 SURV  0  6 1.0000 0.9991 1.0000 0.3061E-01 
16 DBH6  4  0 0.3000E-01 11.29 18.80 2.400 
17 HT6 Variate 0  0 76.20 838.6 1286. 163.6 
18 HT8  83  0 91.44 1148. 1576. 170.6 
19 CWAC6  3167  0 97.54 301.3 542.5 52.26 
20 mu   1      

21 culture.rep  16 12 culture : 2 6 rep : 8 
Warning: GRM matrix is too SMALL       
22 grm1(Clone) 923        
23 idv(Clone) 926        
24 rep.iblk  640 6 rep : 8 7 iblk : 80 
25 idv(rep.iblk)  640       

Notice: Random model term grm1(Clone) is included in the DENSE equations. 
Use !GDENSE -1 before model line to cancel this action. 

Notice: This job may require more workspace.  
Forming 2508 equations: 942 dense. 
Initial updates will be shrunk by factor 0.316 
Notice: LogL values are reported relative to a base of -30000.000  
Notice: 11 singularities detected in design matrix. 
1 LogL=-2844.04 S2= 8959.5 6391 df 
2 LogL=-2797.00 S2= 8569.9 6391 df 
3 LogL=-2756.38 S2= 8131.9 6391 df 
4 LogL=-2739.15 S2= 7765.8 6391 df 
5 LogL=-2738.55 S2= 7701.9 6391 df 
6 LogL=-2738.55 S2= 7699.1 6391 df 

 
- - - Results from analysis of HT6 - - - 

Akaike Information Criterion 65485.10 (assuming 4 parameters).  
Bayesian Information Criterion 65512.15 

 
Model_Term  Gamma Sigma Sigma/SE % C 
grm1(Clone) GRM_V 923 0.282261 2173.14 5.86 0 P 
idv(rep.iblk) IDV_V 640 0.307974 2371.11 13.00 0 P 
idv(Clone) IDV_V 926 0.150498 1158.70 5.99 0 P 
Residual SCA_V 6399 1.000000 7699.05 49.64 0 P 

 
Wald F statistics 

Source of Variation NumDF F-inc 
20 mu 1  0.11E+06  
12 culture 1  2615.89  
21 culture.rep 6  30.46  
22 grm1(Clone)  923 effects fitted  
25 idv(rep.iblk)  640 effects fitted  
23 idv(Clone)  926 effects fitted ( 66 are zero) 

78 possible outliers: see .res file 
Finished: 11 Sep 2015 07:27:24.283 LogL Converged 

  



9.9 Factor effects with large Random Regression Models 

174 
 

Notes: 
• of 926 clones identified, 860 have data and 923 have genomic data. 
• The .res file contains additional details about the analysis including a listing of the 

larger marker effects. All marker effects are reported in the .mef file. 

• Particular columns of the .grr data can be included in the model using the 
grr(Factor,i) model term where and i specifies which (number) regressor variable 
to include. 

 
Listing of the larger marker/regressor effects 

368  368 1.43024 1.34858 
617  617 1.27161 1.37820 
777  777 -1.28065 1.34481 
1246  1246 1.24813 1.35733 
1903  1903 -1.26910 1.35005 
2445  2445 -1.37604 1.35490 
2497  2497 -1.23152 1.35987 
3180  3180 -1.24970 1.36437 
3521  3521 -1.19582 1.34865 
3802  3802 1.17789 1.34939 
4195  4195 -1.21353 1.36748 
4351  4351 -1.37283 1.34183 
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10 Tabulation of the data and prediction 
from the model 

 
 

10.1 Introduction 
 

This chapter describes the tabulate directive and the predict directive introduced in Section 
3.4 under Prediction. 

 
Tabulation is the process of forming simple tables of averages and counts from the data. Such 
tables are useful for looking at the structure of the data and numbers of observations associated 
with factor combinations. Multiple tabulate directives may be specified in a job. 

 
Prediction is the process of forming a linear function of the vector of fixed and random effects in 
the linear model to obtain an estimated or predicted value for a quantity of interest. It is primarily 
used for predicting tables of adjusted means. If a table is based on a subset of the explanatory 
variables then the other variables need to be accounted for. It is usual to form a predicted value 
either at specified values of the remaining variables, or averaging over them in some way. 

 
10.2 Tabulation 

 
A tabulate directive is provided to enable simple summaries of the data to be formed for the 
purpose of checking the structure of the data. The summaries are based on the same records as are 
used in the analysis of the model fitted in the same run. In particular, it will ignore records that 
exist in the data file but were dropped as the data was read into ASReml, either explicitly using 
!DV or implicitly because the dependent variable had missing values. Multiple tabulate 
statements are permitted either immediately before or after the linear model. If a linear (mixed) 
model is not supplied, tabulation is based on all records.  
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The tabulate statement has the form 
 
tabulate response_variables [!WT weight !COUNT !DECIMALS [d] !SD !RANGE !STATS 
!FILTER filter !SELECT value] ∼ factors 
 
• tabulate is the directive name, appearing on a new line, 

• response_variables is a list of variates for which means are required, 

• !WT weight nominates a variable containing weights, 

• !COUNT requests counts as well as means to be reported, 

• !DECIMALS [𝑑𝑑] (1 ≤ 𝑑𝑑 1 ≤  7) requests means be reported with 𝑑𝑑 decimal places. If omitted, 
ASReml reports 5 significant digits; if specified without an argument, 2 decimal places are 
reported, 

• !RANGE requests the minimum and maximum of each cell be reported, 

• !SD requests the standard deviation within each cell be reported, 

• !STATS is shorthand for !COUNT !SD !RANGE, 

• !FILTER filter nominates a factor for selecting a portion of the data, 

• !SELECT value indicates that only records with value in the filter column are to be included, 

• ~ factors identifies the factors to be used for classifying the data. Only factors (not covariates) 
may be nominated and no more than six may be nominated. 

ASReml prints the multiway table of means omitting empty cells to a file with extension 
.tab. 

 
10.3 Prediction 

 
10.3.1 Underlying principles 
Our approach to prediction is a generalization of that of Lane and Nelder (1982) who only consider 
fixed effects models. They form fitted values for all combinations of the explanatory variables in 
the model, then take marginal means across the explanatory variables not relevant to the current 
prediction. Our case is more general in that we also consider the case of associated factors (see 
below) and options for random effects that appear in our (mixed) models. A formal description 
can be found in Gilmour et al. (2004) and Welham et al. (2004). 
 
Associated factors have a particular one to many association such that the levels of one factor (say 
Region) define groups of the levels of another factor (say Location). In prediction, it is necessary 
to correctly associate the levels of associated factors.  
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Terms in the model may be fitted as fixed or random, and are formed from explanatory variables 
which are either factors or covariates. For this exposition, we define a fixed factor as an explanatory 
variable which is a factor and appears in the model in terms that are fixed (it may also appear in 
random terms), a random factor as an explanatory variable which  is a factor and appears in the 
model only in terms that are fitted as random. Covariates generally appear in fixed terms but may 
appear in random terms as well (random regression). In special cases they may appear only in 
random terms. 
 
Random factors may contribute to predictions in several ways. They may be evaluated at levels 
specified by the user, they may be averaged over, or they may be ignored (omitting all model terms 
that involve the factor from the prediction). Averaging over the set of random effects gives a 
prediction specific to the random effects observed. We call this a ‘conditional’ prediction. Omitting 
the term from the prediction model produces a prediction at the population average (often zero), 
that is, substituting the assumed population mean for a predicted random effect. We call this a 
‘marginal’ prediction. Note that in any prediction, some random factors (for example Genotype) 
may be evaluated as conditional and others (for example Blocks) at marginal values, depending 
on the aim of prediction. 
 
For fixed factors there is no pre-defined population average, so there is no natural interpretation 
for a prediction derived by omitting a fixed term from the fitted values. Therefore, any prediction 
will be either for specific levels of the fixed factor, or averaging (in some way) over the levels of 
the fixed factor. The prediction will therefore involve all fixed model terms. 
 
Covariates must be predicted at specified values. If interest lies in the relationship of the response 
variable to the covariate, predict a suitable grid of covariate values to reveal the relationship. 
Otherwise, predict at an average or typical value of the covariate. The default is to predict at the 
mean covariate value. Omission of a covariate from the prediction model is equivalent to 
predicting at a zero covariate value, which is often not appropriate (unless the covariate is centred). 
 
Before considering the syntax, it is useful to consider the conceptual steps involved in the 
prediction process. Given the explanatory variables (fixed factors, random factors and covariates) 
used to define the linear (mixed) model, the four main steps are 
 
(a) Choose the explanatory variable(s) and their respective level(s)/value(s) for which predictions 
are required; the variables involved will be referred to as the classify set and together define the 
multiway table to be predicted. Include only one from any set of associated factors in the classify 
set. 

(b) Note which of the remaining variables will be averaged over, the averaging set, and which will 
be ignored, the ignored set. The averaging set will include all variables involved in the fixed model 
but not in the classify set. Ignored variables may be explicitly added to the averaging set. The 
combination of the classify set with these averaging variables defines a multiway hyper-table. 
Only the base factor in a set of associated factors formally appears in this hyper-table, regardless 
of whether it is fitted as fixed or random. Note that variables evaluated at only one value, for 
example, a covariate at its mean value, can be formally introduced as part of the classify or 
averaging set.  
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(c) Determine which terms from the linear mixed model are to be used when predicting the cells 
in the multiway hyper-table in order to obtain either conditional or marginal predictions. That is, 
you may choose to ignore some random terms in addition to those ignored because they involve 
variables in the ignored set. All terms involving associated factors are by default included. 

(d) Choose the weights to be used when averaging cells in the hyper-table to produce the multiway 
table to be reported. The multiway table may require partial and/or sequential averaging over 
associated factors. Operationally, ASReml does the averaging in the prediction design matrix rather 
than actually predicting the cells of the hyper-table and then averaging them. 

The main difference in this prediction process compared to that described by Lane and Nelder 
(1982) is the choice of whether to include or exclude model terms when forming predictions. In 
linear models, since all terms are fixed, factors not in the classify set must be in the averaging set, 
and all terms must contribute to the predictions. 
 
10.3.2 Predict syntax 
The first step is to specify the classify set of 
explanatory variables after the predict 
directive. The predict statement(s) may 
appear immediately after the model line (before 
or after any tabulate statements) or after the 
R and G structure lines. The syntax is 
predict factors [qualifiers] 
 
• predict must be the first element of the predict statement, in upper or lower case, 

• factors is a list of the variables defining a multiway table to be predicted; each variable may be 
followed by a list of specific levels/values to be predicted, or the name of the file that contains 
those values, 

• the qualifiers, listed in Table 10.1, modify the predictions in some way,  

• a predict statement may be continued on subsequent lines by terminating the current line 
with a COMMA, 

• several predict statements may be specified. 

ASReml parses each predict statement before fitting the model. If any syntax problems are 
encountered, these are reported in the .pvs file after which the statement is ignored: the job is 
completed as if the erroneous prediction statement did not exist.  

NIN Alliance Trial 1989 variety !A 

⋮ 
column 11 

nin89.asd !skip 1 

yield ∼ mu variety !r idv(repl) 
predict variety 
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The predictions are formed as an extra process in the final iteration and are reported to the .pvs 
file. Consequently, aborting a run by creating the ABORTASR.NOW file (see Table 5.3) will cause 
any predict statements to be ignored. Create FINALASR.NOW instead of ABORTASR.NOW 
to make the next iteration, the final iteration in which prediction is performed. 
By default, factors are predicted at each level, simple covariates are predicted at their overall mean 
and covariates used as a basis for splines or orthogonal polynomials are predicted at their design 
points. Covariates grouped into a single term (using !G qualifier – see Section 5.4.1) are treated 
as covariates. 
Prediction at particular values of a covariate or particular levels of a factor is achieved by listing 
the levels/values after the variate/factor name. Where there is a sequence of values, use the notation 
a b ... n to represent the sequence of values from a to n with step size b-a. The default stepsize is 
1 (in which case b may be omitted). A colon (:) may replace the ellipsis (...). An increasing 
sequence is assumed. When giving particular values for factors, the default is to use the coded 
level (1:n) rather than the label (alphabetical or integer). To use the label, precede it with a quote 
("). Where a large number of values must be given, they can be supplied in a separate file, and the 
filename specified in quotes. The file form does not allow label coding or sequences. (See the 
discussion of !PRWTS for an example.) 

Model terms mv and units are always ignored. 

Model terms which are functions (such as at(, and(, pol(, sin(, spl( , ...) 
including those defined using !CONTRAST, !GROUP, !SUBGROUP, !SUBSET and !MBF are 
implicitly defined through their base variables and cannot be directly referenced in the classify 
and average sets. For example, 
!GROUP Year YearLoc 1 1 1 2 2 3 3 3 4 4  

forms a new factor Year with 4 levels from the existing factor YearLoc with 10 levels. The 
prediction must be in terms of YearLoc, not Year even if YearLoc does not formally appear 
in the model. For default averaging in prediction, the weights for the levels of the grouped factor 
(Year) will be (in this example) 0.3 0.2 0.3 0.2 derived from the weights for  the base factor 
(YearLoc). Use !AVE YearLoc { 2 2 2 3 3 2 2 2 3 3 } /24 to produce equal 
weighting of Year effects. 

If !G sets of variables are included in the classify set, only the first variable is reported in labelling 
the predict values, except that for !G !MM sets, the marker position is reported. 

Having identified the explanatory variables in the classify set, the second step is to check the 
averaging set. The default averaging set is those explanatory variables involved in fixed effect 
model terms that are not in the classify set. By default variables that are not in any !ASSOCIATE 
list and that only define random model terms are ignored. Use the !AVERAGE, !ASSOCIATE or 
!PRESENT, qualifiers to force variables into the averaging set. 

The third step is to check the linear model terms to use in prediction. The default is that all model 
terms based entirely on variables in the classifying and averaging sets are used.   
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Two qualifiers allow this default to be modified by adding (!USE) or removing (!IGNORE) model 
terms. The qualifier !ONLYUSE explicitly specifies the model terms to use, ignoring all others. 
The qualifier !EXCEPT explicitly specifies the model terms not to use, including all others. These 
qualifiers will not override the definition of the averaging set. 
The fourth step is to choose the weights to use when averaging over dimensions in the hypertable. 
The default is to simply average over the specified levels but the qualifier !AVERAGE factor 
weights allows other weights to be specified. !PRESENT and !ASSOCIATE/!ASAVERAGE 
generate more complicated averaging processes. 
The basic prediction process is described in the following example: 
yield ~ site variety !r idv(site).id(variety) at(site).idv(block) 
predict variety 

puts variety in the classify set, site in the averaging set and block in the ignore set. 
Consequently, ASReml implicitly forms the site×variety hyper-table from model terms 
site, variety and site.variety but ignoring all terms in at(site).block, and then 
averages across the sites to produce variety predictions. This prediction will work even if some 
varieties were not grown at some sites because the site.variety term was fitted as random. 
If site.variety was fitted as fixed, variety predictions would be non-estimable for those 
varieties that were not grown at every site. 

10.3.3 Predict failure 
It is not uncommon for users to get the message 
Warning: non-estimable [aliased] cell(s) may be omitted. 
because ASReml checks that predictions are of estimable functions in the sense defined by Searle 
(1971, p160) and are invariant to any constraint method used. 
 
Immediate things to check include whether every level of every fixed factor in the averaging set is 
present, and whether all cells in every fixed interaction is filled. For example, in the previous 
example, no variety predictions would be obtained if site was declared as having 4 levels but only 
three were present in the data. The message is also likely if any fixed model terms are !IGNOREd. 
The TABULATE command may be used to see which treatment combinations occur and in what 
order. 
 
More formally, there are often situations in which the fixed effects design matrix X is not of full 
column rank. This aliasing has three main causes. 
 
• linear dependencies among the model terms due to over-parameterisation of the model, 

• no data present for some factor combinations so that the corresponding effects cannot be 
estimated, 

• linear dependencies due to other, usually unexpected, structure in the data.  
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The first type of aliasing is imposed by the parameterisation chosen and can be determined from the 
model. The second type of aliasing can be detected when setting up the design matrix for parameter 
estimation (which may require revision of imposed constraints). All types are detected in ASReml 
during the absorption process used to obtain the predicted values. 
 
ASReml doesn’t print predictions of non-estimable functions unless the !PRINTALL qualifier is 
specified. However, using !PRINTALL is rarely a satisfactory solution. Failure to report predicted 
values normally means that the predict statement is averaging over some cells of the hyper-table 
that have no information and therefore cannot be averaged in a meaningful way. Appropriate use of 
the !AVERAGE and/or !PRESENT qualifiers will usually resolve the problem. The !PRESENT 
qualifier enables the construction of means by averaging only the estimable cells of the hyper-table, 
where this is appropriate. 
 
Table 10.1 is a list of the prediction qualifiers with the following syntax: 

 
• f is an explanatory variable which is a factor, 

• t is a list of terms in the fitted model, 

• n is an integer number, 

• v is a list of explanatory variables. 
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Table 10.1: List of prediction qualifiers 

qualifier action 

Controlling formation of tables 

!ASSOCIATE [v] facilitates prediction when the levels of one factor are grouped by the levels 
of another in a hierarchical manner. More details are given below. Two 
independent associate lists may be specified. 

!AVERAGE f 
[weights] 
!AVERAGE f 
’file’[,n] 

is used to formally include a variable in the averaging set and to explicitly set 
the weights for averaging. Variables that only appear in random model terms 
are not included in the averaging set unless specified with the 
!AVERAGE,!ASSOCIATE or !PRESENT qualifiers. 

Explicit weights may be supplied directly or from a file. The default is equal 
weights. 

weights can be expressed like {3*1 0 2*1}/5 to represent the sequence 
0.2 0.2 0 0.2 0.2. The string inside the curly brace is expanded first and 
the expression n*c means n occurrences of c. 

When there are a large number of weights, it may be convenient to prepare 
them in a file and retrieve them. All values in the file are taken unless ’,n’ is 
specified in which case they are taken from field/column n. 

!ASAVERAGE f 
[weights] 
!ASAVERAGE f 
’ file’[,n] 

is used to control averaging over associated factors. The default is to simply 
average at the base level. Hierarchal averaging is achieved by listing the 
associated factors to average in f. 

Explicit weights may be supplied directly or from a file as for !AVERAGE. 

!PARALLEL [v] without arguments means all classify variables are expanded in parallel. 
Otherwise list the variables from the classify set whose levels are to be taken 
in parallel. 

!PRESENT v is used when averaging is to be based only on cells with data. v is a list of 
variables and may include variables in the classify set. v may not include 
variables with an explicit !AVERAGE qualifier. The variable names in v may 
optionally be followed by a list of levels for inclusion if such a list has not been 
supplied in the specification of the classify set. ASReml works out what 
combinations are present from the design matrix. It may have trouble with 
complicated models such as those involving and()terms. 

A second !PRESENT qualifier is allowed on a predict statement (but not 
with !PRWTS). The two lists must not overlap. 

!PRWTS v is used in conjunction with the first !PRESENT v list to specify the weights 
that ASReml will use for averaging that !PRESENT table. More details are 
given below. 
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Table 10.1: List of prediction qualifiers 

qualifier Action 

Controlling inclusion of model terms 

!EXCEPT t causes the prediction to include all fitted model terms not in t. 

!IGNORE t causes ASReml to set up a prediction model based on the default rules and 
then removes the terms in t. This might be used to omit the spline Lack of fit 
term (!IGNORE fac (x)) from predictions as in  

yield ~ mu x variety !r spl(x) fac(x) 
predict x !IGNORE fac(x) 

which would predict points on the spline curve averaging over variety 

!ONLYUSE t causes the prediction to include only model terms in t. It can be used for 
example to form a table of slopes as in 

HI ~ mu X variety X.variety 
predict variety X 1 !onlyuse X X.variety 

!USE t causes ASReml to set up a prediction model based on the default rules and 
then adds the terms listed in t. 

Printing  

!DEC [n] gives the user control of the number of decimal places reported in the table 
of predicted values where n is 0...9. The default is 4. G15.9 format is used if 
n exceeds 9. 
When !VVP or !SED are used, the values are displayed with 6 significant 
digits unless n is specified and even; then the values are displayed with 9 
significant digits. 

!PLOT [x] instructs ASReml to attempt a plot of the predicted values. This qualifier is 
only applicable in versions of ASReml linked with the Winteracter Graphics 
library. If there is no argument, ASReml produces a figure of the predicted 
values as best it can. The user can modify the appearance by pressing ESC to 
popup a menu or with the plot arguments listed in Table 10.2. 

!PRINTALL instructs ASReml to print the predicted value, even if it is not of an estimable 
function. By default, ASReml only prints predictions that are of estimable 
functions. 

!SED requests all standard errors of difference be printed. Normally only an 
average value is printed. Note that the default average SED is actually an SED 
calculated from the average variance if the predicted values and the average 
covariance among the predicted values rather than being the average of the 
individual SED values. However, when !SED is specified, the average of the 
individual SED values is reported. 

!TDIFF requests t-statistics be printed for all combinations of predicted values. 

!TURNINGPOINTS n requests ASReml to scan the predicted values from a fitted line for possible 
turning points and if found, report them and save them internally in a vector 
which can be accessed by subsequent parts of the same job using $TPn. This 
was added to facilitate location of putative QTL (Gilmour, 2007). 
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Table 10.1: List of prediction qualifiers 

Qualifier action 

!TWOSTAGEWEIGHTS is intended for use with variety trials which will subsequently be combined 
in a meta analysis. It forms the variance matrix for the predictions, inverts 
it and writes the predicted variety means with the corresponding diagonal 
elements of this matrix to the .pvs file. These values are used in some 
variety testing programs in Australia for a subsequent second stage 
analysis across many trials (Smith et al., 2001). A database is used to collect 
the results from the individual trials and write out the combined data set. 
The diagonal elements, scaled by the variance which is also reported and 
held in the database, are used as weights in the combined analysis. 

!VPV requests that the variance matrix of predicted values be printed to the 
.pvs file. 

 
PLOT graphic control qualifiers 

 
This functionality was developed and this section was written by Damian Collins. 

 
The !PLOT qualifier produces a graphic of the predictions. Where there is more than one 
prediction factor, a multi-panel ’trellis’ arrangement may be used. Alternatively, one or more 
factors can be superimposed on the one panel. The data can be added to the plot to assist informal 
examination of the model fit. 

 
With no plot options, ASReml chooses an arrangement for plotting the predictions by recognising 
any covariates and noting the size of factors. However, the user is able to customize how the 
predictions are plotted by either using options to the !PLOT qualifier or by using the graphical 
interface. The graphical interface is accessed by pressing ESC when the figure is displayed. 
 
The !PLOT qualifier has the following options:   
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Table 10.2: List of predict plot options 

option Action 

Lines and data 
ˆaddData superimposes the raw data with the data points labelled using the given 

factors (which must not be prediction factors). This option may be useful to 
identify individual data points on the graph – for instance, potential outliers 
– or alternatively, to identify groups of data points (e.g. all data points in 
the same stratum). 

ˆaddlabels factors superimposes the raw data with the data points joined using the given 
factors which must not be prediction factors. This option may be useful for 
repeated measures data. 

ˆnoSEs specifies that no error bars should be plotted (by default, they are plotted) 
ˆsemult r specifies the multiplier of the SE used for creating error bars (default=1.0) 
ˆjoinmeans specifies that the predicted values should be joined by lines (by default, they 

are only joined if the x-axis variable is numeric) 
Predictions involving two or more factors 
 If these arguments are used, all prediction factors (except for those specified 

with only one prediction level) must be listed once and only once, otherwise 
these arguments are ignored. 

ˆxaxis factor specifies the prediction factor to be plotted on the x-axis 
ˆsuperimpose 
  factors 

specifies the prediction factors to be superimposed on the one panel. 

ˆcondition factors specifies the conditioning factors which define the panels. These should be 
listed in the order that they will be used. 

Layout  
ˆgoto n specifies the page to start at, for multi-page predictions. 

ˆsaveplot filename specifies the name of the file to save the plot to. 
ˆlayout rows cols specifies the panel layout on each page 
ˆbycols specifies that the panels be arranged by columns (default is by rows) 
ˆblankpanels n specifies that each page contains n blank panels. This sub-option can only 

be used in combination with the layout sub-option. 
ˆextrablanks n and 

ˆextraspan p 

specifies that an additional n blank panels be used every p pages These can 
only be used with the layout sub-option. 

Improving the graphical appearance (and readability) 
ˆlabcharsize n specifies the relative size of the data points/labels (default=0.4) 

ˆpanelcharsize n specifies the relative size of the labels used for the panels (default=1.0) 
ˆvertxlab specifies that vertical annotation be used on the x-axis (default is 

horizontal). 
ˆabbrdlab n specifies that the labels used for the data be abbreviated to n characters. 

ˆabbrxlab n specifies that the labels used for the x-axis annotation be abbreviated to n 
characters. 

ˆabbrslab n specifies that the labels used for superimposed factors be abbreviated to n 
characters. 
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10.3.4 Associated factors 
!ASSOCIATE factors facilitates prediction when the levels of one factor group or classify the 
levels of another, especially when there are many levels. factors is the list of factors in the model 
which have this hierarchical relationship. Typical examples are individually named lines grouped 
into families, usually with unequal numbers of lines per family, or trials conducted at locations 
within regions.  
 
Declaring factors as associated allows ASReml to combine the levels of the factors appropriately. 
For example, when predicting a trial mean, to add the effect of the location and region where the 
trial was conducted. When identifying which levels are associated, ASReml checks that the 
association is strictly hierarchal, tree-like. That is, each trial is associated with one location and 
each location is associated with only one region. If a level code is missing for one component, it 
must be missing for all. 
 
Averaging of associated factors will generally give differing results depending on the order in 
which the averaging is performed. We explore this with the following extended example. Consider 
the mean yields from 15 trials classified by region and location in Table 10.4. 

Table 10.3: Trials classified by region and location 
 

location 
Region  L1  L2 L3 L4 L5 L6 L7 L8 
R1 T1,  T2 T3, T4, T5 T6 
R2 T7, T8 T9, T10, T11 T12, T13 T14 T15 

Table 10.4: Trial means 

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 
10 12 11 12 13 13 11 13 11 12 13 10 12 10 10 

 
Assuming a simplified linear model yield ∼ mu region location trial 
the predict statement predict trial !ASSOCIATE region location trial 
will reconstruct the 15 trial means from the fitted mu, region, location and trial effects. 
 
Given these trial means, it is fairly natural to form location means by averaging the trials in 
each location to get the location means in Table 10.5. 

Table 10.5: Location means 

L1  L2 L3 L4 L5 L6 L7 L8 
11 12 13 12 12 11 10 10 

 

These are given by 
predict location !ASSOCIATE region location trial !ASAVERAGE trial 
or equivalently 
predict location !ASSOCIATE region location trial 
since the default is to average the base associate factor (trial) within the associated classify factor 
(location).   
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By contrast, by specifying 
predict location 
or equivalently 
predict location !AVERAGE region !AVERAGE trial 
ASReml would add the average of all the trial effects and the average of the region effects into all 
of the location means which is not appropriate. With !ASSOCIATE, it knows which trials to 
average (and which region effects to include) to form each location mean. That is, ASReml knows 
how to construct the trial means including the appropriate region and location effects, and which 
trials means to then average to form the location table. 
However, for region means, we have a choice. We can average the trial means in Table 10.4 
according to region obtaining region means of 11.83 and 11.33, or we can average the location 
means in Table 10.5 to get region means of 12 and 11. 
The former is the default in ASReml produced by 
predict region !ASSOCIATE region location trial !ASAVERAGE trial 
or equivalently by 
predict region !ASSOCIATE region location trial 

Again, this is base averaging. 

By contrast, 
predict region !ASSOC region location trial !ASAVE location trial 
(or predict region !ASSOC region location trial !ASAVE location ) 
produces sequential averaging giving region means of 12 and 11 respectively. 
Similarly, an overall sequential mean of 11.5 is given by 
predict mu !ASSOC region location trial !ASAVE region location 

while predict mu !ASSOC region location trial !ASAVE region 
gives a value of 11.58 being the average of region means 11.83 and 11.33 obtained by averaging 
trials within regions from Table 10.4, and 
predict mu !ASSOCIATE region location trial !ASAVE location 
predicts mu as 11.38, the average of the 8 location means in Table 10.5. 

 
Further discussion of associated factors 

The user may specify their own weights, using file input if necessary. Thus predict region 
... !ASAVERAGE location {1 2 3}/6 {1 1 1 2 1}/6 would give region predictions of 11.67 and 
10.84 respectively derived from the location predictions in Table 10.5. Note that because location 
is nested in region, the location weights should sum to 1.0 within levels of region when forming 
region means. The !AVERAGE (!ASAVERAGE) qualifier allows the weights to be read from a 
file which the user can create elsewhere. Thus the code !ASAVERAGE trial ’Tweight.csv’,2 
will read the weights from the second field of file Tweight.csv. The user must ensure the 
weights are in the coding order ASReml uses (trial order in this instance, given in the .sln 
file or by using the TABULATE command). 

It was noted that it is the base !ASSOCIATE factor that is formally included in the hyper-table. 
If the lowest stratum is random, it may be appropriate to ignore it.   
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Omitting it from the !ASSOCIATE list will allow it to re-enter the Ignore set. Specifying it with 
the !IGNORE qualifier will exclude its effects from the prediction but not ignore the structural 
information implied by the association. 
 
Normally it is not necessary for any model term to involve more than 1 of the associated factors. 
One exception is if an interaction is required so that the variance can differ between sections. For 
example, fitting the terms at(region).trial as random effects would allow the trials in region 
1 to have a different variance component to those in region 2. Prediction in these cases is more 
complicated and has only been implemented for this specific case and the analogous 
region.trial case. The associated factors must occur together in this order for the prediction 
to give correct answers. 
 
The !ASSOCIATE effect (with base averaging) can usually be achieved with the !PRESENT 
qualifier except when the factors have many levels so that the product of levels exceeds 2147 000 
000; it fails in this case because the KEY for identifying the cells present is a simple combination 
of the levels and is stored as a normal (32bit) integer. However, !ASSOCIATE is preferred 
because it formally checks the association structure as well as allowing sequential averaging. 
 
Two !ASSOCIATE clauses may be specified for example 
PRED entry !ASSOC family entry !ASSOC reg loc trial !ASAVE reg loc. 

Only one member of an !ASSOCIATE list may also appear in a !PRESENT list. If one member 
appears in the classify set, only that member may appear in the !PRESENT list. For example  
yield ~ region !r idv(region).id(family) idv(entry) 
PREDICT entry !ASSOCIATE family entry !PRESENT entry region. 

Association averaging is used to form the cells in the PRESENT table and PRESENT averaging 
is then applied. 

10.3.5 Complicated weighting with !PRESENT 
Generally, when forming a prediction table, it is necessary to average over (or ignore) some 
dimensions of the hyper table. By default, ASReml uses equal weights (1/f for a factor with f 
levels). More complicated weighting is achieved by using the !AVERAGE qualifier to set specific 
(unequal) weights for each level of a factor. However, sometimes the weights need to be defined 
with respect to two or more factors. The simplest case is when there are missing cells and 
weighting is equal for those cells in a multiway table that are present; achieved by using the 
!PRESENT qualifier. This is further generalized by allowing the user to supply the weights to be 
used by the !PRESENT machinery via the !PRWTS qualifier. 

The user specifies the factors in the table of weights with the !PRESENT statement and then gives 
the table of weights using the !PRWTS qualifier. There may only be one !PRESENT qualifier on 
the predict line when !PRWTS is specified. The order of factors in the tables of weights must 
correspond to the order in the !PRESENT list with later factors nested within preceding factors. 
The weights may be given in a separate file if a filename (in quotes) is given as the argument to !PRWTS. 
Check the output to ensure that the values in the tables of weights are applied in the correct order. ASReml 
may transpose the table of weights to match the order it needs for processing.  
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When weights are supplied in a separate file, two layouts are allowed. The default is to read all 
values in the file, regardless of layout. Otherwise, the weights must appear a single column/field 
(one weight per line) where the field is specified by appending ,c to the filename. 

Consider a rather complicated example from a rotation experiment conducted over several years. 
One analysis was of the daily live weight gain per hectare of the sheep grazing the plots. There 
were periods when no sheep grazed. Different flocks grazed in the different years. Daily liveweight 
gain was assessed between 5 and 8 times in the various years. To obtain a measure of total 
productivity in terms of sheep liveweight, we need to weight the daily gain by the number of sheep 
grazing days per month. The production for each year is given by 
 
predict year 1 crop 1 pasture lime !AVE month 56 55 56 53 57 63 6*0 
predict year 2 crop 1 pasture lime !AVE month 36 0 0 53 23 24 54 54 43 35 0 0 
predict year 3 crop 1 pasture lime !AVE month 70 0 21 17 0 0 0 70 0 0 53 0 
predict year 4 crop 1 pasture lime !AVE month 53 56 22 92 19 44 0 0 36 0 0 49 
predict year 5 crop 1 pasture lime !AVE month 0 22 0 53 70 22 0 51 16 51 0 0 

 
but to average over years as well, we need one of the following predict statements: 
 
predict crop 1 pasture lime !PRES year month , 
!PRWTS { 56 55 56 53 57 63 0 0 0 0 0 0, 

 36 0 0 53 23 24 54 54 43 35 0 0, 
 70 0 21 17 0 0 0 70 0 0 53 0, 
 53 56 22 92 19 44 0 0 36 0 0 49, 
 0 22 0 53 70 22 0 51 16 51 0 0}/5 
predict crop 1 pasture lime !PRES month year , 
!PRWTS { 56 36 70 53 0, 

 55 0 0 56 22, 
 56 0 21 22 0, 
 53 53 17 92 53, 
 57 23 0 19 70, 
 63 24 0 44 22, 
 0 54 0 0 0, 
 0 54 70 0 51, 
 0 43 0 36 16, 
 0 35 0 0 51, 
 0 0 53 0 0, 
 0 0 0 49 0}/5 
predict crop 1 pasture lime !PRES year month !PRWTS ’YMprwts.txt’ 

 
where YMprwts.txt contains 
 
11.2 11.0 11.2 10.6 11.4 12.6 0.0 0.0 0.0 0.0 0.0 0.0 
7.2 0.0 0.0 10.6 4.6 4.8 10.8 10.8 8.6 7.0 0.0 0.0 
14. 0.0 4.2 3.4 0.0 0.0 0.0 14. 0.0 0.0 10.6 0.0 
10.6 11.2 4.4 18.4 3.8 8.8 0 0 7.2 0 0 9.8 
0 4.4 0 10.6 14 4.4 0 10.2 3.2 10.2 0 0 
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We have presented both sets of predict statements to show how the weights were derived and 
presented. Notice that the order in !PRESENT year month implies that the weight coefficients 
are presented in standard order with the levels for months cycling within levels for years. There is 
a check which reports if non-zero weights are associated with cells that have no data. The weights 
are reported in the .pvs file. !PRESENT counts are reported in the .res file. 

 
10.3.6 Examples 
Examples are as follows: 
yield ~ mu variety !r idv(repl) 
predict variety 

is used to predict variety means in the NIN field trial analysis. Random repl is ignored in the 
prediction. 
yield ~ mu x variety !r idv(repl) 
predict variety 

predicts variety means at the average of x ignoring random repl. 
yield ~ mu x variety repl 
predict variety x 2 

forms the hyper-table based on variety and repl at the covariate value of 2 and then averages 
across repl to produce variety predictions. 
GFW Fdiam ~ Trait Trait.Year !r idv(Trait).id(Team) 
predict Trait Team 

forms the hyper-table for each trait based on Year and Team with each linear combination in 
each cell of the hyper-table for each trait using Team and Year effects. Team predictions are 
produced by averaging over years. 
yield ~ variety !r idv(site).id(variety) 
predict variety 

will ignore the site.variety term in forming the predictions while 
predict variety !AVERAGE site 

forms the hyper-table based on site and variety with each linear combination in each cell 
using variety and site.variety effects and then forms averages across sites to produce 
variety predictions. 
yield ~ site variety !r idv(site).id(variety) at(site).idv(block) 
predict variety 

puts variety in the classify set, site in the averaging set and block in the ignore set. 
Consequently, it forms the site×variety hyper-table from model terms site, variety 
and site.variety but ignoring all terms in at(site).block, and then forms averages 
across sites to produce variety predictions. 
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10.3.7 New R4 Prediction using two-way interaction effects 

In some cases we wish to calculate from two way interaction effects, 𝑏𝑏𝑐𝑐𝑖𝑖𝑖𝑖  say, effects for one of 
the factors, B say, that are a weighted sum averaged over the c levels of C, i.e.  
𝑏𝑏𝑖𝑖 = ∑𝑗𝑗=1

𝑐𝑐 𝑏𝑏𝑐𝑐𝑖𝑖𝑖𝑖𝑤𝑤𝑗𝑗 . 
 
TPREDICT C !AVE B weights !ONLYUSE fun(B).fun(C) 

allows this to be produced more computationally efficiently than it would be using PREDICT.  
For example, 

TPREDICT Animal !AVE Trait 2.1 1.2 -7.4 !ONLYUSE us(Trait).nrm(Animal) 

Part of the motivation for this is the calculation of selection indices. The index coefficients are 
typically derived as 𝑤𝑤 =  𝑎𝑎′𝐺𝐺𝑜𝑜𝑜𝑜𝐺𝐺𝑚𝑚𝑚𝑚−1  where 𝐺𝐺𝑚𝑚𝑚𝑚 is the variance matrix for the measured traits 
(corresponding to C in the example), 𝐺𝐺𝑜𝑜𝑜𝑜 is the genetic covariance matrix between the objective 
traits and the measured traits, and a is the vector of economic values for the objective traits. The 
results are given in a .sli (selection index) file. This directive should be placed after the model 
specification.
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11 Command file: Running the job 
 
 

11.1 Introduction 
 

The command line, its options and arguments are discussed in this chapter. Command line 
options enable more workspace to be accessed to run the job, control some graphics output and 
control advanced processing options. Command line arguments are substituted into the job at run 
time. 
 
As Windows likes to hide the command line, most command line options can be set on an optional 
initial line of the .as file we call the top job control line to distinguish it from the other job control 
lines discussed in Chapter 6. If the first line of the .as file contains a qualifier other than 
!DOPATH, it is interpreted as setting command line options and the Title is taken as the next line. 

 
11.2 The command line 

 
11.2.1 Normal run 

 
The basic command to run ASReml is 

 [path] ASReml basename[.as[c]] 

• path provides the path to the ASReml program (usually called asreml.exe in a PC 
environment). In a UNIX environment, ASReml is usually run through a shell script called 
ASReml. 

– if the ASReml program is in the search path then path is not required and the word 
ASReml will suffice; for example 
ASReml nin89.as 

will run the NIN analysis (assuming it is in the current working folder), 

– if asreml.exe(ASReml) is not in the search path then path is required, for example, if 
asreml.exe is in the usual place then 
C:\Program Files\ASReml3\bin\Asreml nin89.as 

will run nin89.as,  
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• ASReml invokes the ASReml program, 

• basename is the name of the .as[c] command file. 

The basic command line can be extended with options and arguments to 
 [path] ASReml [options] basename[.as[c]] [arguments] 

• options is a string preceded by a - (minus) sign. Its components control several operations 
(batch, graphic, workspace, . . . ) at run time; for example, the command line 

ASReml -w128 rat.as 

tells ASReml to run the job rat.as with workspace allocation of 128mb, 
 
• arguments provide a mechanism (mostly for advanced users) to modify a job at run time; for 

example, the command line 

ASReml rat.as alpha beta 

tells ASReml to process the job in rat.as as if it read alpha wherever $1 appears in the 
file rat.as, beta wherever $2 appears and 0 wherever $3 appears (see below). 

 
11.2.2 Processing a .pin file 

 
If the filename argument is a .pin file, (see Chapter 13), then ASReml processes it. If the pinfile 
basename differs from the basename of the output files it is processing, then the basename of the 
output files must be specified with the P option letter. Thus 

ASReml border.pin 

will perform the pinfile calculations defined in border.pin on the results in files border.asr 
and border.vvp. 

ASReml -Pborderwwt border.pin 

will perform the pinfile calculations defined in border.pin on the results in files 
borderwwt.asr and borderwwt.vvp. 

11.2.3 Forming a job template from a data file 
 

The facility to generate a template .as file was introduced in Section 3.4.1. Normally, the name 
of a .as command file is specified on the command line. If a .as file does not exist and a file 
with file extension .asd, .csv, .dat, .gsh, .txt or .xls is specified, ASReml assumes the data 
file has field labels in the first row and generates a .as file template. First, it seeks to convert the 
.gsh (Genstat) or .xls (Excel, see Section 4.2.3) file to .csv format.   
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In generating the .as template, ASReml takes the first line of the .csv (or other) file as providing 
column headings and generates field definition lines from them. If some labels have ! appended, 
these are defined as factors, otherwise ASReml attempts to identify factors from the field contents. 
The template needs further editing before it is ready to run but does have the field names copied 
across. 

 
11.3 Command line options 

 
Command line options and arguments may be specified on the command line or on the top job 
control line. This is an optional first line of the .as file which sets command line options and 
arguments from within the job. If the first line of the .as file contains a qualifier other than 
!DOPATH, it is interpreted as setting command line options and the Title is taken as the next line. 
 
The option string actually used by ASReml is the combination of what is on the command line and 
what is on the job control line, with options set in both places taking values from the command 
line. Arguments on the top job control line are ignored if there are arguments on the command 
line. This section defines the options. Arguments are discussed in detail in a following section. 
 
Command line options are not case sensitive and are combined in a single string preceded by 
a - (minus) sign, for example -LNW128 
 
The options can be set on the command line or on the first line of the job either as a concatenated 
string in the same format as for the command line, or as a list of qualifiers. For example, the 
command line 

ASReml -h22r jobname 1 2 3 
could be replaced with 

ASReml jobname 
if the first line of jobname.as was either 

!-h22r 1 2 3 
or 

!HARDCOPY !EPS !RENAME !ARGS 1 2 3 
 
Table 11.1 presents the command line options with brief descriptions. It also gives the name of the 
equivalent qualifier used on the top job control line. Detailed descriptions follow. 
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Table 11.1: Command line options 

option qualifier type Action 

Frequently used command line options 
C !CONTINUE job control continue iterations using previous estimates as 

initial values 
F !FINAL job control continue for one more iteration using previous 

estimates as initial values 
L !LOGFILE screen output copy screen output to basename.asl 

N !NOGRAPHS graphics suppress interactive graphics 

Ww !WORKSPACE w workspace set workspace size to w Mbyte 

Other command line options 

 !ARGS a job control to set arguments (a) in job rather than on command 
line 

A !ASK job control prompt for options and arguments 

Bb !BRIEF b output control reduce output to .asr file 

D !DEBUG debug invoke debug mode 

E !DEBUG 2  debug invoke extended debug mode 
Gg !GRAPHICS g graphics set interactive graphics device 

Hg !HARDCOPY g graphics set interactive graphics device, graphics screens not 
displayed 

I !INTERACTIVE graphics display graphics screen 

O !ONERUN job control override rerunning requested by !RENAME 

 !OUTFOLDER output control changes output folder 

P NA post-processing calculation of functions of variance components 

Q !QUIET graphics suppress screen output 

Rr !RENAME job control repeat run for each argument renaming output 
filenames 

Ss NA workspace set workspace size 

Yv !YVAR v job control over-ride y-variate specified in the command file 
with variate number v 

Z NA license reports current license details 

X !XML output control requests that the main output from the .asr, .pvs 
and .sln files be also written in the .xml file. 
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11.3.1 Prompt for arguments (A) 
A (!ASK) makes it easier to specify command line options in Windows Explorer. One of the 
options available when right clicking a .as file, invokes ASReml with this option. ASReml then 
prompts for the options and arguments, allowing these to be set interactively at run time. With 
!ASK on the top job control line, it is assumed that no other qualifiers are set on the line. For 
example, a response of 

-h22r 1 2 3 would be equivalent to 
ASReml -h22r basename 1 2 3 

 
11.3.2 Output control (B, !OUTFOLDER, !XML) 
B[b] (!BRIEF [b) suppresses some of the information written to the .asr file. The data 
summary and regression coefficient estimates are suppressed by the options B, B1 or B2. This 
option should not be used for initial runs of a job before you have confirmed (by checking the data 
summary) that ASReml has read the data as you intended. Use B2 to also have the predicted values 
written to the .asr file instead of the .pvs file. Use B-1 to get BLUE estimates reported in .asr 
file. 
 
!OUTFOLDER [path] allows most of the output files to be written to a folder other than the 
working folder. This qualifier must be placed on the top command line as it needs to be processed 
before any output files are opened. Most files produced by ASReml have a filename structure 
<basename><subname>.<extension> 
where <subname> is a command line argument value. If !OUTFOLDER is specified without 
path, the output filename pattern becomes 
<basename><subname>/<basename>.<extension> 
If path is specified, the output filename pattern becomes 
<path>/<basename><subname>.<extension> 
There are a few files written by ASReml that do not follow this naming pattern, for example, 
ainverse.bin and asrdata.bin. These remain unchanged, that is, they are not written to the 
output folder. 
 
!XML requests that the primary tables reported in the .asr file and key output from .pvs and 
.sln files are written to a .xml file in xml format. The output is presented in the order of 
computation. The first block written is a .asr block and includes start and finish times, the data 
summary, the iteration sequence summary and information criteria, then from the .pvs file the 
tables and associated information, then the summary of estimated variance structure parameters 
from the .asr file, then information from the .sln file, and then finally, the Wald F statistics and 
completion information from the .asr file. The process is repeated for each cycle of analysis. The 
intended use of this file is by programs written to parse ASReml output. For further details, 
including the status of intended future developments, please contact support@vsni.co.uk. 
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11.3.3 Debug command line options (D, E) 
D and E (!DEBUG, !DEBUG 2) invoke debug mode and increase the information written to the 
screen or .asl file. This information is not useful to most users. On UNIX systems, if ASReml 
is crashing use the system script command to capture the screen output rather than using the 
L option, as the .asl file is not properly closed after a crash. 

 
11.3.4 Graphics command line options (G, H, I, N, Q) 
Graphics are produced by ASReml on some platforms (e.g. PC and Linux) using the Winteracter 
graphics library. 
 
The I (!INTERACTIVE) option permits the variogram and residual graphics to be displayed. 
This is the default unless the L option is specified. 
 
The N (!NOGRAPHICS) option prevents any graphics from being displayed. This is the default 
when the L option is specified. 
 
The Gg (!GRAPHICS g) option sets the file type for hard copy versions of the graphics. Hard 
copy is formed for all the graphics that are displayed. 
 
H[g] (!HARDCOPY g) replaces the G option when graphics are to be written to file but not 
displayed on the screen. The H may be followed by a format code e.g. H22 for .eps. 
 
Q (!QUIET) is used when running under the control of ASReml-W to suppress any POP-
UPs/PAUSES from ASReml. 
 
ASReml writes the graphics to files whose names are built up as 
<basename>[<args>]<type>[<pass>][<section>].<ext>  
where square parentheses indicate elements that might be omitted, <basename> is the name 
portion of the .as file, <args> is any argument strings built into the output names by use of the 
!RENAME qualifier, <type> indicates the contents of the figure (as given in the following table), 
<pass> is inserted when the job is repeated (!RENAME or !CYCLE) to ensure filenames are 
unique across repeats, <section> is inserted to distinguish files produced from different sections 
of data (for example from multisite spatial analysis) and <ext> indicates the file graphics format. 

<type> file contents 

_R_ marginal means of residuals from spatial analysis of a section 
_V_ variogram of residuals from spatial analysis for a section 
_S_ residuals in field plan for a section 
_H_ histogram of residuals for a section 
_RvE residuals plotted against expected values 
XYGi figure produced by !X, !Y and !G qualifiers 
PV_i Predicted values plotted for PREDICT directive i 
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The graphics file format is specified by following the G or H option by a number g, or specifying 
the appropriate qualifier on the top job control line, as follows: 
 

g qualifier description <ext> 

1 !HPGL HP-GL pgl 
2 !PS Postscript (default) ps 
6 !BMP BMP bmp 
10 !WPM Windows Print Manager  

11 !WMF Windows Meta File wmf 
12 !HPGL 2 HP-GL2 hgl 
21 !PNG PNG png 
22 !EPS EncapsulatedPostScript eps 

11.3.5 Job control command line options (C, F, O, R) 
C(!CONTINUE) indicates that the job is to continue iterating from the values in the .rsv file. 
This is equivalent to setting !CONTINUE on the datafile line, see Table 5.4 for details. 

F(!FINAL) indicates that the job is to continue for one more iteration from the values in the 
.rsv file. This is useful when using predict, see Chapter 10. 

O(!ONERUN) is used with the R option to make ASReml perform a single analysis when the R 
option would otherwise attempt multiple analyses. The R option then builds some arguments into 
the output file name while other arguments are not. For example 
ASReml -nor2 mabphen 2 TWT out(621) out(929) 
results in one run with output files mabphen2_TWT.*. 

 
R[r] (!RENAME [r]) is used in conjunction with at least r argument(s) and does two things: 
it modifies the output filename to include the first r arguments so the output is identified  by these 
arguments, and, if there are more than r arguments, the job is rerun moving the extra arguments 
up to position r (unless !ONERUN (O) is also set). If r is not specified, it is taken as 1. 

 
For example 

ASReml -r2 job wwt gfw fd fat 
is equivalent to running three jobs: 

ASReml -r2 job wwt gfw → jobwwt_gfw.asr  
ASReml -r2 job wwt fd → jobwwt_fd.asr  
ASReml -r2 job wwt fat → jobwwt_fat.asr 

Yy (!YVAR y) overrides the value of response, the variate to be analysed (see Section 6.2) with 
the value y, where y is the number of the data field containing the trait to be analysed. This 
facilitates analysis of several traits under the same model. The value of y is appended to the 
basename so that output files are not overwritten when the next trait is analysed.  
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11.3.6 Workspace command line options (S, W) 

We have reworked some of the core routines to allow access to a larger workspace (up from 32 
to 96 Gbyte workspace). The use of memory has been changed to separate different kinds of data 
into different arrays in accord with more modern programming conventions. This results in the 
need to allocate more memory for a particular job than was needed in ASReml 4.1. 
 
Workspace can be set either on the command line (with the -Wm option) or with the 
!WORKSPACE m qualifier on the first line of the job (above the TITLE line). The former takes 
precedence. In either case m is interpreted in gigabytes. The argument m can include a decimal 
point and  ASReml reports the space available in Gbytes to one decimal place and a value of m 
less than 0.2  is interpreted as 0.2 Gbytes. 
 
The default workspace in ASReml 4.2 is 2 Gbytes, which is ample for the majority of runs. The 
minimum allocated is 0.2 Gbytes; the maximum allocated depends on what is available on your 
PC. We recommend that the workspace requested not exceed the RAM available on your 
machine (commonly 8 or 16 Gbytes). If your system cannot provide the requested workspace, 
the request will be diminished until it can be satisfied. On multi-user systems, do not 
unnecessarily request the maximum or other users may be unhappy. ASReml reports the actual 
amount of primary workspace used in a job at the end of the .asr file. Sometimes the allocation 
of primary workspace means that ASReml cannot access sufficient secondary workspace. ASReml 
will report this and suggest the primary workspace be reduced. 
 
11.3.7 Examples 

 

ASReml 
code 

action 

asreml -LW64 rat.as increase workspace to 64 Mbyte, send screen output to rat.asl and 
suppress interactive graphics 

asreml -IL rat.as send screen output to rat.asl but display interactive graphics 
asreml -N rat.as allow screen output but suppress interactive graphics 
asreml -ILW512 
rat.as 

increase workspace to 512 Mbyte , send screen output to rat.asl but 
display interactive graphics 

asreml -rw1 coop 
wwt ywt 

runs coop.as twice using 1Gbyte workspace and writing results to 
coopwwt.as and coopywt.as and substituting wwt and ywt for $1 
in the two runs. 

 

11.4 Advanced processing arguments 
 

11.4.1 Standard use of arguments 
Command line arguments are intended to facilitate the running of a sequence of jobs that require 
small changes to the command file between runs. The output file name is modified by the use of 
this feature if the -R option is specified. This use is demonstrated in the Coopworth example of 
Section 16.11.  
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Command line arguments are strings listed on the command line after basename, the command 
file name, or specified on the top job control line after the !ARGS qualifier. These strings are 
inserted into the command file at run time. When the input routine finds a $n in the command 
file it substitutes the nth argument (string). n may take the values 1...9 to indicate up to 9 strings 
after the command file name. If the argument has 1 character, a trailing blank is attached to the 
character and inserted into the command file. If no argument exists, a zero is inserted. For 
example, 
asreml rat.as alpha beta 

tells ASReml to process the job in rat.as as if it read alpha wherever $1 appears in the 
command file, beta wherever $2 appears and 0 wherever $3 appears. 

Table 11.2: The use of arguments in ASReml 

in command file on command line becomes in ASReml run 

abc$1def no argument abc0 def 

abc$1def with argument X abcX def 

abc$1def with argument XY abcXYdef 

abc$1def with argument XYZ abcXYZdef 

abc$1 def with argument XX abcXX def  

abc$1 def with argument XXX abcXXX def 

abc$1  def 
(multiple spaces) 

with argument XXX abcXXX def 

11.4.2 Prompting for input 
Another way to gain some interactive control of a job in the PC environment is to insert !? {text} 
in the .as file where you want to specify the rest of the line at run time. ASReml prompts with 
text and waits for a response which is used to compete the line. The !? qualifier may be used 
anywhere in the job and the line is modified from that point. 
 
Warning: Unfortunately the prompt may not appear on the top screen under some windows 
operating systems in which case it may not be obvious that ASReml is waiting for a keyboard 
response.  
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11.4.3 Paths and Loops 
ASReml was designed to analyse just one model per run. However, the analysis of a data set 
typically requires many runs, fitting different models to different traits. It is often convenient to 
have all these runs coded into a single .as file and control the details from the command line (or 
top job control line) using arguments. The high-level qualifiers !CYCLE and DOPATH enable 
multiple analyses to be defined and run in one execution of ASReml. 

Table 11.3: High-level qualifiers 

qualifier Action 

!ASSIGN list 
New R4 

An !ASSIGN string qualifier has been added to extend coding options. It 
is a high-level qualifier command which may appear anywhere in the job. 
Each occurrence of !ASSIGN must start on its own input line. The syntax 
is 

!ASSIGN name string 

or 

!ASSIGN name !< string !> 

and the defined string is substituted into the job where $name appears. 
string is the rest of the line and may include blanks. If !< !> encloses 
string, string may extend over several lines, which are concatenated. 
For example !ASSIGN TVS xfa1(Treat) 
... 
... $TVS.geno ... 
is interpreted as 
... xfa1(Treat).geno ... 
 
Restrictions: 
• a maximum of 50 assign strings may be defined. 

• the combined length of all strings is 5000 characters. 
• name may have up to 8 characters but should not begin with a 

number (see command line arguments). 

• dollar substitution occurs before most other high-level actions.  
ASSIGN strings and command line arguments may substitute into a 
!CYCLE line. 

• I, J, K and L are reserved as names referring to items in the 
!CYCLE list and should therefore not be used as names of an 
ASSIGN string. 
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Table 11.3 High-level qualifiers 

qualifier action 

!CYCLE [!SAMEDATA] 
list 
 

is a mechanism whereby ASReml can loop through a series of jobs. The 
!CYCLE has a qualifier !SAMEDATA that tells ASReml to use the same 
data for all cycles, i.e. the data file is only read on the first cycle, and is 
kept in memory for later cycles. The !CYCLE qualifier must appear on its 
own line. list is a series of values which are substituted into the job 
wherever the $I string appears. The list may spread over several lines if 
each incomplete line ends with a COMMA. A series of sequential integer 
values can be given in the form i : j (no embedded spaces). The output 
from the set of runs is concatenated into a single set of files, but the output 
written to the .asr file is slightly abbreviated after the first cycle, by 
suppressing the data summary and fixed effect solutions that might 
otherwise appear (see !BRIEF; the !BRIEF qualifier is set after the first 
cycle). 
 
For example 
!CYCLE 0.4 0.5 0.6 
20 0 mat2 1.9 $I !GPF 
would result in three runs and the results would be appended to a single 
file. Putting !SAMEDATA on the (leading) !CYCLE line makes ASReml 
read the data (and .grr file) file in the first CYCLE and hold it in memory 
for use in subsequent cycles. This is advantageous when the data/.grr 
file is large and there are many cycles to execute where the model changes, 
but the data/.grr file doesn’t. 
 
The !CYCLE mechanism acts as an inner loop when used with !RENAME 
!ARG. As an example, the !RENAME !ARG arguments might list a set of 
traits, and the !CYCLE arguments sequentially test a set of markers. 
 
A cycle string may consist of up to 4 substrings, separated by a semicolon 
and referenced as $I $J $K and $L respectively. For example 
!CYCLE Y1;X1 Y2;X2 
$I ∼ mu $J 
 
When cycling is active, an extra line is written to the .asr file containing 
some details of the cycle in a form which can be extracted to form an 
analysis summary by searching for LogL:. A heading for this extra line is 
written in the first cycle. For example 
LogL: LogL Residual NEDF NIT Cycle Text 
LogL: -208.97 0.703148 587 6 1466 "LogL Converged" 
The LogL: line with the highest LogL value is repeated at the end of the 
.asr file. 

!DOPATH n 
!DOPART n 

!DOPATH with !PATH/!PART statements allows several analyses to be 
coded in one job file and run selectively without having to edit the .as 
file between runs. Both spellings can be used interchangeably. Which 
particular lines in the .as file are honoured is controlled by the argument 
n of the !DOPATH qualifier in conjunction with !PATH (or !PART) 
statements. 
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Table 11.3 High-level qualifiers 

qualifier action 
 

The argument (n) is often given as $1 indicating that the actual path to use 
is specified as the first argument on the command line (see Section 11.4). See 
Sections 16.7 and 16.11 for examples. The default value of n is 1. 

!DOPATH n can be located anywhere in the job but if placed on the top job 
control line, it cannot have the form !DOPATH $1 unless the arguments are 
on the command line as the !DOPATH qualifier will be parsed before any job 
arguments on the same line are parsed. 

!FOR forlist !DO 
command 
New R4 

The !FOR ... !DO ... command is intended to simplify coding when a 
series of similar lines are required in the command file which differ in a single 
argument. The list of arguments is placed after !FOR and the command is 
written after !DO with $S indicating where the argument is to be inserted. 
list may be an assign string since they are processed before the !FOR 
statement is expanded. Furthermore, if list is entirely integer numbers, i:j 
notation can be used. 

For example 

!ASSIGN Markern 35 75 125 
!ASSIGN Markers M35 M75 M125 

!FOR $Markern !DO !MBF mbf(Geno,1) markers.csv !key 1 !RFIELD$S !RENAME M$S 

 ... ... !r $Markers 

is expanded to 

!MBF mbf(Geno,1) markers.csv !key 1 !RFIELD 35 !RENAME M35 
!MBF mbf(Geno,1) markers.csv !key 1 !RFIELD 75 !RENAME M75 
!MBF mbf(Geno,1) markers.csv !key 1 !RFIELD 125 !RENAME M125 
... ... !r M35 M75 M125 
 

 The aim here is to generate the 3 !MBF statements required to extract 
markers 35, 75 and 125 from the marker file markers.csv. The names of model 
terms must begin with a letter, hence the marker names are the letter M 
followed by the position number. Alternatively 
!RFIELDlettersinteger is interpreted as !RFIELD integer so the !FOR 
statement can be written even more concisely as 

!FOR $Markers !DO !MBF mbf(Geno,1) markers.csv !key 1 !RFIELD$S !RENAME $S 
 without the need to assign Markern. Now, to add another marker to the 

model, one can just add the marker integer to the ASSIGN statement. 
 
Restriction: forlist and command are both limited to 200 characters 
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Table 11.3 High-level qualifiers 

qualifier action 

!IF string1 == string2 text 
New R4 
 

One form of the IF statement is 
!IF string1 == string2 !ASSIGN M1 brt DamAge which 
makes the !ASSIGN statement active if string1 is the same as 
string2. Note that there need to be spaces before and after == to avoid 
confusion with the strings. This has been used when performing a large 
number of bivariate analyses with trait specific fixed effects being fitted. 
So 
... 
!IF $1 == wwt !ASSIGN M1 brt DamAge 
!IF $1 == ywt !ASSIGN M1 brt 
!IF $1 == fwt !ASSIGN M1 DamAge 
!IF $2 == wwt !ASSIGN M2 brt DamAge 
!IF $2 == ywt !ASSIGN M2 brt 
!IF $2 == fwt !ASSIGN M2 DamAge 
 
... 
$1 $2 ∼ Trait at(Trait,1).($M1) at(Trait,2).($M2) 

!PATH pathlist The !PATH (or !PART) control statement may list multiple path numbers 
so that the following lines are honoured if any one of the listed path 
numbers is active. The !PATH qualifier must appear at the beginning of 
its own line after the !DOPATH qualifier. A sequence of path numbers can 
be written using a : b notation. For example 
mydata.asd !DOPATH 4 
!PATH 2 4 6:10 
One situation where this might be useful is where it is necessary to run 
simpler models to get reasonable starting values for more complex 
variance models. The more complex models are specified in later parts 
and the !CONTINUE command is used to pick up the previous estimates. 

 

Example 
 
The following code will run through 1000 models fitting 1000 different marker variables to some 
data. For processing efficiently the 1000 marker variables are held in 1000 separate files in 
subfolder MLIB and indexed by Genotype. 

 
Marker screen  
Genotype *  
yield  

PhenData.txt 
!CYCLE 1:1000 
!MBF mbf(Genotype) MLIB\Marker$I.csv !RENAME Marker$I  
yld ~ mu !r Marker$I 
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Having completed the run, the UNIX command sequence 
grep LogL: screen.asr | sort > screen.srt 

sorts a summary of the results to identify the best fit. The best fit can then be added to the model 
and the process repeated. Assuming Marker35 was best, the revised job could be 
Marker screen  
Genotype *  
yield  

PhenData.txt 
!CYCLE 1:1000 
!MBF mbf(Genotype) MLIB\Marker$I.csv !RENAME Marker$I 
!MBF mbf(Genotype) MLIB\Marker35.csv !RENAME MKR035  
yld ~ mu !r MKR035 Marker$I 

 
We have given Marker35 a new name because it is still also generated by the !CYCLE unless it 
is modified to read 
!CYCLE 1:34 36:1000 

After several cycles, we might have 
Marker screen  
Genotype *  
yield  

PhenData.txt 
!ASSIGN MSET R21 R35 R376 R645 R879 
!CYCLE 1:1000 
!MBF mbf(Genotype) MLIB\Marker$I.csv !RENAME Marker$I 
!FOR $MSET !DO !MBF mbf(Genotype) MLIB\Marke$S.csv !RENAME $S  
yld ~ mu !r $MSET Marker$I 

 
11.4.4 Order of Substitution 
The substitution order is ASSIGN, FOR, CYCLE, TP, command line arguments and finally the 
interactive prompt. 

 
11.5 Performance issues 

 
11.5.1 New R4.2 Timing process 

Timing information useful for comparing execution time between models and/or builds of ASReml 
is available in the .asl file if the !LOGFILE and !DEBUG qualifiers (or command line options  
-DL) are set on the  first line of the job (above the TITLE line). Running the command  
grep '>>' job.asl at the command prompt will extract timing information. (grep is a 
UNIX/Linux command-line option used to find a specific string from inside a file. For Windows, 
the grep alternative is findstr)  

As an example we give the timings of a complex multi environment spatial analysis fitting an 
XFA1 model interacted with ide(Geno) and grm1(Geno). 

  



11.5 Performance issues 

206 
 

>> >> Process CPU_time SumCPU Clock SumClock 
>> >> GRM SG inversion: sec 78.19 78.19 11.45 11.45 
>> >> Get NRM/GRM: sec 1.06 79.25 0.14 11.59 
>> >> Getting Started: sec 2.08 81.33 1.89 13.48 
>> >> Before Order : sec 0.86 82.19 0.85 14.34 
>> >> Order found: sec 291.52 373.70 291.52 305.86 
FILLIN 101600575 ==>> 133331138 1.31, #SR: 51625, AvLen: 2583,\\ 
MxLen: 8458, AvFlops: 6677255 
>> >> C reordered: sec 48.86 420.56 46.86 352.72 
>> >> C absorbed: sec 669.86 1090.42 86.26 438.98 
>> >> AI formed: sec 6.81 1097.23 6.82 445.80 
>> >> Ci formed: sec 3150.66 4247.89 406.95 852.75 
>> >> Ci reordered: sec 23.02 4270.91 21.75 874.50 
>> >> Score formed: sec 4.91 4275.81 4.90 879.41 
>> >> Iteration complete: sec 0.00 4275.81 0.01 879.42 
>> >> Finished: sec 1.32 4277.17 1.36 880.78 

Typically, the major components are Order found, C absorbed and Ci formed. The 
INFILLIN line reports the size of the C matrix before and after absorption, and the ratio of the 
values. 

There have been some 10 areas where ASReml 4.2  is faster than the 2015 version of 4.1. 

1. Inversion of sparse G matrices has been improved and uses multiple processors 

2. Reduced time to work out an efficient equation order. 

3. The absorption routine has been changed to first perform a symbolic absorption so as to 
establish the complete infill pattern. Then memory can be accessed in a more linear fashion. 
In jobs with relatively dense G matrices, this can reduce the iteration time up to 40%. 

4. Reordering the C matrix into the order required for analysis.  

5. Nodal absorption is implemented in 4.2. It operates when there are C matrix links between 
consecutive rows. 

6. Multiprocessors are used in the absorption of C and the C inverse step. 

7. Improvements in formation of the Average Information matrix. 

8. Reordering the C inverse matrix back into the model for calculation of the scores. 

9. Improvements in formation of the scores. 

10. The processing of !PRESENT clauses was not efficient and in an analysis predicting 50,000 
genotypes having a hierarchical genotype structure, it took 2 hours to for the predict design 
matrix when the actual run otherwise only required a minute. Reorganising the process has 
resolved the issue. 

In the example given it was taking 532 minutes per iteration plus 113 minutes to obtain the 
equation order in ASReml 4.1. In ASReml 4.2 it now takes 10 minutes per iteration (+ 5 minutes to 
determine the equation order). 
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11.5.2 Slow processes 
The processing time is related to the size of the model, the complexity of the variance model (in 
particular the number of parameters), the sparsity of the mixed model equations, the amount of 
data being processed. 
 
Typically, the first iteration takes longer than other iterations. The extra work in the first iteration 
is to determine an optimum equation order for processing the model (see !EQORDER). 
 
The extra processes in the last iteration are optional. They include 

 
• calculation of predicted values (see PREDICT statement), 

• calculation of denominator degrees of freedom (see !DDF), 

• calculation of outlier statistics (see !OUTLIER). 

If a job is being run a large number of times, significant gains in processing time can sometimes 
be made by reorganising the data (so reading of irrelevant data is avoided), using binary data files, 
use of !CONTINUE to reduce the number of iterations, and avoiding unnecessary output (see 
!SLNFORM, !YHTFORM and !NOGRAPHICS).
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12 Command file: Merging data files 
 
 

12.1 Introduction 
 

The MERGE directive, described in this chapter, is designed to combine information from two 
files into a third file with a range of qualifiers to accommodate various scenarios. It was 
developed with assistance from Chandrapal Kailasanathan to replace the !MERGE qualifier (see 
61) which had very limited functionality. 

 
The MERGE directive is placed BEFORE the data filename lines. It is an independent part of 
the ASReml job in the sense that none of the files are necessarily involved in the subsequent 
analyses performed by the job, and there may be multiple MERGE directives. Indeed, the job may 
just consist of a title line and MERGE directives. The !MERGE qualifier, on the other hand, 
combines information from two files into the internal data set which ASReml uses for analysis 
and does not save it to file. It has very limited in functionality. 

 
The files to be merged must conform to the following basic structure: 

 
• the data fields must be TAB, COMMA or SPACE separated, 

• there will be one heading line that names the columns in the file, 

• the names may not have embedded spaces, 

• the number of fields is determined from the number of names,  

• missing values are implied by adjacent commas in COMMA delimited files. Otherwise, they 
are indicated by NA, * or . as in normal ASReml files. 

• the merged file will be TAB separated if a .txt file, COMMA separated if a .csv file and SPACE 
separated otherwise.  
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12.2 Merge Syntax 
 

The basic merge command is 
MERGE file1 !WITH file2 !TO newfile. 

Typically files to be merged will have common key fields. In the basic merge, (!KEY not 
specified) any fields having the same names are taken as the key fields and if the files have no 
fields in common, they are assumed to match on row number. Fields are referenced by name (case 
sensitive). The full command is: 
MERGE file1 [ !KEY keyfields ] [ !KEEP ] [ !SKIP fields ] 

!WITH file2 [ !KEY keyfields ] [ !KEEP ] [ !NODUP ] [ !SKIP fields] 
!TO newfile [!CHECK ][ !SORT ]. 

Warning: Fields in the merged file will be arranged with key fields followed by other fields from 
the primary file and then fields from the secondary file. 

Table 12.1: List of MERGE qualifiers 

qualifier action 

!CHECK requests ASReml confirm that fields having a common name have the same 
contents. Discrepancies are reported to the .asr file. If there are fields 
with common names which are not key fields, and !CHECK is omitted, the 
fields will be assumed different and both versions will be copied. 

!KEY keyfields names the fields which are to be used for matching records in the files. If 
the fields have the same name in both file headers, they need only be 
named in association with the primary input file. If the key fields are the 
only fields with common names, the !KEY qualifier may be omitted 
altogether. If key fields are not nominated and there are no common field 
names, the files are interleaved. 

!KEEP instructs ASReml to include in the merged file records from the input file 
which are not matched in the other input file. Missing values are inserted 
as the values from the other file. Otherwise, unmatched records are 
discarded. !KEEP may be specified with either or both input files. 

!NODUP fields Typically when a match occurs, the field contents from the second file are 
combined with the field contents of the first file to produce the merged 
file. The !NODUP qualifier, which may only be associated with the second 
file, causes the field contents for the nominated fields from the second file 
only be inserted once into the merged file. For example, assume we want 
to merge two files containing data from sheep. The first file has several 
records per animal containing fleece data from various years. The second 
file has one record per animal containing birth and weaning weights. 
Merging with !NODUP bwt wwt will copy these traits only once into the 
merged file. 

!SKIP fields is used to exclude fields from the merged file. It may be specified with 
either or both input files. 

!SORT instructs ASReml to produce the merged file sorted on the key fields. 
Otherwise the records are return in the order they appear in the primary 
file. 
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The merging algorithm is briefly as follows: The secondary file is read in, skip fields being omitted, 
and the records are sorted on the key fields. If sorted output is required, the primary file is also read 
in and sorted. The primary file (or its sorted form) is then processed line by line and the merged file 
is produced. Matching of key fields is on a string basis, not a value basis. If there are no key fields, 
the files are merged by interleaving. 

 
If there are multiple records with the same key, these are severally matched. That is if 3 lines of file 
1 match 4 lines of file 2, the merged file will contain all 12 combinations. 

 
12.3 Examples 

 
Key fields have different names 
!MERGE file1 !KEY key1a key1b !WITH file2 !KEY key2a key2b !TO newfile 
 
Key fields have common name and other fields are also duplicated 
!MERGE file1 !KEY keya keyb !WITH file2 !TO newfile !CHECK 

 
!MERGE file1 !Key key !KEEP !WITH file2 !to newfile 
will discard records from file2 that do not match records in file1 but all records in file1 are 
retained. 

 
Omitting fields from the merged file 
!MERGE file1 !KEY key !skip s1a s1b !WITH file2 !SKIP s2a s2b !TO newfile 

 
Single insertion merging 
!MERGE adult.txt !KEY ewe !KEEP !WITH birth.txt !KEEP !TO newfile !NODUP bwt. 
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13 Functions of variance components 
 
 

13.1 Introduction 
 

ASReml includes a procedure to calculate certain 
functions of variance components either as a 
final stage of an analysis or as a post- analysis 
procedure. These functions enable the 
calculation of heritabilities and correlations from 
simple variance components and when US, 
CORUH and XFA structures are used in the 
model fitting. A simple example is shown in the code box. The instructions to perform the required 
operations are listed after the VPREDICT !DEFINE line and terminated by a blank line. ASReml 
holds the instructions in a .pin until the end of the job when it retrieves the relevant information 
from the .asr and .vvp files and performs the specified operations. The results are reported in 
the .pvc file. 

 
In Section 13.2 the syntax for these instructions are discussed. Direct use of the .pin file, as was 
required in ASReml 2, is discussed in Section 13.3. 

 
13.2 Syntax 

 
Instructions to calculate functions are headed by a line 
VPREDICT !DEFINE 

This line and the following instructions can occur anywhere in the .as file but the logical place is 
at the end of the file. The instructions are processed after the job (part/cycle) has been completed. 
ASReml recognises a blank line (or end of file) as termination of the functional instructions. 

 
Functions of the variance components are specified by lines of the form 
letter label coefficients 

• letter (either F,H,K,M,R,S,V, X or W) must occur in column 1 
- F forms linear combinations of variance components, 

- H is for forming heritabilities, the ratio of two components,  

y ∼ mu !r idv(Sire) 
residual idv(units) 
VPREDICT !DEFINE 
F phenvar idv(Sire) + idv(units)  
F genvar idv(Sire) * 4 
R herit genvar phenvar 



13.2 Syntax 

212 
 

- K sets a vector (or matrix) of coefficients for use by M, 

- M pre/post multiplies a US matrix by the K matrix, 

- R is for forming the correlation from a covariance component, 

- S is a square root function, 

- V is for converting components related to a CORUH or an XFA structure into components 
related to a US structure, 

- W is a multiply function, 

- X is an output (write) function, 

• label names the result, 
• coefficients is the list of arguments/coefficients for the linear function. 

When ASReml reads back the variance parameters from the .asr file, each covariance component, 
or variance function, is assigned a name. The full name is usually the covariance function, or its 
specified contracted form, prepended by the consolidated model term, or its specified contracted 
form, and the symbol ;. Exceptions to this rule are single components F, id[v](F) and 
nrm[v](F) terms which are reduced to the corresponding single term F, id[v](F) and 
nrm[v](F). So, for example, with the random model and residual specification model terms 

!r idv(A) ar1v(B) nrm(C).us(Trait) D  

residual id(units).us(Trait) 

The covariance functions with parameters  
idv(A),ar1v(B), us(Trait) in nrm(C).us(Trait) 

and 

us(Trait) in id(units).us(Trait) are named 
idv(A), ar1v(B);ar1v(B),nrm(C).us(Trait);us(Trait), id(units).us(Trait);us(Trait).  

If the resulting name is not ambiguous the name can be contracted by reducing the consolidated 
model term to a unique substring or leaving out the consolidated model term completely. For 
example, in the example the covariance functions can be represented by idv(A), ar1v(B), 
C;us(Trait) and units;us(Trait), respectively. Individual parameters within a 
covariance component can be specified by number , or sequence of numbers (n:m) by appending 
these in square braces, for example, C;us(Trait)[3] or units;us(Trait)[4:6].  

If the residual directive is not used, the default R structure parameters are effectively named 
Residual. The orphan term D with no explicit variance function is treated as idv(D) structure 
with name D. If the user is in doubt of the name or number of a parameter then running  the 
program with VPREDICT !DEFINE and a blank line will construct a .pvc file with the names 
and numbers of parameters identified. 

 
The original implementation was based entirely on the numbers, but it will generally be better to 
use the names, since the order model terms are reported cannot always be predicted.  
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Critical change For generalised linear models in ASReml 4, the .pvc file reports and numbers, 
for completeness, a residual or dispersion parameter both when the parameter is estimated or when 
it is fixed. By contrast, ASReml 3 does not report nor number if the parameter is fixed by default 
at 1. Hence the parameters might be numbered differently in ASReml 4 and ASReml 3. 

 
13.2.1 Functions of components 
First ASReml extracts the variance components 
from the .asr file and their variance matrix from 
the .vvp file. The F, S, V and X functions create 
new components which are appended to the list. 
For example, the F function appends component 
𝑘𝑘 + 𝒄𝒄′𝒗𝒗 and forms cov (𝒄𝒄′𝒗𝒗,𝒗𝒗) and var (𝒄𝒄′𝒗𝒗) 
where v is the vector of existing variance 
components, c is the vector of coefficients for the linear function and 𝑘𝑘 is an optional offset which 
is usually omitted but would be 1 to represent the residual variance in a probit analysis and 3.289 
to represent the residual variance in a logit analysis.  
The general form of the directive is 

F label 𝑎𝑎 +  𝑏𝑏 ∗  𝑐𝑐𝑏𝑏  +  𝑐𝑐 +  𝑑𝑑 + 𝑚𝑚 ∗ 𝑘𝑘 

where a, b, c and d are the numbers or names of existing components 𝑣𝑣𝑎𝑎, 𝑣𝑣𝑏𝑏, 𝑣𝑣𝑐𝑐 and 𝑣𝑣𝑑𝑑 and 𝑐𝑐𝑏𝑏 is 
a multiplier for 𝑣𝑣𝑏𝑏. 𝑚𝑚 is a number greater than the current length of v to flag the special case of 
adding the offset 𝑘𝑘. When using the component numbers, the form 𝑎𝑎: 𝑏𝑏 can be used to reference 
blocks of components as in 
F label 𝑎𝑎: 𝑏𝑏 ∗  𝑘𝑘 +  𝑐𝑐:𝑑𝑑 

The instructions in the ASReml code box corresponds to a simple sire model so that variance 
component 1 is the Sire variance and variance component 2 is the residual variance, then 
F phenvar 1 + 2 

or 
F phenvar idv(Sire) + idv(units) 

creates a third component called phenvar which is the sum of the variance components, that is, 
the phenotypic variance, 
F genvar 1 * 4 

or 
F genvar idv(Sire) * 4 

creates a fourth component called genvar which is the sire variance component multiplied by 4, 
that is, the genotypic variance.  

y ∼ mu !r idv(Sire) 
residual idv(units) 
VPREDICT !DEFINE 
F phenvar idv(Sire) + idv(units)  
F genvar idv(Sire) * 4 
R herit genvar phenvar 
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Ratios, or in particular cases heritabilities, are 
requested by function lines beginning with an H. 
The specific form of the directive is 
H label n d 
This calculates 𝜎𝜎𝑛𝑛2/𝜎𝜎𝑑𝑑2 and 𝑠𝑠𝑠𝑠[𝜎𝜎𝑛𝑛2/𝜎𝜎𝑑𝑑2] where 𝑛𝑛 
and 𝑑𝑑 are the names of the components or integers 
pointing to components 𝑣𝑣𝑛𝑛 and 𝑣𝑣𝑑𝑑 that are to be 
used as the numerator and denominator respectively in the heritability calculation. 

 
Note that covariances between ratios and other components are not generated so the ratios are not 
numbered and cannot be used to derive other functions. To avoid numbering confusion it is better 
to include H functions at the end of the VPREDICT block. 

 
In the example 
H herit 4 3 or H herit genvar phenvar 

calculates the heritability by calculating component 4 (from second line) / component 3 (from first 
line), that is, genetic variance / phenotypic variance. 

 
S label i:j when i:j are assumed positive variance parameters, inserts components which are the 
SQRT of components i:j. 

 
X label i*k inserts a component being the product of components i and k. 

 
X label i:j*k inserts 𝑗𝑗 − 𝑖𝑖 + 1 components being the products of components i : j and k. 
 
X label i:j*k:l inserts a set of 𝑗𝑗 − 𝑖𝑖 + 1 components being the pairwise products of components 
i : j and k : l. 

 
The S and X functions are new in ASReml Release 4. The multiply option (X) allows a correlation 
in a CORUV structure to be converted to a covariance. The SQRT option allows conversion of 
CORGH to US, provided the dimension is moderate (say < 10). 

 
The variances and covariances are calculated using a Taylor series expansion. Then for parameters 
𝑣𝑣𝑎𝑎 and 𝑣𝑣𝑏𝑏 derived from the set of parameters v with variance matrix V, if 𝑣𝑣𝑎𝑎 = 𝑓𝑓𝑎𝑎(𝒗𝒗) and  
𝑣𝑣𝑏𝑏 = 𝑓𝑓𝑏𝑏(𝒗𝒗) then if 𝛿𝛿𝒗𝒗𝑎𝑎 = 𝛿𝛿𝑓𝑓𝑎𝑎(𝑣𝑣)

𝛿𝛿𝛿𝛿
 and if 𝛿𝛿𝒗𝒗𝑏𝑏 = 𝛿𝛿𝑓𝑓𝑏𝑏(𝑣𝑣)

𝛿𝛿𝛿𝛿
 then 𝑐𝑐𝑐𝑐𝑐𝑐�𝑣𝑣𝑎𝑎,𝑣𝑣𝑏𝑏� = 𝛿𝛿𝒗𝒗𝑎𝑎′ 𝑽𝑽𝛿𝛿𝒗𝒗𝑏𝑏  

 

13.2.2 Convert CORUH and XFA to US 
V label i:j where i : j spans a CORUH variance structure, inserts the US matrix based on the 
CORUH parameters. 
 
V label i:j where i : j spans an XFA variance structure, inserts the US matrix based on the 
XFA parameters.  

y ∼ mu !r idv(Sire) 
residual idv(units) 
VPREDICT !DEFINE 
F phenvar idv(Sire) + idv(units)  
F genvar idv(Sire) * 4 
R herit genvar phenvar 
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13.2.3 Correlation 
Correlations are requested by lines beginning 
with an R. The specific form of the directive is 
R label a ab b  

This calculates the correlation 𝑟𝑟 = 𝜎𝜎𝑎𝑎𝑎𝑎/ �𝜎𝜎𝑎𝑎2𝜎𝜎𝑏𝑏2  
and the associated standard error. a, b and ab are 
integers indicating the position of the 
components to be used. Alternatively, 
R label a:n 

calculates the correlation 𝑟𝑟 = 𝜎𝜎𝑎𝑎𝑎𝑎/ �𝜎𝜎𝑎𝑎2𝜎𝜎𝑏𝑏2 for all correlations in the lower triangular row-wise 
 

Note that covariances between ratios and other components are not generated so the correlations 
are not numbered and cannot be used to derive other functions. To avoid numbering confusion it 
is better to include R functions at the end of the VPREDICT block. 

 
In the example  
R phencorr  7 8 9 or R phencorr phenvar 

 
calculates the phenotypic covariance by calculating 
component 8 / �component 7 × component 9 where components 7, 8 and 9 are created with 
the first line of the .pin file, and 

R gencorr 4:6 or R gencorr sire;us(Trait) 
 
calculates the genotypic covariance by calculating 
component 5 / �component 4 × component 6 where components 4, 5 and 6 are variance 
components from the analysis. 

 
13.2.4 New R4.2 Convert variance matrix of variable to variance 

matrix of transformed variable 
Functions K and M facilitate calculation of transformed variance components. A model may 
generate an estimated variance-covariance matrix 𝚺𝚺 for s effects 𝒖𝒖 and there might be interest in 
using 𝑲𝑲 a (𝑟𝑟 × 𝑠𝑠) matrix to transform 𝒖𝒖 to 𝑲𝑲𝑲𝑲 with derived symmetric  (𝑟𝑟 × 𝑟𝑟) variance matrix 
𝑴𝑴 =  𝑲𝑲 𝜮𝜮 𝑲𝑲’. For instance we might have a yield on a plot, one of its row neighbours and one of 
its column neighbours estimated using a spatial autoregressive model and wish to compute the 
variance matrix of sums and differences of these three yields. If 𝚺𝚺 is the residual variance of the 
three plots and 𝑲𝑲 a matrix allowing the formation of sums or differences then we wish to form 
𝑴𝑴 =  𝑲𝑲 𝜮𝜮 𝑲𝑲’. 
 
K label v  
 defines a vector (v) of coefficients 
M label i:j m:n !DIAG  

  

y1 y2 ∼ Trait !r  id(sire).us(Trait) 
residual id(units).us(Trait) 
VPREDICT !DEFINE 
F phenvar 4:6 + 1:3 
#id(sire).us(Trait);us(Trait) 
#+units;us(Trait) 
R phencorr 7:9 #phenvar 
R gencorr 4:6 #sire;us(Trait) 
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Specifies 𝑲𝑲 an (𝑟𝑟 × 𝑐𝑐) matrix derived from the set of 𝑟𝑟 vectors of length 𝑐𝑐 starting with 
firstveclabel and ending with lastveclabel. If all the required vectors start with the same initial 
symbols initialvecsymbols can be used to specify K m:n specifies 𝑺𝑺 an unstructured symmetric 
(𝑠𝑠 × 𝑠𝑠) variance matrix. Note that m:n can be replaced by a structure label. 
 
There are two cases if 𝑐𝑐 = 𝑠𝑠 the matrices 𝑲𝑲 and 𝑺𝑺 are conformable and 𝑴𝑴 = 𝑲𝑲𝑲𝑲𝑲𝑲’  is computed. 
If the columns of 𝑺𝑺 are a multiple (𝑠𝑠/𝑐𝑐) of the columns of 𝑲𝑲 then a partitioned form of a 
𝑟𝑟𝑟𝑟/𝑐𝑐 × 𝑟𝑟𝑟𝑟/𝑐𝑐 variance matrix 𝑴𝑴 is formed with (𝑟𝑟 × 𝑟𝑟) sub-matrix 𝑴𝑴𝒊𝒊𝒊𝒊 = 𝑲𝑲𝑲𝑲𝒊𝒊𝒊𝒊𝑲𝑲′with 𝑺𝑺 
partitioned into (𝑐𝑐 × 𝑐𝑐) sub-matrices 𝑺𝑺𝒊𝒊𝒊𝒊 (𝑖𝑖, 𝑗𝑗 = 1, … , 𝑠𝑠/𝑐𝑐). If !DIAG is set only the diagonal 
elements of 𝑀𝑀 are computed. See Section 13.2.7 for more details. 
 
13.2.5 Write components 
W <filename> i[:j] writes component(s) i [to j] to a file (filename .vpc) and their variance matrix 
to another file (filename.vpv). 

13.2.6 A more detailed example 
The following example for a bivariate sire model is a little more complicated. The job file 
bsiremod.as contains 

 
... 
coop.fmt 

 
ywt fat ~ Trait Trait.(age c(brr) sex sex.age) !r us(Trait).id(sire);us(Trait) !f Tr.grp 
residual id(units).us(Trait) 

 
VPREDICT !DEFINE 
F phenvar id(units).us(Trait);us(Trait) + us(Trait).sire;us(Trait) # 1:3 + 4:6  
F addvar sire;us(Trait) * 4 # 4:6 * 4 
H heritA addvar[1] phenvar[1] # 10 7 
H heritB addvar[3] phenvar[3] # 12 9 
R phencorr phenvar # 7 8 9 
R gencorr addvar # 4:6 
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The relevant lines of the .asr file are 
 

Model_Term 
id(units).us(Trait) 

Sigma 
8140 effects 

Sigma Sigma/SE % 
C 

Trait US_V 1 1 23.2055 23.2055 44.44 0 P 
Trait US_C 2 1 2.50402 2.50402 18.56 0 P 
Trait US_V 2 2 1.66292 1.66292 32.82 0 P 
us(Trait).id(sire) 184 effects 
Trait US_V 1 1 1.45821 1.45821 3.66 0 P 
Trait US_C 2 1 0.130280 0.130280 1.92 0 P 
Trait US_V 2 2 0.344381E-01 0.344381E-01 2.03 0 P 

Numbering the parameters reported in bsiremod.asr (and bsiremod.vvp) 
1  error variance for ywt 
2  error covariance for ywt and fat 
3  error variance for fat 
4  sire variance component for ywt 
5  sire covariance for ywt and fat 
6  sire variance for fat 
then 
F phenvar id(units).us(Trait);us(Trait) + us(Trait).id(sire);us(Trait)or  
F phenvar units;us(Trait) + sire;us(Trait) or F phenvar 1:3 + 4:6 

creates new components 7 = 1+4, 8 = 2+5 and 9 = 3+6, 

F addvar sire;us(Trait) * 4 or F addvar 4:6 * 4 

creates new components 10 = 4 × 4, 11 = 5 × 4 and 12 = 6 × 4, 

H heritA addvar[1] phenvar[1] or H heritA 10 7 

forms 10 / 7 to give the heritability for ywt, 

H heritB addvar[3] phenvar[3] or H heritB 12 9 

forms 12 / 9 to give the heritability for fat, 

R phencorr phenvar or R phencorr 7 8 9 

forms 8 /√7 × 9, that is, the phenotypic correlation between ywt and fat, 

R gencorr addvar  or R gencorr 4:6 

forms 5 /√4 × 6 , that is, the genetic correlation between ywt and fat. 

The resulting .pvc file contains:  
id(units).us(Trait) 8140 effects 
1 id(units).us(Trait);us(Trait) V 1 1 23.2055 0.522176 
2 id(units).us(Trait);us(Trait) C 2 1 2.50402 0.134915 
3 id(units).us(Trait);us(Trait) V 2 2 1.66292 0.506679E-01 

us(Trait).id(sire) 184 effects 
4 us(Trait).id(sire);us(Trait) V 1 1 1.45821 0.398418 
5 us(Trait).id(sire);us(Trait) C 2 1 0.130280 0.678542E-01 
6 us(Trait).id(sire);us(Trait) V 2 2 0.344381E-01 0.169646E-01 
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7 phenvar 1  24.664 0.64250  
8 phenvar 2  2.6343 0.14763 
9 phenvar 3  1.6974 0.52365E-01 

10 addvar 4  5.8328 1.5926 
11 addvar 5  0.52112 0.27168 
12 addvar 6  0.13775 0.67791E-01 
 heritA  = addvar 10/phenvar 7= 0.2365 0.0612 
 heritB  = addvar 12/phenvar 9= 0.0812 0.0394 
 phenco 2 1 = phenv  8/SQR[phenv 7*phenv   9]= 0.4071 0.0183 
 gencor 2 1 = addva 11/SQR[addva 10*addva 12]= 0.5814 0.2039 
Notice: The parameter estimates are followed by  

their approximate standard errors. 

 
The first 8 lines are based on the .asr file. 

 
13.2.7 Conversion of variance matrix variables to variance matrix of 

transformed variables 
For instance, we might have a plot, one of its row neighbours and one of its column  neighbours 
estimated using a spatial autoregressive model and wish to compute the variance matrix of sums 
and differences of these three plots. If 𝜎𝜎2,  𝜌𝜌𝑟𝑟 and 𝜌𝜌𝑐𝑐 are the residual variance, autoregressive row 
correlation and autoregressive column parameter respectively from fitting the autoregressive model 
ar1v(row).ar1(column) Then the residual matrix of the three plots is 

 

𝚺𝚺 = �
𝜎𝜎2 𝜌𝜌𝑟𝑟𝜎𝜎2         𝜌𝜌𝑐𝑐𝜎𝜎2

𝜌𝜌𝑟𝑟𝜎𝜎2 𝜎𝜎2                𝜌𝜌𝑐𝑐𝜎𝜎2

  𝜌𝜌𝑐𝑐𝜎𝜎2       𝜌𝜌𝑟𝑟𝜌𝜌𝑐𝑐𝜎𝜎2      𝜎𝜎2
� 

 
The ASReml code 
X COV12 ar1v(row).ar1(column);Residual * ar1v(row).ar1(column);ar1v(row) 
X COV13 ar1v(row).ar1(column);Residual * ar1v(row).ar1(column);ar1(column) 
X COV23 COV12*ar1v(row).ar1(column);ar1(column) 
F US ar1v(row).ar1(column);Residual 
F US COV12 
F US ar1v(row).ar1(column);Residual 
F US COV13 
F US COV23 
F US ar1v(row).ar1(column);Residual 

Constructs the covariance terms in Σ (COV12,COV13 and COV23) and forms the lower triangle 
part of Σ (US). 

The ASReml code 
K KS_1 1 1 0 
K KS_2 1 0 1 
K KS_3 0 1 1 

specifies 3 row vectors.  
The ASReml code 
M m_11 KS_1 US 
M M_SS KS_1:KS_3 US 



13.2 Syntax 

219 
 

Forms the scalar 𝒎𝒎𝟏𝟏𝟏𝟏 =  𝒌𝒌𝒔𝒔𝒔𝒔 𝚺𝚺𝒌𝒌𝒔𝒔𝒔𝒔′  (𝒎𝒎𝟏𝟏𝟏𝟏) and matrix 𝑴𝑴𝒔𝒔𝒔𝒔 =  𝑲𝑲𝒔𝒔 𝚺𝚺𝑲𝑲𝒔𝒔
′  (𝑴𝑴𝑺𝑺𝑺𝑺) 

with 

𝒌𝒌𝑠𝑠 = [1 1 0] and 𝑲𝑲𝒔𝒔 = �
1 1      0
1 0     1
0     1     1

� 

 
As all the vectors start with KS the last matrix can also be formed by replacing KS _1:KS_3 by KS. 
 
Another example of requiring variance matrices of transformed variables, indeed the motivating 
example is random regression models. A random regression model will typically contain a term like 
us(leg(dim,2)).id(individual)) which estimates a 3 × 3 variance matrix, say 𝚺𝚺∗, with 6 variance 
parameters being (co)variances among the 3 Legendre polynomial effects, say u, for individuals. 
We sometimes would like the variance matrix of predictions of the individual effects at specific 
values of dim, that is, for 𝑲𝑲∗𝒖𝒖 with 𝑲𝑲∗ containing vectors of Legendre polynomials at various values 
of dim. For example 
K Leg_15 0.7071 -1.1431 1.2754  
K Leg_45 0.7071 -0.8981 0.4848  
K Leg_75 0.7071 -0.6532 -0.1159 
K Leg_105 0.7071 -0.4082 -0.5270  

Forms vectors of 3 Legendre polynomial values for dim =15,45,75,105 for polynomials with 305 
points. The polynomial values are available in the .res file. Then 
M m *̂_11 Leg_15 us(leg(dim,3)).id(Iindividual));us(leg(dim,2)) 
and 
M M *̂ Leg us(leg(dim,3)).id(Iindividual));us(leg(dim,2)) 

form the scalar 𝒎𝒎𝟏𝟏𝟏𝟏
∗ =  𝒌𝒌𝟏𝟏∗  𝜮𝜮𝒌𝒌𝟏𝟏∗

′(𝒎𝒎𝟏𝟏𝟏𝟏
∗ ) and matrix 𝑴𝑴∗ =  𝑲𝑲∗ 𝜮𝜮𝜮𝜮∗′(𝑴𝑴∗) with 

𝒌𝒌𝟏𝟏∗ = [0.7071 − 1.1431      1.2754 ] 

and 

𝑲𝑲∗ = �
 0.7071 − 1.1431  1.2754 
0.7071 − 0.8981  0.4848
0.7071 − 0.6532 − 0.1159
 0.7071 − 0.4082 − 0.5270

� 

The line 
M D *̂ Leg us(leg(dim,3)).id(Iindividual));us(leg(dim,2)) !DIAG 
calculates the 4 diagonal elements of 𝑴𝑴∗. 
 
The example can be extended to deal with unstructured models generated by interactions of factors 
with variables, for instance us(Trait.leg(dim,2)).id(individual) then if the factor Trait has 2 values, 
then us(Trait.leg(dim,2)) generates a (6 x 6) matrix. If we were interested in calculating the variances 
and covariances between effects at the 4 values of dim we could use 
M Gen2Trait Leg us(Trait.leg(dim,2).id(individual).us(Trait.leg(dim,2). 

This line generates an (8 x 8) matrix 𝑴𝑴 labelled Gen2Trait containing variance and covariance at 4 
points for two traits formed from 

𝑲𝑲∗ the (4 × 3) matrix specified by Leg and 
𝑺𝑺 a (6 × 6)  matrix formed from us(Trait.leg(dim,2) 
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The first 4 rows and columns of 𝑴𝑴 contain variances and covariances associated with the first trait 
in a (4 × 4) sub-matrix 𝑴𝑴𝟏𝟏𝟏𝟏 constructed as 𝑲𝑲∗𝑺𝑺11𝑲𝑲∗‘ where 𝑺𝑺11 is a (3 × 3) sub-matrix formed 
from the first 3 rows and columns of 𝑺𝑺 and contains variance and covariance parameters associated 
with the first trait. 

More generally the (m, n) element of 𝑴𝑴𝑖𝑖𝑖𝑖 is given by 𝒌𝒌𝑚𝑚∗  𝑺𝑺𝑖𝑖𝑖𝑖 𝒌𝒌𝑛𝑛∗
′ with 𝒌𝒌𝑚𝑚∗  the m-th row of 𝑲𝑲∗. These 

4 indices (i, j, m, n) are used to identify individual elements in the .pvc file and we note that 
elements with the same indices i and m (j and n) are in the same row(column) of 𝑴𝑴. 
 
13.3 VPREDICT: pin file processing 

 
There are four forms of the VPREDICT directive. 

 
• If the .pin file exists and has the same name as the jobname (including any suffix appended 

by using !RENAME), just specify the VPREDICT directive. 

• If the .pin file exists but has a different name to the jobname, specify the VPREDICT directive 
with the .pin file name as its argument. 

• If the .pin file does not exist or must be reformed, a name argument for the file is optional but 
the !DEFINE qualifier should be set. Then the lines of the .pin file should follow on the next 
lines, terminated by a blank line. 

An alternative to using VPREDICT is process the contents of the .pin file by running ASReml 
with the -P command line option specifying the .pin file as the input file. 

 
Note that in this case the code must be self-contained and any substitution variable used needs 
defining in the .pin file. For example, if we wish to use $sub to indicate fullname, then the 
assignment of fullname to sub using 
!ASSIGN sub fullname 

needs to be in the .pin file. 
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14 Description of output files 
 
 

14.1 Introduction 
 

With each ASReml run a number of output files are produced. ASReml generates the output files 
by appending various filename extensions to basename. A brief description of the filename 
extensions is presented in Table 14.1. 

Table 14.1: Summary of ASReml output files 

file Description 

Key output files 
.asr contains a summary of the data and analysis results. 
.msv contains final variance parameter values in a form that is easy to edit for 

resetting the initial values if !MSV or !CONTINUE 3 is used, see Table 5.4. 
.pvc contains the report produced with the P option. 
.pvs contains predictions formed by the predict directive. 
.res contains information from using the pol(), spl() and fac() functions, the 

iteration sequence for the variance components and some statistics derived from 
the residuals. 

.rsv contains the final parameter values for reading back if the !CONTINUE 
qualifier is invoked, see Table 5.4. 

.sln contains the estimates of the fixed and random effects and their corresponding 
standard errors. 

.tab contains tables formed by the tabulate directive. 

.tsv contains variance parameter values in a form that is easy to edit for resetting 
the initial values if !TSV or !CONTINUE 2 is used, see Table 5.4. 

.yht contains the predicted values, residuals and diagonal elements of the hat 
matrix for each data point. 

Other output files 

.asl contains a progress log and error messages if the L command line option is 
specified. 

.aov contains details of the ANOVA calculations. 

.apj is an ASReml project file created by ASReml-W . 
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Table 14.1: Summary of ASReml output files 

file Description 

.ask holds the !RENAME !ARG argument from the most recent run so that ASReml 
can retrieve restart values from the most recent run when !CONTINUE is 
specified but there is no particular .rsv file for the current !ARG argument. 

.asp contains transformed data, see !PRINT in Table 5.2. 

.ass contains the data summary created by the !SUM qualifier (see Table 5.3). 

.dbr/.dpr/.spr contains the data and residuals in a binary form for further analysis (see 

!RESIDUALS, Table 5.5). 
.veo holds the equation order to speed up re-running big jobs when the model is 

unchanged. This binary file is of no use to the user. 
.vll holds factor level names when data/residuals are saved in binary form. See 

!SAVE in 74. 
.vpc 
.vpv 
New R4.2 

filename.vpc and filename.vpv contains estimates of functions of variance 
parameters and their variance matrix respectively. The W directive in VPREDICT 
(see VPREDICT in Chapter 13) is used to specify filename and required 
functions. 

.vrb contains the estimates of the fixed effects and their variance if !VRB qualifier 
specified. 

.vvp contains the approximate variances of the variance parameters. It is designed to 
be read back for calculating functions of the variance parameters (see VPREDICT 
in Chapter 13). 

.was basename.was is open while ASReml is running and deleted when it finishes. 
It will normally be invisible to the user unless the job crashes. It is used by 
ASReml-W to tell when the job finishes. 

.wvr 
New R4.2 

contains the working variables if !WRV set. 

.xml contains key information from the .asr, .pvs and .res file in a form easier 
for computers to parse. 

 
An ASReml run generates many files and the .sln and .yht files, in particular, are often quite large 
and could fill up your disk space. You should therefore regularly tidy your working directories, 
maybe just keeping the .as, .asr, .rsv and .pvs files.  
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14.2 An example 
 

In this chapter the ASReml output files are 
discussed with reference to a two-dimensional 
separable autoregressive spatial analysis of the 
NIN field trial data, see model 3b in Section  7.5 
for details. The ASReml command file for this 
analysis is presented to the right. Recall that this 
model specifies a separable autoregressive 
correlation structure for residual or plot errors 
that is the direct product of an autoregressive 
correlation matrix of order 22 for rows and an 
autoregressive correlation matrix of order 11 for 
columns. 

 
14.3 Key output files 

 
The key ASReml output files are the .asr, .sln and .yht files. 
 
14.3.1 The .asr file 
This file contains 
• an announcements box (outlined in asterisks) containing current messages, 
• a summary of the data for the user to confirm the data file has been interpreted correctly and 

to review the basic structure of the data and validate the specification of the model, 
• the iteration sequence of REML loglikelihood values to check convergence, 
• a summary of the variance parameters: 

- the Gamma column reports the actual parameter fitted,  

- the Sigma column reports the gamma converted to a variance scale if appropriate, 

- Sigma/SE is the ratio of the component relative to the square root of the diagonal element 
of the inverse of the average information matrix. Warning: Sigma/SE should not be used for 
formal testing, 

- the % shows the percentage change in the parameter at the last iteration, 
- use VPREDICT (see Chapter 13) to calculate meaningful functions of the variance 

components, 
• a table of Wald F statistics for testing fixed effects. (Section 6.11). The table contains the 

numerator degrees of freedom for the terms and ’incremental’ F-statistics for approximate 
testing of effects. It may also contain denominator degrees of freedom, a ’conditional’ 
Wald F statistic and a significance probability.  

NIN Alliance Trial 1989 
variety !A  
id 
pid  
raw  
repl 4  
nloc  
yield  
lat  
long  
row 22 
column 11 

nin89a.asd !skip 1 !DISPLAY 15 
tabulate yield ∼ variety 
yield ∼ mu variety !f mv 
residual ar1(row).ar1(column) 
predict variety 
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• estimated effects, their standard errors and t values for equations in the DENSE portion of the 
SSP matrix are reported if !BRIEF -1 is invoked; the T-prev column tests difference 
between successive coefficients in the same factor. 

The reported log-likelihood value may be positive or negative and typically excludes some 
constants from its calculation. It is sometimes reported relative to an offset (when its magnitude 
exceeds 10000); any offset is reported in the .asr file. Twice the difference in the likelihoods for 
two models is commonly used as the basis for a likelihood ratio test (see Section 2.4.1). This is 
not valid for generalised linear mixed models as the reported LogL does not include components 
relating to the reweighting. Furthermore, it is not appropriate if the fixed effects in the model have 
changed. In particular, if fixed effects are fitted in the sparse equations, the order of fitting may 
change with a change in the fitted variance structure resulting in non-comparable likelihoods even 
though the fixed terms in the model have not changed. The iteration sequence terminates when the 
maximum iterations (see !MAXIT in 65) has been reached or successive LogL values are less 
than 0.002i apart. 

 
The following is a copy of nin89a.asr. 

 
ASReml 4.0 [01 Jan 2013] NIN Alliance Trial 1989 version & title 
Build ki [07 Jan 2014] 64 bit date 

29 Jan 2014 09:34:34.315 32 Mbyte Windows x64 nin89a workspace 

Licensed to: VSNi (Robin Thompson) 3 
***************************************************************** 
* Contact support@asreml.co.uk for licensing and support * 
*********************************************************** ARG * Folder: 
D:\latest\Data\examples4\arg\Manex4f 
variety !A 
QUALIFIERS: !SKIP 1 !DISPLAY 15 
QUALIFIER: !DOPART 1 is active 
Reading nin89aug.asd FREE FORMAT skipping 1 lines 

 
Univariate analysis of yield 
Summary of 242 records retained of 242 read data summary 

 
 

Model term Size #miss #zero MinNon0 Mean MaxNon0 StndDevn 
1 variety 56 0 0 1 26.4545 56  
2 id  0 0 1.0000 26.45 56.00 17.18 
3 pid  18 0 1101. 2628. 4156. 1121. 
4 raw  18 0 21.00 510.5 840.0 149.0 
5 repl 4 0 0 1 2.4132 4  
6 nloc  0 0 4.000 4.000 4.000 0.000 
7 yield Variate 18 0 1.050 25.53 42.00 7.450 
8 lat  0 0 4.300 25.80 47.30 13.63 
9 long  0 0 1.200 13.80 26.40 7.629 
10 row 22 0 0 1 11.5000 22  

 
  

mailto:support@asreml.co.uk
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11 column 11 0 0 1 6.0000 11 
12 mu 1 
13 mv_estimates 18 
ar1v(row) in ar1(row).ar1(column) has size 22, parameters: 5 5 
ar1(column) in ar1(row).ar1(column) has size 11, parameters: 6 6 
ar1(row).ar1(column) [ 4: 6] initialized. 
Sorting Section 1: 22 rows by 11 columns 
Forming 75 equations: 57 dense. 
Initial updates will be shrunk by factor 0.316 

 
Notice: Specify !SIGMAP to allow the Sigma parameterisation  
Notice: 1 singularities detected in design matrix. iterations 
1 LogL=-449.818 S2= 49.775 168 df 1.0000 0.1000E00 0.1000E+00+ 
2 LogL=-424.315 S2= 40.233 168 df 1.0000 0.2937 0.2323 
3 LogL=-405.419 S2= 38.922 168 df 1.0000 0.4813 0.3587 
4 LogL=-399.552 S2= 45.601 168 df 1.0000 0.6156 0.4398 
5 LogL=-399.336 S2= 47.986 168 df 1.0000 0.6456 0.4417 
6 LogL=-399.325 S2= 48.546 168 df 1.0000 0.6530 0.4391 
7 LogL=-399.324 S2= 48.672 168 df 1.0000 0.6549 0.4380 
8 LogL=-399.324 S2= 48.703 168 df 1.0000 0.6554 0.4376 

Final parameter values 1.0000 0.6555 0.4375 
 

- - - Results from analysis of yield - - - 
Akaike Information Criterion 804.65 (assuming 3 parameters).  
Bayesian Information Criterion 814.02 

 
Model_Term 
ar1(row).ar1(column) 

  
242 

Gamma 
effects 

Sigma Sigma/SE % C  

Residual SCA_V 242 1.000000 48.7026 6.81 0 P parameter 
row AR_R 1 0.655480 0.655480 11.63 0 P estimates 
column AR_R 1 0.437505 0.437505 5.43 0 P  
 
 

Source 

 
 
of 

 
 
Variation 

 
Wald F 
NumDF 

 
statistics 

DenDF 

 
 
F-inc 

 
 

P-inc 

 
 
testing 

12 mu   1 25.0 331.93 <.001 fixed 
1 variety   55 110.8 2.22 <.001 effects 

Notice: The DenDF values are calculated ignoring fixed/boundary/singular 
variance parameters using algebraic derivatives. 

13 mv_estimates 18 effects fitted 
6 possible outliers: in section 11 (see .res file) 

Finished: 29 Jan 2014 09:34:34.861 LogL Converged 
 

Following is a table of Wald F statistics augmented with a portion of Regression Screen output. 
The qualifier was !SCREEN 3 !SMX 3. 

 
Model_Term Gamma Sigma Sigma/SE % C 
idsize IDV_V 92 0.581102 0.136683 3.31 0 P 
expt.idsize IDV_V   828 0.121231 0.285153E-01 1.12 0 P 
idv(units) 504 effects   

Residual SCA_V   504 1.000000 0.235214 12.70 0 P 

Wald F statistics 
Source of Variation NumDF DenDF_con F_inc F_con M P_con 

113 mu 1 72.4 65452.25 56223.68 . <.001 
2 expt 6 37.5 5.27 0.64 A 0.695 
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4 type 4 63.8 22.95 3.01 A 0.024 
114 expt.type 10 79.3 1.31 0.93 B 0.508 

23 x20 1 55.1 4.33 2.37 B 0.130 
24 x21 1 63.3 1.91 0.87 B 0.355 
25 x23 1 68.3 23.93 0.11 B 0.745 

26 x39 1 79.7 1.85 0.35 B 0.556 
27 x48 1 69.9 1.58 2.08 B 0.154 
28 x59 1 49.7 1.41 0.08 B 0.779 
29 x60 1 59.6 1.46 0.42 B 0.518 
30 x61 1 64.0 1.11 0.04 B 0.838 

31 x62 1 61.8 2.18 0.09 B 0.770 
32 x64 1 55.6 31.48 4.50 B 0.038 
33 x65 1 57.8 4.72 6.12 B 0.016 
34 x66 1 58.5 1.13 0.03 B 0.872 
35 x70 1 59.3 1.71 1.40 B 0.242 

36 x71 1 64.4 0.08 0.01 B 0.929 
37 x73 1 59.0 1.79 3.01 B 0.088 
38 x75 1 59.9 0.04 0.26 B 0.613 
39 x91 1 63.8 1.44 1.44 B 0.234 

Notice: The DenDF values are calculated ignoring fixed/boundary/singular 
variance parameters using empirical derivatives. 

 
129 mv_estimates 9 effects fitted 

9 idsize 92 effects fitted ( 7 are zero) 
115 expt.idsize 828 effects fitted ( 672 are zero) 
127 at(expt,6).type.idsize.meth 9  effects  fitted  (+ 2199 singular) 
128 at(expt,7).type.idsize.meth 10  effects  fitted  (+ 2198 singular) 

LINE REGRESSION RESIDUAL ADJUSTED FACTORS INCLUDED 
NO DF SUMSQUARES DF MEANSQU R-SQUARED R-SQUARED 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 

1 3 0.1113D+02 452 0.2460 0.09098 0.08495 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
     ***** *****                  

2 3 0.1180D+02 452 0.2445 0.09648 0.09049 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
     ***** *****                  

3 3 0.1843D+01 452 0.2666 0.01507 0.00853 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
4 3 0.1095D+02 452 0.2464 0.08957 0.08353 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
5 3 0.1271D+02 452 0.2425 0.10390 0.09795 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 

     ***** *****                  

6 3 0.9291D+01 452 0.2501 0.07594 0.06981 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
7 3 0.9362D+01 452 0.2499 0.07652 0.07039 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
8 3 0.1357D+02 452 0.2406 0.11091 0.10501 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

     ***** *****                  

9 3 0.9404D+01 452 0.2498 0.07687 0.07074 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
10 3 0.1266D+02 452 0.2426 0.10350 0.09755 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
11 3 0.1261D+02 452 0.2427 0.10313 0.09717 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 
12 3 0.9672D+01 452 0.2492 0.07906 0.07295 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 
13 3 0.9579D+01 452 0.2494 0.07830 0.07218 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 
14 3 0.9540D+01 452 0.2495 0.07797 0.07185 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 
15 3 0.1089D+02 452 0.2465 0.08907 0.08302 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 
16 3 0.2917D+01 452 0.2642 0.02384 0.01736 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 
17 3 0.2248D+01 452 0.2657 0.01838 0.01187 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 
18 3 0.1111D+02 452 0.2460 0.09088 0.08484 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
19 3 0.1746D+01 452 0.2668 0.01427 0.00773 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
20 3 0.1030D+02 452 0.2478 0.08423 0.07815 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
21 3 0.1279D+02 452 0.2423 0.10454 0.09860 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 
22 3 0.8086D+01 452 0.2527 0.06609 0.05989 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 
23 3 0.7437D+01 452 0.2542 0.06079 0.05456 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 
24 3 0.1071D+02 452 0.2469 0.08755 0.08149 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 
25 3 0.1370D+02 452 0.2403 0.11200 0.10611 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 

     ***** *****                  

26 3 0.1511D+02 452 0.2372 0.12351 0.11770 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 
     ***** *****                  

27 3 0.1353D+02 452 0.2407 0.11064 0.10473 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 
...                        

680 3 0.1057D+02 452 0.2472 0.08641 0.08035 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
 
 

The primary tables reported in the .asr file are now also written in XML format to a .xml file. 
The intended use of this file is by programs written to parse Asreml output. The information 
contained in the .xml file includes start and finish times, the data summary, the iteration sequence 
summary, the summary of estimated variance structure parameters and the Wald F statistics. 
Developers are advised to parse the .xml file in redeveloping code to handle the changes with the 
new release.  
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14.3.2 The .sln file 
The .sln file contains estimates of the fixed and random effects with their standard errors in an 
array with four columns ordered as 
factor_name level estimate standard_error 

Note that the error presented for the estimate of a random effect is the square root of the prediction 
error variance. In a genetic context for example where a relationship matrix A is involved, the 
accuracy is √(1 − 𝑠𝑠𝑖𝑖

2

(1+𝑓𝑓𝑖𝑖)𝜎𝜎𝐴𝐴
2) where 𝑠𝑠𝑖𝑖 is the standard error reported with the BLUP (𝑢𝑢𝑖𝑖) for the ith 

individual, 𝑓𝑓𝑖𝑖 is the inbreeding coefficient reported when !DIAG qualifier is given on a pedigree 
file line, 1 + 𝑓𝑓𝑖𝑖 is the diagonal element of A and 𝜎𝜎𝐴𝐴2 is the genetic variance. The .sln file can 
easily be read into a GENSTAT spreadsheet or an S-PLUS data frame. Below is a truncated copy 
of nin89a.sln. Note that 
 
• the order of some terms may differ from the order in which those terms were specified in the 

model statement, 

• the missing value estimates appear at the end of the file in this example. 

• the format of the file can be changed by specifying the !SLNFORM qualifier. In particular, more 
significant digits will be reported. 

• use of the !OUTLIER qualifier will generate extra columns containing the outlier statistics 
described in Section 2.4.2. 

 
Model_Term Level  Effect seEffect 
variety LANCER  0.000 0.000 variety estimates 
variety BRULE  2.984 2.841 
variety REDLAND  4.706 2.977 
variety CODY  -0.3158 2.961 
variety ARAPAHOE  2.954 2.727 
- - -     
variety NE87615  1.033 2.934 
variety NE87619  5.937 2.849 
variety NE87627  -4.378 2.997 
mu  1 24.09 2.465 intercept 
mv_estimates  1 21.91 6.731 missing value estimates 
mv_estimates  2 23.22 6.723 
mv_estimates  3 22.52 6.711 
mv_estimates  4 23.49 6.678 
mv_estimates  5 22.27 6.700 
mv_estimates  6 24.47 6.709 
mv_estimates  7 20.14 6.699 
mv_estimates  8 25.01 6.693 
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mv_estimates 9 24.29 6.678 
mv_estimates 10 26.30 6.660 
mv_estimates 11 24.99 6.592 
mv_estimates 12 27.78 6.493 
mv_estimates 13 25.39 6.305 
mv_estimates 14 26.81 5.900 
mv_estimates 15 29.07 4.906 
mv_estimates 16 23.97 4.577 
mv_estimates 17 24.27 4.618 
mv_estimates 18 29.82 4.532 

 
14.3.3 The .yht file 

The .yht file contains the predicted values of the data in the original order (this is not changed by 
supplying row/column order in spatial analyses), the residuals and the diagonal elements of the 
hat matrix. Figure 14.1 shows the residuals plotted against the fitted values (Yhat) and a line 
printer version of this figure is written to the .res file. Where an observation is missing, the 
residual, missing values predicted value and Hat value are also declared missing. The missing 
value estimates with standard errors are reported in the .sln file. 

 

Figure 14.1: Residual versus Fitted values 

This is part of nin89a.yht. Note that the values corresponding to the missing data (first 15 
records) are all -0.1000E-36 which is the internal value used for missing values.  
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Record Yhat Residual Hat 

1 -0.10000E-36 -0.1000E-36 -0.1000E-36 
2 -0.10000E-36 -0.1000E-36 -0.1000E-36 
3 -0.10000E-36 -0.1000E-36 -0.1000E-36 
4 -0.10000E-36 -0.1000E-36 -0.1000E-36 
- - -    
15 -0.10000E-36 -0.1000E-36 -0.1000E-36 
16 24.089 5.161 6.075 
17 27.073 4.477 6.223 
18 28.795 6.255 6.283 
19 23.773 6.327 6.236 
20 27.043 6.007 5.963 
- - -    

239 21.522 8.128 6.314 
240 24.696 1.854 6.114 
241 25.452 0.1480 6.159 
242 22.464 4.436 6.605 

 
14.4 Other ASReml output files 
 
14.4.1 The .aov file 
This file reports details of the calculation of Wald F statistics, particularly as relating to the 
conditional Wald F statistics (not computed in this demonstration). In the following table relating 
to the incremental Wald F statistic, the columns are 

 
• model term 

• columns in design matrix 

• numerator degrees of freedom 

• simple Wald F statistic 

• Wald F statistic scaled by λ 

• λ as defined in Kenward & Roger. 

denominator degrees of freedom 
Source Size NumDF  F-value Lambda*F Lambda DenDF 
mu  1 1 331.9252 331.9252 1.0000 25.0143 
variety 56 55 2.2257 2.2245 0.9995 110.8370 
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A more useful example is obtained by adding a 
linear nitrogen contrast to the oats example 
(Section 16.2). 

 
The basic design is six replicates of three whole 
plots to which variety was randomised, and four 
subplots which received 4 rates of nitrogen. A 
!CONTRAST qualifier defines the model term 
linNitr as the linear covariate representing 
nitrogen applied. Fitting this before the model 
term nitrogen means that this latter term 
represents lack of fit from a linear response. 

 
The !FCON qualifier requests conditional Wald 
F statistics. As this is a small example, denominator degrees of freedom are reported by 
default. An extract from the .asr file is followed by the contents of the .aov file. 

 
- - - Results from analysis of yield - - - 

Akaike Information Criterion 415.10 (assuming 3 parameters).  
Bayesian Information Criterion 421.38 

 
Approximate stratum variance decomposition 

Stratum Degrees-Freedom Variance Component Coefficients 
idv(blocks) 5.00 3175.06 12.0 4.0 1.0 
idv(blocks.wplots 10.00 601.331 0.0 4.0 1.0 
Residual Variance 45.00 177.083 0.0 0.0 1.0 
 
Model_Term 

   
Gamma 

 
Sigma 

 
Sigma/SE 

 
% C 

 

idv(blocks) IDV_V 6 1.21116 214.477 1.27 0 P 
idv(blocks.wplots) IDV_V 18 0.598937 106.062 1.56 0 P 
idv(units)  72 effects     
Residual SCA_V 72 1.000000 177.083 4.74 0 P 

 
Wald F statistics 

Source of Variation NumDF DenDF_con F-inc F-con M P-con 
8 mu 1 6.0 245.14 138.14 . <.001 
4 variety 2 10.0 1.49 1.49 A 0.272 
7 linNitr 1 45.0 110.32 110.32 a <.001 
2 nitrogen 2 45.0 1.37 1.37 A 0.265 
9 variety.linNitr 2 45.0 0.48 0.48 b 0.625 
10 variety.nitrogen 4 45.0 0.22 0.22 B 0.928 

 
The analysis shows that there is a significant linear response to nitrogen level but the lack of fit 
term and the interactions with variety are not significant. In this example, the conditional Wald 
F statistic is the same as the incremental one because the contrast must appear before the lack-of-
fit and the main effect before the interaction and otherwise it is a balanced analysis.  

Split plot analysis - oat 
blocks *  
nitrogen !A  
subplots  
variety !A  
wplots *  
yield 

oats.asd !skip 2 
!CONTRAST linNitr nitrogen .6 .4 .2 0 
!FCON 
yield ∼ mu variety linNitr nitrogen, 
variety.linNitr variety.nitrogen, 
!r idv(blocks) idv(blocks.wplots) 

residual idv(units) 
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The first part of the .aov file, the FMAP table only appears if the job is run in DEBUG mode. 
There is a line for each model term showing the number of non-singular effects in the terms before 
the current term is absorbed. For example, variety.nitrogen initially has 12 degrees of 
freedom (non-singular effects). mu takes 1, variety then takes 2, linNitr takes 1, 
nitrogen takes 2, variety.linNitr takes 2 and there are four degrees of freedom left. This 
information is used to make sure that the conditional Wald F statistic does not contradict 
marginality principles. 

 
The next table indicates the details of the conditional Wald F statistic. The conditional Wald F 
statistic is based in the reduction in Sums of Squares from dropping the particular term (indicated 
by *) from the model also including the terms indicated by I, C and c. 

 
The next two tables, based on incremental and conditional sums of squares report the model term, 
the number of effects in the term, the (numerator) degrees of freedom, the Wald F statistic, an 
adjusted Wald F statistic scaled by a constant reported in the next column and finally the computed 
denominator degrees of freedom. The scaling constant is discussed by Kenward and Roger (1997). 
 
Table showing the reduction in the numerator degrees of freedom  

for each term as higher terms are absorbed. 
Model Term 6 5 4 3 2 1 
1 mu 12 3 4 1 3 1 
2 variety 11 3 3 1 2  
3 LinNitr 9 3 3 1   
4 nitrogen 8 2 2  
5 variety.LinNitr 6 2  
6 variety.nitrogen 4   

 
Marginality pattern for F-con calculation 

-- Model terms -- 
Model Term DF 1 2 3 4 5 6 

 
1 mu 1 * . C . C . 
2 variety 2 I * C C . . 
3 LinNitr 1 I I * . . . 
4 nitrogen 2 I I I * . . 
5 variety.LinNitr 2 I I I I * . 

6 variety.nitrogen 4 I I I I I * 
Model codes:  b A a A b B 

F-inc tests the additional variation explained when the term (*) 
is added to a model consisting of the I terms. 

F-con tests the additional variation explained when the term (*) 
is added to a model consisting of the I and C/c terms. 
The . terms are ignored for both F-inc and F-con tests. 

 
 

Incremental F statistics - calculation of Denominator degrees of freedom 
Source Size NumDF F-value Lambda*F Lambda DenDF 
mu 1 1 245.1409 245.1409 1.0000 5.0000 
variety 3 2 1.4853 1.4853 1.0000 10.0000 
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LinNitr 1 1 110.3232 110.3232 1.0000 45.0000 
nitrogen 4 2 1.3669 1.3669 1.0000 45.0000 
variety.LinNitr 3 2 0.4753 0.4753 1.0000 45.0000 
variety.nitrogen 12 4 0.2166 0.2166 1.0000 45.0000 

 
Conditional F statistics - calculation of Denominator degrees of freedom 

Source Size NumDF F-value Lambda*F Lambda DenDF 
Mu 1 1 138.1360 138.1360 1.0000 6.0475 
variety 3 2 1.4853 1.4853 1.0000 10.0000 
LinNitr 1 1 110.3232 110.3232 1.0000 45.0000 
nitrogen 4 2 1.3669 1.3669 1.0000 45.0000 
variety.LinNitr 3 2 0.4753 0.4753 1.0000 45.0000 
variety.nitrogen 12 4 0.2166 0.2166 1.0000 45.0000 

 
14.4.2 The .asl file 
The .asl file is primarily used for low-level debugging. It is produced when the !LOGFILE 
qualifier is specified and contains low-level debugging information when the !DEBUG qualifier is 
also given. 
 
However, when a job running on a UNIX system crashes with a Segmentation fault, the output 
buffers are not flushed so the output files do not reflect the latest program output. In this case, use 
the UNIX script screen.log command before running ASReml with the !DEBUG qualifier 
but without the !LOGFILE qualifier, to capture all the debugging information in the file 
screen.log. 
 
The debug information pertains particularly to the first iteration and includes timing information 
reported in lines beginning >>>> >>>> >>>>. These lines also mark progress through the 
iteration. 
 
14.4.3 The .dpr file 
The .dpr file contains the data and residuals from the analysis in double precision binary form. 
The file is produced when the !RES qualifier (Table 5.5) is invoked. The file could be renamed 
with filename extension .dbl and used for input to another run of ASReml. Alternatively, it could 
be used by another Fortran program or package. Factors will have level codes if they were coded 
using !A or !I. All the data from the run plus an extra column of residuals is in the file. Records 
omitted from the analysis are omitted from the file. 

  



14.4 Other ASReml output files 

233 
 

14.4.4 The .msv file 
The .msv file contains the variance parameters from the most recent iteration of a model in a form 
that is relatively easy to edit if the values need to be reset. The file is read when !MSV or 
!CONTINUE 3 is specified. This is nin89a.msv: 
 
# This .msv file is a mechanism for resetting initial parameter values  
# by changing the values here and rerunning the job with !CONTINUE 3.  
# You may not change values in the first 3 fields 
# or RP fields where RP_GN is negative. 

 
# Fields are: 
# GN, Term, Type, PSpace, Initial_value, RP_GN, RP_scale. 

4, "Variance 1", V, P,   1.00000000    ,     4,   1 
5, "ar1(row).ar1(column);ar1v(row)_1", R, P, 0.65547976 , 5, 1 
6, "ar1(row).ar1(column);ar1(column)_1", R, P, 0.43750453  ,   6,   1 

 
# Valid values for Pspace are F, P, U and maybe Z. 
# RP_GN and RP_scale define simple parameter relationships;  
# RP_GN links related parameters by the first GN number; 
# RP_scale must be 1.0 for the first parameter in the set and 
# otherwise specifies the size relative to the first parameter.  
# Multivalue RP_scale parameters may not be altered here. 

 
# Notice that this file is overwritten if not being read. 

 
 

14.4.5 The .pvc file 
The .pvc file contains functions of the variance components produced by running a .pin file on 
the results of an ASReml run as described in Chapter 13. The .pin and .pvc files for a half-sib 
analysis of the Coopworth data are presented in Section 16.11. 
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14.4.6 The .pvs file 
The .pvs file contains the predicted values formed when a predict statement is included in the 
job. Below is an edited version of nin89a.pvs. See Section 3.6 for the .pvs file for the simple 
RCB analysis of the NIN data considered in that chapter. 

 
NIN Alliance Trial 1989 03 Feb 2014 06:23:03 title line 

nin89a 
 

Ecode is E for Estimable, * for Not Estimable 
 

Warning: mv_estimates is ignored for prediction 
The predictions are obtained by averaging across the hypertable  

calculated from model terms constructed solely from factors  
in the averaging and classify sets. 

Use !AVERAGE to move ignored factors into the averaging set. 
 
---- ---- ---- ---- ---- ----   1 ---- ---- ---- ---- ---- ---- 
Predicted values of yield 

 

variety Predicted_Value Standard_Error Ecode predicted variety means 
LANCER 24.0891 2.4648  E 
BRULE 27.0731 2.4946  E 
REDLAND 28.7953 2.5066  E 
CODY 23.7733 2.4973 E 
ARAPAHOE 27.0429 2.4420 E 
NE83404 25.7199 2.4426  E 
NE83406 25.3793 2.5030  E 
NE83407 24.3981 2.6882  E 
CENTURA 26.3531 2.4765 E 
SCOUT66 29.1741 2.4363  E 
- - - 
NE87615 25.1218 2.4436 E 
NE87619 30.0261 2.4669 E 
NE87627 19.7108 2.4836 E 
SED: Overall Standard Error of Difference 2.925 SED summary 

 
14.4.7 The .res file 
The .res file contains miscellaneous supplementary information including 

 
• a list of unique values of x formed by using the fac() model term, 

• a list of unique (x, y) combinations formed by using the fac(x,y) model term, 

• legandre polynomials produced by leg() model term, 

• orthogonal polynomials produced by pol() model term, 

• the design matrix formed for the spl() model term,  
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• predicted values of the curvature component of cubic smoothing splines, 

• the empirical variance-covariance matrix based on the BLUPs when a ∑⊗ 𝑰𝑰 or 𝑰𝑰⊗
∑ structure is used; this may be used to obtain starting values for another run of ASReml, 

• a table showing the variance components for each iteration, 

• a figure and table showing the variance partitioning for any XFA structures fitted, 

• some statistics derived from the residuals from two-dimensional data (multivariate, repeated 
measures or spatial) 
- the residuals from a spatial analysis will have the units part added to them (defined as the 

combined residual) unless the data records were sorted (within ASReml ) in which case the 
units and the correlated residuals are in different orders (data file order and field order 
respectively), 

- the residuals are printed in the .yht file but the statistics in the .res file are calculated from 
the combined residual, 

- the Covariance/Variance/Correlation (C/V/C) matrix calculated directly from 
the residuals; it contains the covariance below the diagonals, the variances on the diagonal 
and the correlations above the diagonal: 

- The fitted matrix is the same as is reported in the .asr file and if the Logl has converged is 
the one you would report. The BLUPs matrix is calculated from the BLUPs and is provided 
so it can be used as starting values when a simple initial model has been used and you are 
wanting to attempt to fit a full unstructured matrix. For computational reasons, it pertains to 
the parameters and so may differ from the parameter values generated by the last iteration. 
The BLUPs matrix may look quite different from the fitted matrix because BLUPs are 
shrunken phenotypes. The BLUPs matrix retains much of the character of the phenotypes; 
the rescaled has the variance from the fitted and the covariance from the BLUPs and might 
be more suitable as an initial matrix if the variances have been estimated. The BLUPs and 
rescaled matrices should not be reported.  

- relevant portions of the estimated variance matrix for each term for which an R structure or 
a G structure has been associated, 

• a variogram and spatial correlations for spatial analysis; the spatial correlations are based on 
distance between data points (see Gilmour et al., 1997), 

• the slope of the log(absolute residual) on log(predicted value) for assessing possible mean- 
variance relationships and the location of large residuals. For example, 

SLOPES FOR LOG(ABS(RES)) ON LOG(PV) for section 1  

0.99 2.01 4.34 

produced from a trivariate analysis reports the slopes.   
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A slope of b suggests that 𝑦𝑦1−𝑏𝑏 might have less mean variance relationship. If there is no mean 
variance relation, a slope of zero is expected. A slope of  1

2
 suggests a SQRT transformation 

might resolve the dependence; a slope of 1 means a LOG transformation might be appropriate. 
So, for the 3 traits, 𝑙𝑙𝑙𝑙𝑙𝑙(𝑦𝑦1) ,𝑦𝑦2−1 and 𝑦𝑦3−3 are indicated. This diagnostic strategy works better 
when based on grouped data regressing log(standard deviation) on log(mean). Also, 
STND RES 16 -2.35 6.58 5.64 

indicates that for the 16th data record, the residuals are -2.35, 6.58 and 5.64 times the respective 
standard deviations. The standard deviation used in this test is calculated directly from the 
residuals rather than from the analysis. They are intended to flag the records with large residuals 
rather than to precisely quantify their relative size. They are not studentised residuals and are 
generally not relevant when the user has fitted heterogeneous variances. 

=== === === === Residual statistics for nin891.asr === === === === 

Convergence sequence of variance parameters 

Iteration 1 2 3 4 5 6  
LogL -449.818 -424.315 -405.419 -399.552 -399.336 -399.325 
Change % 177 216 201 51 13 3 
Adjusted 0 0 0 0 0 0 
StepSz 0.316 0.562 1.000 1.000 1.000 1.000 

5 R 0.100000 0.293737 0.481321 0.615630 0.645607 0.653013 1.1 
6 R 0.100000 0.232335 0.358720 0.439779 0.441733 0.439143 -0.7 

Trace of W(W’R^W+G^)^W’   1376.1714 
 

Plot  of  Residuals [   -24.8729 15.9146]  vs  Fitted values [ 16.7728 35.9349] _RvE11 

 
SLOPES FOR LOG(ABS(RES)) on LOG(PV) for Section 11 

0.15 
SLOPES FOR LOG(SDi) on LOG(PVBari) for Section 11 

1.37 
* 
* 

* ** *** 
* ** *** * 
**  ***  ***  ***  * 
**********  ***** 

****************** 
*  * * * ** ****************** 
* ** ** ** ** ***** ** ************************ ** * 
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Min Mean Max  -24.873 0.27959 15.915 omitting 18 zeros 
 
 

Spatial diagnostic statistics  of Residuals 22 11  
Residual Plot and Autocorrelations 

  
1   0.28   0.38   0.50   0.65   0.77   1.00   0.77   0.65   0.50   0.38   0.28 
2   0.17   0.27   0.39   0.51   0.56   0.64   0.56   0.50   0.40   0.32   0.26 
3   0.05   0.11   0.19   0.28   0.35   0.42   0.40   0.35   0.30   0.24   0.19 

 
Residuals  [Percentage  of sigma = 6.979 ] 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 74 64 90 91 86 65 141 
-72 -29 -52 -20 -61 11 -132 26 0 63 15 99 9 37 84 48 110 228 49 131 -20 9 
-87 1 -32 -14 -26 -30 -3 37 -6 4 23 32 44 46 109 97 83 67 68 141 69 40 
44 11 0 3 6 0 21 41 -15 51 25 32 120 -33 10 58 117 113 109 63 57 25 
18 18 -2 -84 -19 -51 -45 18 30 56 -9 -12 53 -41 7 99 123 47 119 181 101 104 

-40 29 87 103 81 61 81 130 94 10 55 53 55 106 15 109 153 23 0 50 66 111 
-29 75 43 -24 -90 -37 -23 64 130 84 122 129 127 90 -38 91 133 126 -16 57 30 70 
-99 -114 -218 -332 -174 -77 -19 -38 -29 58 63 88 4 124 49 101 129 113 45 92 70 198 

-257 -333 -352 -319 -253 -166 -152 -52 -28 0 97 135 67 16 -9 -36 96 24 62 48 -27 -29 
-227 -167 -356 -335 -183 -179 -189 -118 -124 14 -52 19 -7 -56 -81 -33 63 -40 57 -15 24 73 
-183 -277 -352 -323 -288 -151 -56 -130 -188 -29 -78 7 12 -30 39 57 89 -3 116 27 2 64 
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Residual [section 11, column 8 (of 11), row 4 (of 22)] is -3.32 SD 
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Residual [section 11, column 9 (of 11), row 2 (of 22)] is -3.33 SD 
Residual [section 11, column 9 (of 11), row 3 (of 22)] is -3.52 SD 
Residual [section 11, column 10 (of 11), row 3 (of 22)] is -3.56 SD 
Residual [section 11, column 10 (of 11), row 4 (of 22)] is -3.35 SD 
Residual [section 11, column 11 (of 11), row 3 (of 22)] is -3.52 SD 

6 possible outliers in section 11: test value 23.0297999308 
 
 

Residuals  [Percentage  of  sigma =   6.979 ] 
 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 74 64 90 91 86 65 141 
-72 -29  -20 -61 11 -132 26 0 63 15 99 9 37 84 48 110 228 49 131 -20 9 
-87 1   -32 -14 -26 -30 -3 37 -6 4 23 32 44 46 109 97 83 67 68 141 69 40 
44 11 0 3 6 0 21 41 -15 51 25 32 120 -33 10 58 117 113 109 63 57 25 
18 18 -2 -84 -19 -51 -45 18 30 56 -9 -12 53 -41 7 99 123 47 119 181 101 104 

-40 29 87 103 81 61 81 130 94 10 55 53 55 106 15 109 153 23 0 50 66 111 
-29 75 43 -24 -90 -37 -23 64 130 84 122 129 126 90 -38 91 133 126 -16 57 30 70 
-99 -114 -218 -332 -174 -77 -19 -38 -29 58 63 88 4 124 49 101 129 113 45 92 70 198 

-257 -333 -352 -319 -253 -166 -152 -52 -26 0 97 135 67 16 -9 -36 96 24 62 48 -27 -29 
-227 -167 -356 -335 -183 -179 -189 -118 -124 14 -52 19 -7 -56 -81 -33 63 -40 57 -15 24 73 
-183   -277 -352 -323 -288 -151 -56 -130 -188 -29 -78 7 12 -30 39 57 89 -3 116 27 2 64 
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Residual [section 1, column 8 ( 11), row  4 ( 22)] is -3.32 SD 
Residual [section 1, column 9 ( 11), row  2 ( 22)] is -3.33 SD 
Residual [section 1, column 9 ( 11), row  3 ( 22)] is -3.52 SD 
Residual [section 1, column 10 ( 11), row  3 ( 22)] is -3.56 SD 
Residual [section 1, column 10 ( 11), row  4 ( 22)] is -3.35 SD 
Residual [section 1, column 11 ( 11), row  3 ( 22)] is -3.52 SD 

6     possible  outliers  in  section  1  : test value 23.0311757288330 
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Figure 14.2: Variogram of residuals 

Figure 14.2 to Figure 14.5 show the graphics derived from the residuals when the !DISPLAY 15 
qualifier is specified and which are written to .eps files by running 
ASReml -g22 nin89a.as 

The graphs are a variogram of the residuals from the spatial analysis for site 1 (Figure 14.2), a plot 
of the residuals in field plan order (Figure 14.3), plots of the marginal means of the residuals 
(Figure 14.4) and a histogram of the residuals (Figure 14.5). The selection of which plots are 
displayed is controlled by the !DISPLAY qualifier (Table 5.4). By default, the variogram and 
field plan are displayed. 

 
The sample variogram is a plot of the semi-variances of differences of residuals at particular 
distances. The (0,0) position is zero because the difference is identically zero. ASReml displays 
the plot for distances 0, 1, 2, ..., 8, 9-10, 11-14, 15-20, . . . . 

 
The plot of residuals in field plan order (Figure 14.3) contains in its top and right margins a 
diamond showing the minimum, mean and maximum residual for that row or column. Note that a 
gap identifies where the missing values occur. 

 
The plot of marginal means of residuals shows residuals for each row/column as well as the trend 
in their means. 
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Finally, we present a small example of the display produced when an XFA structure is fitted. The 
output from a small example with 9 environments and 2 factors is 

 
 

 

Figure 14.3: Plot of residuals in field plan order 
 

 

Figure 14.4: Plot of the marginal means of the residuals  
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Figure 14.5: Histogram of residuals 

 
DISPLAY of variance partitioning for XFA structure in xfa(Env,2).Geno 
Lvl |----+----+----+----+----+----+----+----+----+----| TotalVar %expl PsiVar Loadings 

1 |      1   | 0.3339 79.7 0.0679 0.5147 0.0335 
2 |         1 2 0.1666 100.0 0.0000 0.4003 0.0797 
3 |    1 2    | 0.2475 67.8 0.0798 0.3805 0.1514 
4 |        1 2 0.1475 100.0 0.0000 0.3625 0.1269 
5 |       1  2 0.4496 100.0 0.0000 0.6104 -0.278 
6 |  1       2 0.1210 100.0 0.0000 0.2287 0.2622 
7 |  1 2      | 0.4106 54.4 0.1872 0.4152 -0.226 
8 | 1        2 0.0901 100.0 0.0000 0.0922 0.2857 
9 |   1      2 0.1422 100.0 0.0000 0.2819 0.2506 
0   |----+----+----+----+----+----+----+----+--   Average 0.2343 89.1 0.0372 0.3651 0.0763 

 
 

In the figure, 1 indicates the proportion of TotalVar explained by the first loading, 2 indicates 
the proportion explained by first and second (provided it plots right of 1. Consequently, the 
distance from 2 to the right margin represents PsiVar. %expl reports the percentage of 
TotalVar explained by all loadings. The last row contains column averages. 

 
14.4.8 The .rsv file 
The .rsv file contains the variance parameters from the most recent iteration of a model. The 
primary use of the .rsv file is to supply the values for the !CONTINUE qualifier (see Table 5.4) 
and the C command line option (see Table 11.1). It contains sufficient information to match terms 
so that it can be used when the variance model has been changed. This is nin89a.rsv.  
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76 6 1711 121 
# This .rsv file holds parameter values between runs of ASReml and  
# is not normally modified by the User. The current values of the 
# the variance parameters are listed as a block on the following lines.  
# They are then listed again with identifying information 
# in a form that the user may edit.  

 0.000000  0.000000 0.000000 1.0000000 0.6554798 0.4375045 
RSTRUCTURE  1 2 3 
VARIANCE  1 1 0 
4, V, P, 1.00000000  0 0 

STRUCTURE 22 1  1 
5, R, P, 0.65547976  0 0 

STRUCTURE 11 1  1 
6, R, P, 0.43750453  0 0 

 
 

14.4.9 The .tab file 
The .tab file contains the simple variety means and cell frequencies. Below is a cut down version 
of nin89.tab. 

 
nin alliance trial 10 Sep 2002 04:20:15 

 
Simple tabulation of yield 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

14.4.10 The .tsv file 
The .tsv file contains the variance parameters as initialized for the most recent run in a form that 
is relatively easy to edit if the initial values need to be reset. The file is read when !TSV or 
!CONTINUE 2 is specified or if !CONTINUE is specified but no .rsv file exists. This is 
nin89a.tsv.  

Variety 
LANCER 

 
28.56 

 
4 

BRULE 26.07 4 
REDLAND 30.50 4 
CODY 21.21 4 
ARAPAHOE 29.44 4 
NE83404 27.39 4 
NE83406 24.28 4 
NE83407 22.69 4 
CENTURA 21.65 4 
SCOUT66 27.52 4 
COLT 27.00 4 

⋮ 
NE87615 

 
25.69 

 
4 

NE87619 31.26 4 
NE87627 23.23 4 
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# This .tsv file is a mechanism for resetting initial parameter values  
# by changing the values here and rerunning the job with !CONTINUE 2.  
# You may not change values in the first 3 fields 
# or RP fields where RP_GN is negative. 

 
# Fields are: 
# GN, Term, Type, PSpace, Initial_value, RP_GN, RP_scale. 

4, "Variance 1", V, P, 1.00000000 , 4, 1 
5, "ar1(row).ar1(column);ar1v(row)_1", R, P, 0.10000000 , 5, 1 
6, "ar1(row).ar1(column);ar1(column)_1", R, P, 0.10000000 , 6, 1 

 
# Valid values for Pspace are F, P, U and maybe Z. 

 
# RP_GN and RP_scale define simple parameter relationships;  
# RP_GN links related parameters by the first GN number; 
# RP_scale must be 1.0 for the first parameter in the set and  
# otherwise specifies the size relative to the first parameter.  
# Multivalue RP_scale parameters may not be altered here. 

 
# Notice that this file is overwritten if not being read. 
 

14.4.11 New R4.2 The .vpc file 
The .vpc  file contains  estimates of functions of variance parameters. The W directive in 
VPREDICT   (see VPREDICT in Section 13.3) is used to specify  filename and functions. This 
is nincov.vvp generated by using in  file  nin89a.as. 

VPREDICT !DEFINE 
X COV ar1v(row).ar1(column);Residual* ar1v(row).ar1(column);ar1v(row)   #  row covariance 
X COV ar1v(row).ar1(column);Residual* ar1v(row).ar1(column);ar1(column) # column covariance 
X COV23 COV12*ar1v(row).ar1(column);ar1(column) 
W nincov COV  # prints to nincov.vpc and nincov.vpv 
 
    31.9283     COV12 
    21.3090     COV13 
    13.9681     COV23 
 

14.4.12 New R4.2 The .vpv file 
The .vpv file contains  estimates of variances and covariances of functions of variance 
parameters. The W directive in VPREDICT   (see VPREDICT in Section 13.3) is used to specify  
filename and functions. The matrix is lower triangular row-wise in the order the parameters are 
printed in the corresponding .vpc file. This is nincov.vvp generated by using the VPREDICT 
statements in Section 14.4.11. 

43.4604     
16.7072        28.0844     
17.2927        18.3529        13.4363 
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14.4.13 The .vrb file 
The .vrb file contains the estimates of the effects together with their approximate prediction 
variance matrix corresponding to the dense portion. It is only written if the !VRB qualifier is 
specified. The file is formatted for reading back for post processing. The number of equations in 
the dense portion can be increased (to a maximum of 800) using the !DENSE option (Table 5.5) 
but not to include random effects. The matrix is lower triangular row-wise in the order that the 
parameters are printed in the .sln file. It can be thought of as a partitioned lower triangular matrix,  

�𝜎𝜎
2 ∙

𝛽𝛽�𝐷𝐷 𝜎𝜎2𝐶𝐶𝐷𝐷𝐷𝐷� 

where 𝛽𝛽�𝐷𝐷 is the dense portion of 𝛽𝛽 and 𝐶𝐶𝐷𝐷𝐷𝐷 is the dense portion of 𝐶𝐶−1. This is part of 
nin89a.vrb. Note that the first element is the estimated error variance, that is, 48.6802, see the 
variance component estimates in the .asr output. 

 
0.487026E+02 0.000000E+00 0.000000E+00 0.298409E+01 0.000000E+00 
0.807354E+01 0.470629E+01 0.000000E+00 0.456542E+01 0.886497E+01 

-0.315807E+00 0.000000E+00 0.409951E+01 0.476481E+01 0.876563E+01 
0.295379E+01 0.000000E+00 0.343250E+01 0.389543E+01 0.416076E+01 
0.743440E+01 0.163089E+01 0.000000E+00 0.377085E+01 0.428016E+01 
0.472451E+01 0.402633E+01 0.837086E+01 0.129027E+01 0.000000E+00 
0.329974E+01 0.347377E+01 0.357535E+01 0.316846E+01 0.412043E+01 
0.768099E+01 0.309076E+00 0.000000E+00 0.376552E+01 0.419706E+01 
0.395640E+01 0.383367E+01 0.458364E+01 0.378483E+01 0.984962E+01 
0.226400E+01 0.000000E+00 0.379190E+01 0.442373E+01 0.439411E+01 
0.402430E+01 0.440457E+01 0.362313E+01 0.502025E+01 0.901017E+01 
0.508505E+01 0.000000E+00 0.393519E+01 0.430418E+01 0.423685E+01 
0.428749E+01 0.417784E+01 0.363262E+01 0.444716E+01 0.527187E+01 
0.855044E+01 0.243553E+01 0.000000E+00 0.351279E+01 0.369901E+01 
0.383964E+01 0.330102E+01 0.361942E+01 0.352305E+01 0.359462E+01 
0.392014E+01 0.406704E+01 0.801337E+01 0.475798E+01 0.000000E+00 
0.370878E+01 0.418534E+01 0.452789E+01 0.408589E+01 0.446476E+01 
0.375742E+01 0.403945E+01 0.420473E+01 0.406937E+01 0.403049E+01 
0.857644E+01 0.606943E+00 0.000000E+00 0.428611E+01 0.506706E+01 
0.432088E+01 0.387484E+01 0.436861E+01 0.391305E+01 0.421110E+01 

 

The first 5 rows of the lower triangular matrix are 
 
 

48.7026   
0.0000 0.0000 
2.9841 0.0000 8.0735  
4.7063 0.0000 4.5654 8.8650 
-0.3158 0.0000 4.0995 4.7648 8.7656 
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14.4.14 The .vvp file 
The .vvp file contains the inverse of the average information matrix on the components scale. The 
file is formatted for reading back under the control of the .pin file described in Chapter 13. The 
matrix is lower triangular row-wise in the order the parameters are printed in the .asr file. This 
is nin89a.vvp with the parameter estimates in the order: error variance, spatial row correlation, 
spatial column correlation. 

Variance of  Variance components 3 
51.1980 
0.217689 0.317838E-02 
0.673382E-01 -0.201115E-02 0.649673E-02 
 

14.4.15 The .wvr file 
The .wvr file contains working variables. The matrix is printed with one element per row and 
indexed by the row and variance parameters. This file uses the same order for the variance 
parameters as printed in the .asr file. This is part of nin89a.wvr with the parameter estimates 
in the order: error variance, spatial row correlation, spatial column correlation. 

ROW VPAR Working_Variable 
1 1 -0.100000E-36 
1 2 -0.242187 
1 3 -6.05578 
2 1 19.4000 
2 2 -0.904764 
2 3 -2.40091 

...   
242 1 26.9000 
242 2 1.16356 
242 3 5.28709 

14.5 ASReml output objects and where to find them 
 

Table 14.2 presents a list of objects produced with each ASReml run and where to find them in the 
output files. 

Table 14.2: ASReml output objects and where to find them 

output object found in comment 

Wald F statistics table .asr file This table contains Wald F statistics for each term in the 
fixed part of the model. These provide for an incremental 
or optionally a conditional test of significance (see 
Section 6.11). 
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Table 14.2: ASReml output objects and where to find them  

output object found in comment 

data summary .asr file 
.ass file 

includes the number of records read and retained for 
analysis, the minimum, mean, maximum, number of 
zeros, number of missing values per data field, 
factor/variate field distinction. 

An extended report of the data is written to the .ass file 
if the !SUM qualifier is specified. It includes cell counts for 
factors, histograms of variates and simple correlations 
among variates. 

eigen analysis .res file When ASReml reports a variance matrix to the .asr file, 
it also reports an eigen analysis of the matrix (eigen values 
and eigen vectors) to the .res file. 

elapsed time .asr file 
.asl file 

this can be determined by comparing the start time with 
the finishing time. 
The execution times for parts of the Iteration process are 
written to the .asl file if the !DEBUG !LOGFILE command 
line qualifiers are invoked. 

fixed and random effects .sln file if !BRIEF -1 is invoked, the effects that were included in 
the dense portion of the solution are also printed in the 
.asr file with their standard error, a t-statistic for testing 
that effect and a t-statistic for testing it against the 
preceding effect in that factor. 

heritability .pvc file placed in the .pvc file when postprocessing with a .pin 
file 

histogram of residuals .res file and graphics file 

intermediate results .asl file given if the -DL command line option is used. 

mean/variance 
relationship 

.res file for non-spatial analyses ASReml prints the slope of the 
regression of log(abs(residual)) against 
log(predicted value). This regression is expected to 
be near zero if the variance is independent of the mean. A 
power of the mean data transformation might be indicated 
otherwise. The suggested power is approximately (1-b) 
where b is the slope. A slope of 1 suggests a log 
transformation. This is indicative only and should not be 
blindly applied. Weighted analysis or identifying the cause 
of the heterogeneity should also be considered. This 
statistic is not reliable in genetic animal models or when 
units is included in the linear model because then the 
predicted value includes some of the residual. 
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Table 14.2: ASReml output objects and where to find them  

output object found in comment 

observed 
variance/covariance 
matrix formed from 
BLUPs and residuals 

.res file for an interaction fitted as random effects, when the 
first [outer] dimension is smaller than the inner 
dimension less 10, ASReml prints an observed variance 
matrix calculated from the BLUPs. The observed 
correlations are printed in the upper triangle. Since this 
matrix is not well scaled as an estimate of the 
underlying variance component matrix, a rescaled 
version is also printed, scaled according to the fitted 
variance parameters. The primary purpose for this 
output is to provide reasonable starting values for 
fitting more complex variance structure. The 
correlations may also be of interest. After a multivariate 
analysis, a similar matrix is also provided, calculated 
from the residuals. 

phenotypic variance .pvc file placed in the .pvc file when postprocessing with a 
.pin file 

plot of residuals against 
field position 

graphics file  

possible outliers .res file these are residuals that are more than 3.5 standard 
deviations in magnitude 

predicted (fitted) values 
at the data points 

.yht file these in the are printed in the second column 

predicted values .pvs file given if a predict statement is supplied in the .as file. 

REML log-likelihood .asr file the REML log-likelihood is given for each iteration. The 
REML log-likelihood should have converged 

residuals .yht file and in binary form in .dpr file; these are printed in 
column 3. Furthermore, for multivariate analyses the 
residuals will be in data order (traits within records). 
However, in a univariate analysis with missing values 
that are not fitted, there will be fewer residuals than 
data records - there will be no residual where the data 
was missing so this can make it difficult to line up the 
values unless you can manipulate them in another 
program (spreadsheet). 

score .asl file given if the -DL command line option is used. 

tables of means .tab file 
.pvs file 

simple averages of cross classified data are produced by 
the tabulate directive to the .tab file. Adjusted 
means predicted from the fitted model are written to the 
.pvs file by the predict directive. 

variance of variance 
parameters 

.vvp file based on the inverse of the average information matrix 

variance parameters .asr file 
.res file 

the values at each iteration are printed in the .res file. 
The final values are arranged in a table, printed with 
labels and converted if necessary to variances. 

variogram graphics file  
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15 Error messages 
 
 

15.1 Introduction 
 

Identifying the reason that ASReml does not produce the anticipated results can be a frustrating 
business. This chapter aims to assist you by discussing four kinds of errors. If ASReml does not 
run at all, it is a setup or licensing issue which is not discussed in this chapter. It is hoped that the 
new syntax for variance structure specification will reduce the incidence of coding errors. 

 
Even when the job appears to run successfully, you should check that 

 
• the records read/lines read/records used are correct, 

• mean min max information is correct for each variable, 

• the Loglikelihood has converged and the variance parameters are stable, 

• the fixed effects have the expected degrees of freedom. 

Coding errors can be classified as 
 
• typing errors: these are difficult to resolve because we tend to read what we intended to type, 

rather than what we actually typed. Section 15.4 demonstrates the consequences of the common 
typographical errors that users make. 

• wrong coding: this arises often from misunderstanding the guide or making assumptions arising 
from past experience which are not valid for ASReml. The best strategy here is to closely follow 
a worked example, or to build up to the required model. Sections 15.3 and 15.2 may help as 
well as reviewing all the relevant sections of this Guide. It may be as simple as adding or 
deleting a SPACE, inserting a COMMA, changing case or adding one more qualifier. 

• inappropriate model: the variance model you propose may not be suited to the data in which 
case ASReml may fail to produce a solution. You can verify the model is appropriate by closer 
examination of the structure of the data and by fitting simpler models.  
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• software problems: There are many options in ASReml and some combinations have not been 
tested. Some jobs are too big. When all else fails email support@vsni.co.uk. 

There are over 6000 one-line diagnostic messages that ASReml may print in the .asr file. 
Hopefully, most are self explanatory, but it will always be helpful to recognise whether they relate 
to parsing the input file, or raise some other issue. See Section 15.5 for more information on these 
messages. 

 
15.2 Common problems 

 
Common problems in coding ASReml are as follows: 

• variable name has been misspelt; variable names are case sensitive, 

• a model term has been misspelt; model term functions and reserved words (mu, Trait, mv, 
units) are case sensitive, 

• the data file name is misspelt or the wrong path has been given - enclose the pathname in quotes 
( ’ ) if it includes embedded blanks, 

• a qualifier has been misspelt or is in the wrong place, 

• failure to use commas appropriately in model definition lines, 

• there is an error in the predict statement, 

• model term mv not included in the model when there are missing values in the data and the 
model fitted assumes all data is present. 

• there is an inconsistency between the variance header line and the structure definition lines 
presented (original syntax), 

• there is an error in the R structure definition lines, 

• there is an error in the G structure definition lines, 
- there is a factor name error, 

- there is a missing parameter, 

- there are too many/few initial values, 

The most common problem in running ASReml is that a variable label is misspelt. 
  

mailto:support@vsni.co.uk
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The primary file to examine for diagnostic messages is the .asr file. When ASReml finds 
something atypical or inconsistent, it prints a diagnostic message. If it fails to successfully parse 
the input, it dumps the current information to the .asr file. Below is the output for a job that has 
been terminated due to a coding error. If a job has an error you should: 

 
• read the whole .asr file looking at all messages to see whether they identify the problem, 

• focus particularly on any error message in the Fault: line and the text of the Last line read: 
(this line appears twice in the file to make it easier to find), 

 
• check that all variables have been defined and are referenced with the correct case, 

• some errors arise from conflicting information; the error may point to something that appears 
valid but is inconsistent with something earlier in the file, 

• reduce to a simpler model and gradually build up to the desired analysis - this should help to 
identify the exact location of the problem. 

If the problem is not resolved after these checks, you may need to email Customer Support at 
support@asreml.co.uk. Please send the .as file, (a sample of) the data, the .asr file and the .asl 
file produced by the debug options (-dl) running asreml -dl basename.as 

In this chapter we show some of the common 
coding problems. The code box on the right shows 
our familiar job modified to generate 8 faults. 
Following is the output from running this job. 
 
 
 
 
 
 

 
 

ASReml 4.1 [01 Apr 2014] NIN alliance trial 1989 
Build kt [21 Apr 2014] 64 bit Windows x64 

23 Apr 2014 09:16:54.727 32 Mbyte ninerr1 
... 
Folder: C:\Users\Public\ASReml\Docs\Manex4\ERR 

There is no file called nin9.asd 
Variable names may not include "." 

Warning: Unrecognised qualifier at character 10 nin9.asd ! ... !SLIP 1 17 
Error: Failed to recognise a data file! 

Check spelling of filename and enclose the name in quotes. 
Fault: Error parsing yield ~ mu variety  
 Last line  read was:  yield ~ mu variety 
 Currently defined structures, COLS and LEVELS  

NIN Alliance Trial 1989 
variety *  
id pid raw  
repl *  
nloc yield  
lat long 
row * column *  
nin9.asd !slip 1 
yield ∼ mu variety 
!R Repl 
residual ar1(Row).ar1(Col)  
predict varierty 

mailto:support@asreml.co.uk


15.3 Things to check in the .asr file 

251 
 

1 variety 1 2 0 0 0 0 
2 id 1 1 0 0 0 0 
3 pid 1 1 0 0 0 0 
4 raw 1 1 0 0 0 0 
5 repl 1 2 0 0 0 0 
6 nloc 1 1 0 0 0 0 
7 yield 1 1 0 0 0 0 
8 lat 1 1 0 0 0 0 
9 long 1 1 0 0 0 0 
10 row 1 2 0 0 0 0 
11 column 1 2 0 0 0 0 

ninerr1 C:\Users\Public\ASReml\Docs\Manex4\ERR 
11 factors defined [max5000]. 
0 variance parameters [max2500]. 2 special structures  

Last line read was: yield ~ mu variety 
Finished: 23 Apr 2014 09:16:54.931 Error parsing yield ~ mu variety 
 

 

ASReml happily reads down to the nin9.asd line. This name contains a ’.’ which is not permitted 
in a variable name so nin9.asd is expected to be a file name, but there is no such file in the 
working folder. The data file is actually nin89.asd. 

 
15.3 Things to check in the .asr file 

The information that ASReml dumps in the .asr file when an error is encountered is intended to 
give you some idea of the particular error: 

 
• if there is no data summary, ASReml has failed before or while reading the model line, 

• if ASReml has completed one iteration the problem is probably associated with starting values 
of the variance parameters or the logic of the model rather than the syntax per se. 

15.4 An example 
 

Briefly, the 8 coding errors in the example above, in the order they will be detected, are: 
 

1. filename misspelt; there is no file nin9.asd in the working folder, 

2. unrecognised qualifier (should be !SKIP), 

3. ’Variety’ has alphabetic level labels but not declared has such; !A required, 

4. COMMA missing from first line of model; !R Repl is part of the model but not recognised  
as such, 

5. misspelt variable label in linear model; Repl should be repl, 

6. misspelt variable labels in residual model 
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7. the data has missing cells with respect to the declared residual structure, 

8. misspelt variable label in predict; statement (varierty should be variety). 

1. Data file not found 
Running this job produces the .asr file in Section 15.1. The first problem is that ASReml cannot 
find a data file nin9.asd in the current working folder as indicated in the error message above the 
Fault line. Since nin9.asd contains a ’.’ which is not permitted in variable names, ASReml 
checks for a file of this name (in the working directory since no path is supplied). But ASReml did 
not find a file with this name. ASReml cannot tell whether the filename is misspelt or that an invalid 
variable name has been specified. In this case the data file was given as nin9.asd rather than 
nin89.asd. However, ASReml kept going and read the model line which it recognised because of 
the ∼ character. The message Fault: Error parsing yield ∼ mu variety does not mean that 
the error is in the model yield ~ mu variety but that it recognised this as the model line and 
gave up because it had not encountered a valid data file line. 

 
The message 
Warning: Unrecognised qualifier at character 10 nin9.asd ! ... !SLIP 1 
simply indicates that the qualifier !SLIP 1 has not been processed. 

 
2. An unrecognised qualifier 
After correcting the filename, we get the 
following (abbreviated) output. The problem is 
that !SKIP 1, which would cause ASReml to 
skip the first line of the data file, was mistyped as 
!SLIP 1 which ASReml failed to recognise and 
ignored. But then it was unable to read the first 
line of the data file. 
... 
Folder: C:\Users\Public\ASReml\Docs\Manex4\ERR  
QUALIFIERS: !SLIP 1 
Warning: Unrecognised qualifier at character 11 !SLIP 1  
Reading nin89.asd FREE FORMAT skipping 0 lines 

 
Univariate analysis of yield 
Notice: Maybe you want !A !L qualifiers for this factor: variety  
Error at field 1 [variety] of record 1 [line 1] 
Since this is the first data record, you may need to skip some header lines  
(see !SKIP) or append the !A qualifier to the definition of factor variety  
Fault: Missing/faulty !SKIP or !A needed for variety 
Last line  read was: variety id pid raw rep nloc yield lat long row column 
Currently defined structures, COLS and LEVELS  

1 variety   1 2 2 0 0 0 
...        
10 row   1 2 2 0 9 0 
11 column 1 2 2 0 10 0 
12 mu 0 1 -8 0 -1 0 

ninerr2 nin89.asd 
Model specification: TERM LEVELS GAMMAS  

  

NIN Alliance Trial 1989 
variety * 
... 
row * column *  
nin89.asd !slip 1 
yield ∼ mu variety 
!R Repl 
residual ar1(Row).ar1(Col)  
predict varierty 
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mu  0 
variety 0 
12 factors defined [max5000]. 
0 variance parameters [max2500]. 2 special structures 

Last line  read was: variety id pid raw rep nloc yield lat long row column 
Finished: 23 Apr 2014 09:17:01.765 Missing/faulty !SKIP or !A needed for variety 

 
3.  An incorrectly defined factor 
After correcting !slip 1 to !skip 1, we get 
the following (abbreviated) output. The problem 
is that variety is coded in the data file with 
alphabetic level names but ASReml is expecting 
integer level codes. Changing the variety * 
line to read variety !A resolves this problem. 

 
 

... 
Folder: C:\Users\Public\ASReml\Docs\Manex4\ERR  
QUALIFIERS: !SKIP 1 
Reading nin89.asd FREE FORMAT skipping 1 lines 

 
Univariate analysis of yield 
Notice: Maybe you want !A !L qualifiers for this factor: LANCER  
Error at field 1 [LANCER] of record 1 [line 1] 
Since this is the first data record, you may need to skip some header lines  
(see !SKIP) or append the !A qualifier to the definition of factor variety  
Fault: Missing/faulty !SKIP or !A needed for variety 
Last line read was: LANCER 1 1101 585 1 4 29.25 4.3 19.2 16 1  
Currently defined structures, COLS and LEVELS   
1 variety  1 2 2 0 0 0 
...      
11 column  1 2 2 0 10 0 
12 mu  0 1 -8 0 -1 0 
ninerr3 variety id pid raw rep nloc yield lat    

Model specification: TERM LEVELS GAMMAS 
mu  0 
variety 0 
12 factors defined [max5000]. 
0 variance parameters [max2500]. 2 special structures 

Last line  read was: LANCER 1 1101 585 1 4 29.25 4.3 19.2 16 1 
Finished: 23 Apr 2014 09:17:05.540 Missing/faulty !SKIP or !A needed for variety 

  

NIN Alliance Trial 1989 
variety * 
... 
row * column *  
nin89.asd !skip 1 
yield ∼ mu variety 
!R Repl 
residual ar1(Row).ar1(Col)  
predict varierty 
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4. A missing comma 
After correcting the definition of variety, we 
get the following (abbreviated) output. We have at 
least now read the data file as indicated by the data 
summary. You should always check the data 
summary to ensure that the correct number of 
records have been detected and the data values 
match the names appropriately. 

 
The problem is that !R Repl is meant to be part 
of the linear model, but it is on a separate line, and the first part of the model on the preceding line 
does not end with a COMMA to indicate that the model is incomplete. Appending a COMMA to the 
first model line resolves this problem. 
 
... 
Folder: C:\Users\Public\ASReml\Docs\Manex4\ERR  
variety !A 
QUALIFIERS: !SKIP 1 
Reading nin89.asd FREE FORMAT skipping 1 lines 

 
Univariate analysis of yield 
Summary of 224 records retained of 224 read 

 
Model term  Size #miss #zero MinNon0 Mean MaxNon0 StndDevn 
1 variety  56 0 0 1 28.5000 56  
2 id  0 0 1.000 28.50 56.00 16.20 
3 pid  0 0 1101. 2628. 4156. 1121. 
4 raw  0 0 21.00 510.5 840.0 149.0 
5 repl  4 0 0 1 2.5000 4  
6 nloc  0 0 4.000 4.000 4.000 0.000 
7 yield  Variate 0 0 1.050 25.53 42.00 7.450 
8 lat  0 0 4.300 27.22 47.30 12.90 
9 long  0 0 1.200 14.08 26.40 7.698 
10 row  22 0 0 1 11.7321 22  
11 column  11 0 0 1 6.3304 11  
12 mu   1     
QUALIFIERS: !R Repl       

Fault: Error in variance header line: !R Repl 
Last line read was: !R Repl 0 0 0 0 
ninerr4 variety id pid raw rep nloc yield lat  
Model specification: TERM LEVELS GAMMAS  
variety  56 
mu 1 
12 factors defined [max5000]. 
0 variance parameters [max2500]. 2 special structures  

Final parameter values [ 2: 0] 
Last line  read was: !R Repl 0 0 0 0 
Finished: 23 Apr 2014 09:17:08.861 Error in variance header line: !R Repl  

NIN Alliance Trial 1989 
variety !A 
... 
row * column *  
nin89.asd !skip 1 
yield ∼ mu variety 
!R Repl 
residual ar1(Row).ar1(Col)  
predict varierty 
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5. A misspelt factor name in linear model. 
After correcting the definition of variety, we 
get the following (abbreviated) output. Now it has 
failed to parse the model line because the model 
term Repl was declared as repl and so is 
unrecognised. Changing Repl to repl (or vice 
versa) resolves this problem. 

 
 
 
 
 

... 
Folder: C:\Users\Public\ASReml\Docs\Manex4\ERR  
variety !A 
QUALIFIERS: !SKIP 1 
Reading nin89.asd FREE FORMAT skipping 1 lines  
Model term "Repl" is not valid/recognised. 
Fault: Error reading model terms 
Last line read was: Repl 
Currently defined structures, 

 
COLS 

 
and 

 
LEVELS 

 

1 variety  1 2 2 0 0 0 
2 id  1 1 1 0 1 0 
3 pid  1 1 1 0 2 0 
4 raw  1 1 1 0 3 0 
5 repl  1 2 2 0 4 0 

...           
12 mu     0 1 -8 0 -1 0 
ninerr5 variety id pid raw rep nloc yield lat     

Model specification: TERM LEVELS GAMMAS  
mu  0 
variety 0 
12 factors defined [max5000]. 
0 variance parameters [max2500]. 2 special structures  

Last line  read was: Repl 
Finished: 23 Apr 2014 09:17:15.785 Error reading model terms  

NIN Alliance Trial 1989 
variety !A 
id pid raw 
repl* 
... 
row * column *  
nin89.asd !skip 1 
yield ∼ mu variety , 
!R Repl 
residual ar1(Row).ar1(Col)  
predict varierty 
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6. Misspelt factor name in RESIDUAL declaration 
After correcting the spelling of Repl, we get the 
following (abbreviated) output. The problem here 
is essentially the same as error 5. The spatial 
residual model was declared using Row and Col 
but the relevant variables are in fact row and 
column. Note that, in this case column could be 
truncated to col in the model formulae as this 
does not cause any ambiguity but often it is clearer 
to use the full variable name. 

 
 

... 
Summary of 224 records retained of 224 read 

 
 
 

... 
 
 
 

ar1(Row) in ar1(Row).ar1(Col) has size 0, parameters: 5 5 
ar1(Col) in ar1(Row).ar1(Col) has size 0, parameters: 6 6 
ar1(Row).ar1(Col) [ 4: 6] initialized. 
Error: There are 224 data records but RESIDUAL model implies 0 data records. 

 
Error: Unrecognised argument in ar1(Row)  
Error: Unrecognised argument in ar1(Col) 

Fault: RESIDUAL structure does not match records in data  
Last line  read was: Residual ar1(Row).ar1(Col) 
ninerr6 variety id pid raw rep nloc yield lat 
Model specification: 
variety 

TERM LEVELS GAMMAS 
56 

   

mu  1   
repl  4  0.100 [ 3] 
SECTIONS 0 4 1    
STRUCT 0 1 1  5 1 1 1 
17 factors defined [max5000].      

6 variance parameters [max2500]. 2 special structures  
Final parameter values [ 3: 6] 0.10000E+00 1.00000 0.10000E+00 
0.10000E+00 
Last line  read was: Residual ar1(Row).ar1(Col) 
Finished: 23 Apr 2014 09:17:20.179 RESIDUAL structure does not match records in data 

  

Model term Size #miss #zero MinNon0 Mean MaxNon0 StndDevn 
1 variety 56 0 0 1 28.5000 56 

10 row 22 0 0 1 11.7321 
 

22 
11 column 11 0  0 1 6.3304 11 
12 mu   1     

 

NIN Alliance Trial 1989 
variety !A 
id pid raw 
repl* 
... 
row * column *  
nin89.asd !skip 1 
yield ∼ mu variety , 
!R repl 
residual ar1(Row).ar1(Col)  
predict varierty 
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7. Missing plots in field layout 
The variables row and column define a 22 ×  11 
grid, that is 242 plots, but there are only 224 plots 
in the data. We could manually work out which are 
missing, and construct extra data lines to complete 
the grid, but ASReml will do this for us if we add 
the qualifiers 
!ROWFAC row !COLFAC column 
and add the model term mv to estimate missing 
values for the missing plots. So this problem is 
resolved by changing the model lines to read 
nin89.asd !skip 1 
!ROWFAC row !COLFAC column  

yield ∼ mu variety mv !R repl  
residual ar1(row).ar1(col) 

 
This output also flags the 8th error which is the misspelling of variety in the predict line. That 
error does not stop the job running, but does mean the predicted means for variety will not be 
formed. 
... 
QUALIFIERS: !SKIP 1 
Reading nin89.asd FREE FORMAT skipping 1 lines 
... 
12 mu 1 
ar1(row) in ar1(row).ar1(col) has size 22, parameters: 5 5 
ar1(col) in ar1(row).ar1(col) has size 11, parameters: 6 6 
ar1(row).ar1(col) [ 4: 6] initialized. 
Forming 61 equations: 57 dense. 
Initial updates will be shrunk by factor 0.400 

 
Notice: Invalid argument, unrecognised qualifier or  

vector space exhausted at ’varierty ’ 
 

Error: R structures do not match records in data.  
Error: Spatial Layout is not rectangular grid 

Fault: Variance structure does not match data  
 Last line  read was: !STOP 
ninerr7 variety id pid raw rep nloc yield lat 
Model specification: 
variety 

 TERM LEVELS 
56 

GAMMAS    

mu   1    
repl   4 0.100 [ 3] 
SECTIONS 242 4  1    
STRUCT 22 1  1 5  1 1 10 

10 1  1 6  1 1 11 
15 factors defined [max5000]. 
6 variance parameters [max2500]. 2 special structures 

Final parameter values [ 3: 6] 0.10000 1.0000 0.10000 
0.10000 
Last line read was: !STOP 
Finished: 23 Apr 2014 09:17:23.354 Variance structure does not match data 
  

NIN Alliance Trial 1989 
variety !A 
id pid raw 
repl* 
... 
row * column *  
nin89.asd !skip 1 
yield ∼ mu variety , 
!R repl 
residual ar1(Row).ar1(Col)  
predict varierty 
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8. A misspelt factor name in the predict statement 
The final error in the job is that a factor name is misspelt in the predict statement. This is a non-
fatal error. The .asr file contains the messages 
Notice: Invalid argument, unrecognised qualifier or  

vector space exhausted at ’varierty ’ 
Warning: Extra lines on the end of the input file are ignored from  
predict varierty 

 
The faulty statement is otherwise ignored by ASReml and no .pvs file is produced. To 
rectify this statement correct varierty to variety. 

 
15.5 Information, Warning and Error messages 

 
ASReml prints information, warning and error messages in the .asr file. The major information 
messages are in Table 15.1. A list of warning messages together with the likely meaning(s) is 
presented in Table 15.2. Other error messages with their probable cause(s) is presented in Table 
15.3. 

 
Not all messages are listed here. If not, identify whether the problem is syntactical (as in the 
previous section), whether it is a processing problem (the job starts to process but does not 
complete) or a reporting problem: 

 
• for a syntax problem, note that the actual problem may be in an earlier line, and the current 

message is indicating an inconsistency with what ASReml has already read. Scan the output for 
other messages which might indicate the problem. If the problem is not evident, simplify the 
job until the simpler version runs and then build back to the required model. Remember that the 
model statement is parsed before the data file is read, but any following statements (e.g. 
residual, predict ) are parsed after the data is read. 

• processing errors are indicated if the .asr file contains lines like 
Forming 18211 equations: 42 dense. 
Initial updates will be shrunk by factor 0.316 
Simple things to try are increasing !WORKSPACE and simplifying the model. 

 
• reporting problems are indicated if the LogL has converged or ASReml has completed the 

specified number of iterations. 

Do not hesitate to seek help on the forum and to report problems to support@vsni.co.uk. Often a 
simple solution is available. 

  

mailto:support@vsni.co.uk
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Table 15.1: Some information messages and comments 

information message Comment 

Logl converged the REML log-likelihood last changed less than 0.002 * 
iteration number and variance parameter values appear 
stable. 

BLUP run done A full iteration has not been completed. See discussion of 
!BLUP. 

JOB ABORTED by USER See discussion of ABORTASR.NOW. 
Logl converged, parameters 
not converged 

the change in REML log-likelihood was small and 
convergence was assumed but the parameters are, in fact, 
still changing. 

Logl not converged the maximum number of iterations was reached before the 
REML log-likelihood converged. The user must decide 
whether to accept the results anyway, to restart with the 
!CONTINUE command line option (see Section 11.3 on 
job control), or to change the model and/or initial values 
before proceeding. The sequence of estimates is reported 
in the .res file. It may be necessary to simplify the model 
and estimate the dominant components before estimating 
other terms if the LogL is oscillating. 

Warning: Only one iteration 
performed 

Parameter values are not at the REML solution. 

Parameters unchanged after 
one iteration. 

Parameters appear to be at the REML solution in that the 
parameter values are stable. 

 
Messages beginning with the word Notice: are not generally listed here. They provide 
information the user should be aware of as it may affect the interpretation of results. They are not 
in themselves errors in that the syntax is valid, but they may reflect errors in the sense that the user 
may have intended something different. 

 
Messages beginning with the word Warning: highlight information that the user should check. 
Again, it may reflect an error if the user has intended something different. 

 
Messages beginning with the word Error: indicate that something is inconsistent as far as 
ASReml is concerned. It may be a coding error that the user can fix easily, or a processing error 
which will generally be harder to diagnose. Often, the error reported is a symptom of something 
else being wrong.  
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Table 15.2: List of warning messages and likely meaning(s) 

warning message likely meaning 

Notice: ASReml has merged 
design points closer than 

This is to reduce the number of knot points used in fitting a 
spline. 

Warning: e missing values 
generated by !^ transformation 

data values should be positive. 

Warning: i singularities in AI 
matrix 

usually means the variance model is overparameterized. Look 
up !AISING. 

Warning: m variance 
structures were modified 

the structures are probably at the boundary of the parameter 
space. 

Warning: n missing values were 
detected in the design 

either use !MVINCLUDE or delete the records. 

Warning: n negative weights it is better to avoid negative weights unless you can check 
ASReml is doing the correct thing with them. 

Warning: r records were read 
from multiple lines 

check the data summary has the correct number of records, 
and all variables have valid data values. If ASReml does not find 
sufficient values on a data line, it continues reading from the 
next line. 

WARNING term has more levels  
[ ## ] than expected [ ## ]: 

You have probably mis-specified the number of levels in the 
factor or omitted the !I qualifier (see Section 5.4.1 on data 
field definition syntax). ASReml corrects the number of levels. 

Warning: term in the predict 
!IGNORE list 

the term did not appear in the model. 

Warning: term in the predict 
!USE list 

the term did not appear in the model. 

Warning: term is ignored for 
prediction 

terms like units and mv cannot be included in prediction. 

Warning: Check if you need the 
!RECODE qualifier 

!RECODE may be needed when using a pedigree and reading 
data from a binary file that was not prepared with ASReml. 

Warning: Code B - fixed at a 
boundary (!GP) 

suggest drop the term and refit the model. 

Warning: Dropped records were 
not evenly distributed across 

!MVREMOVE has been used to delete records which have a 
missing value in design variables. This has resulted in 
multivariate data no longer having an n × t (n subjects with t 
traits each) structure. This will be a problem if the R structure 
model assumes n × t data structure. 

Warning: Eigen analysis check 
of US matrix skipped 

the matrix may be OK but ASReml has not checked it. 

WARNING: Extra lines on the 
end of the input file ...: 

this indicates that there are some lines on the end of the .as file 
that were not used. The first ”extra” line is displayed. This is 
only a problem if you intended ASReml to read these lines. 
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Table 15.2: List of warning messages and likely meaning(s) 

warning message likely meaning 

Warning: Failed to find 
header blocks to skip. 

The !RSKIP qualifier requested skipping header blocks which 
were not present. 

Warning: Fewer levels found 
in term 

ASReml increases to the correct value.  

Warning: FIELD DEFINITION 
lines should be INDENTED 

indent them to avert this message. 

Warning: Fixed levels for 
factor 

user nominated more levels than are permitted. 

Warning: Initial gamma value 
is zero 

constraint parameter is probably wrongly assigned. 

Warning: Invalid argument. fix the argument. 
Warning: It is usual to 
include Trait in the ... 
model 

The model term Trait was not present in the multivariate 
analysis model. 

Warning: LogL Converged; 
Parameters Not Converged 

you may need more iterations. 

Warning: LogL not converged restart to do more iterations (see !CONTINUE). 

Notice: LogL values are 
reported relative to a base 
of 

The computed LogL value is occasionally very large in 
magnitude, but our interest is in relative changes. Reporting 
relative to an offset ensures that differences at the units level 
are apparent. 

Warning: Missing cells in 
table 

missing cells are normally not reported. consider setting levels 
correctly. 

Warning: More levels found 
in term 

consider setting levels correctly 

Warning: PREDICT LINE 
IGNORED - TOO MANY 

the limit is 100 PREDICT statements. 

Warning: PREDICT statement 
is being ignored 

because it contains errors. 

Warning: Second occurrence 
of term dropped 

if you really want to fit this term twice, create a copy with 
another name. 

Warning: Spatial mapping 
information for side 

gives details so you can check ASReml is doing what you intend. 

Warning: Standard errors that is, these standard errors are approximate. 

Warning: SYNTAX CHANGE: text 
may be invalid 

use the correct syntax. 

Warning: The !A qualifier 
ignored when reading BINARY 
data 

the !A fields will be treated as factors but are coded as they 
appear in the binary file. 

Warning: The !SPLINE 
qualifier has been 
redefined. 

use correct syntax 
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Table 15.2: List of warning messages and likely meaning(s) 

warning message likely meaning 

Warning: The !X !Y !G 
qualifiers are ignored. 
There is no data to plot 

revise the qualifier arguments. 

Warning: The default action 
with missing values in 
multivariate data 

The issue is to match the declared R structure to the physical 
data. Dropping observations which are missing will often 
usually destroy the pattern. Estimating missing values allows 
the pattern to be retained.  

Warning: The estimation was 
ABORTED 

Do not accept the estimates printed. 

Warning: The FOWN test of 
... is not calculated ... 

The FOWN test requested is not calculated because it results in 
different numbers of degrees of freedom to that obtained for 
the incremental tests for the terms in the model as fitted; the 
FOWN calculations are based on the reduced design matrix 
formed for the incremental model. ASReml performs the 
standard conditional test instead. The user must reorder 
(swap?) the terms in the model specification and rerun the job 
to perform the requested FOWN test. 

Warning: The labels for 
predictions are erroneous 

the labels for predicted terms are probably out of kilter. Try a 
simpler predict statement. If the problem persists, send for 
help. 

Warning: This US structure 
is not positive definite 

check the initial values. 

Warning: Unrecognised 
qualifier at character 

the qualifier either is misspelt or is in the wrong place. 

Warning: US matrix was not 
positive definite: MODIFIED 

the initial values were modified by a ’bending’ process. 

Warning: User specified 
spline points 

the points have been rescaled to suit the data values.  

Warning: Variance 
parameters were modified by 
BENDing 

ASReml may not have converged to the best estimate. 

Warning: Likelihood 
decreased. Check gammas and 
singularities.: 

a common reason is that some constraints have restricted the 
gammas. Add the !GU qualifier to any factor definition whose 
gamma value is approaching zero (or the correlation is 
approaching (-)1. Alternatively, more singularities may have 
been detected. You should identify where the singularities are 
expected and modify the data so that they are omitted or 
consistently detected. One possibility is to centre and scale 
covariates involved in interactions so that their standard 
deviation is close to 1. 

  



15.5 Information, Warning and Error messages 

263 
 

Table 15.3: Alphabetical list of error messages and probable cause(s)/remedies 

error message probable cause/remedy 

!COLFAC confusion 
!ROWFAC confusion 

!COLFAC/!ROWFAC arguments contradict RESIDUAL 
statement order. If the variables have the correct names, 
reverse the order. 

!PRINT: Cannot open output 
file 

Check filename. 

!SUBSECTION not permitted ... This variance structure qualifier is only permitted in single 
section RESIDUAL structures. 

AINV/GIV matrix undefined or 
wrong size Check the size of the factor associated with the AINV/GIV 

structure. 
ALNORM Error ALNORM calculates the Normal Integral 
Apparent error in pedigree 
relationships 

ASReml failed to !SORT the pedigree. 

ASReml command file is EMPTY: The job file should be in ASCII format. 
ASReml failed in ... Try running the job with increased workspace, or using a 

simpler model. Otherwise send the job to VSNi 
support@asreml.co.uk for investigation. 

at() string too long ASReml failed to expand the at() model term string. Break it 
into several parts on separate lines. 

Badly formed model term. ASReml failed to parse the term. Revise and simplify. 
CALC ?? reference to large An argument in the CALC statement is not valid. 
Check IDV structure ASReml is using IDV variance structure but wonders whether 

that is what you intended. 
Context of read error Data 
Error: At record ... 

ASReml found alphacharacters when it was expecting numeric 
data. Either the variable should be declared alphanumeric, or 
we have miscounted items on the line. Use !CSV if there are 
TAB or COMMA delimited blank lines. 

Continue from .rsv file Try running without the !CONTINUE qualifier. 
Convergence failed the program did not proceed to convergence because the REML 

log-likelihood was fluctuating wildly. One possible reason is 
that some singular terms in the model are not being detected 
consistently. Otherwise, the updated G structures are not 
positive definite. There are some things to try: 

- define US structures as positive definite by using !GP, 

- supply better starting values, 
- fix parameters that you are confident of while getting 

better estimates for others (that is, fix variances when 
estimating covariances), 

- fit a simpler model, 

- reorganise the model to reduce covariance terms (for 
example, use CORUH instead of US.) 
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Table 15.3: Alphabetical list of error messages and probable cause(s)/remedies 

error message probable cause/remedy 

Correlation structure is 
not positive definite 

It is best to start with a positive definite correlation structure. 
Maybe use a structured correlation matrix. 

Data does not have # 
sections. 

The data does not match the RESIDUAL specification. 

Define structure for ... 
A variance structure should be specified for this term. 

Error: The indicated number 
of input fields exceeds the 
limit. 

The reported limit is hardcoded. The number of variables to 
be read must be reduced. 

Error in !CONTRAST label 
factor values 

The error could be in the variable(factor) name or in the 
number of values or the list of values. 

Error in !GROUP label 
factor values 

The list of values does not agree with the factor definition. 

Error in !SUBSET label 
factor values 

The error could be in the variable(factor) name or in the 
number of values or the list of values. 

Error in extended !ASSIGN The !< !> qualifiers allow an assign string to be defined over 
several lines. Maybe the string is too long. 

Error in R structure: model 
checks 

the error model is not correctly specified. 

Error opening file the file did not exist or was of the wrong file type  
(binary = unformatted, sequential). 

Error in list ... The PREDICT statement cannot be parsed. 
Error in PREDICT ASReml failed to form the PREDICT design matrix. 
Error in variance header 
line. 

This usually indicates the model has not been properly parsed 
and part is misinterpreted as a variance header line (old syntax 
where the residual statement was expected. When the model 
statement is written over several lines, incomplete lines must 
end with a plus or COMMA character. 

Error in Variance Parameter 
Constraint 

Check old syntax variance structure specification. 

Error opening file Check the filename is correct and that the file is not open in 
another process. 

Error order This error comes from the main read routine! or from the 
variable definition !EQORDER for some discussion. Try 
increasing !WORKSPACE 

Error parsing This error comes from the main read routine! or from the 
variable definition parsing routine. 

Error reading something There are several messages of this form where something is 
what ASReml is attempting to read. Either there is an error 
telling ASReml to read something when it does not need to, or 
there is an error in the way something is specified. 
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Table 15.3: Alphabetical list of error messages and probable cause(s)/remedies 

error message probable cause/remedy 

Error reading the data: the data file could not be interpreted: alphanumeric fields need 
the !A qualifier. 

Error reading the DATA 
FILENAME line 

data file name may be wrong 

Error reading the model 
factor list 

the model specification line is in error: a variable is probably 
misnamed. 

Error: Ran out of space to 
code records to sort 
them!’/ 

Declare the levels in the !ROWFACTOR, !COLUMNFACTOR and 
!SECTION variables more accurately. 

Error setting constraints 
(!VCC) on variance 
components 

The !VCC constraints are specified last of all and require 
knowing the position of each parameter in the parameter 
vector. 

Error setting dependent 
variable 

the specified dependent variable name is not recognised. 

Error setting MBF design 
matrix: !MBF mbf(x,k) 
filename 

It is likely that the covariate values do not match the values 
supplied in the file. The values in the file should be in sorted 
order. 

Error sorting X,Y values !ROWFAC and !COLFAC and !SECTION as well as factors 
defining a residual structure must uniquely define grid 
points in the spatial array. 

Error structures are wrong 
size: 

the declared size of the error structures does not match the 
actual number of data records. 

Error when reading knot 
point values 

There is some problem on the !SPLINE line. It could be a 
wrong variable name or the wrong number of knot points. 
Knot points should be in increasing order. 

Failed forming R/G 
scores...? 

Try increasing workspace. 

Failed ordering Level 
labels 

The problem may be due to the use of the !SORT qualifier in 
the data definition section. 

Failed to find ... The PREDICT statement seems in error: the named factor is 
not present in the model. 

Failed to open !INCLUDE An !INCLUDE file could not be opened. 
Failed to parse R/G 
structure line 
Failed to read R/G 
structure line 

May be an unrecognised factor/model-term name or variance 
structure name or wrong count of initial values, possible on an 
earlier line. May be insufficient lines in the job. 

Failed to process MYOWNGDG 
files 

Check your MYOWNGDG program and the .gdg file. 

Failed when sorting 
pedigree 

... 

Maybe increase !WORKSPACE. Messages may identify a 
problem with the pedigree. 

Failed when processing 
pedigree file ... 
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Table 15.3: Alphabetical list of error messages and probable cause(s)/remedies 

error message probable cause/remedy 

Failed while ordering 
equations. 

This indicates the job needs more memory than was allocated 
or is available. Try increasing the workspace or simplifying the 
model. 

FORMAT error reading ... Likely causes are 
 - bad syntax or invalid characters in the variable names; 

variable names must not include any of these symbols; 
!|-+(:#$ and ., 

- the data file name is misspelt, 
- there are too many variables declared or there is no 

valid value supplied with an arithmetic transformation 
option. 

G-structure header: Factor 
order: 

there is a problem reading G structure header line. An earlier 
error (for example insufficient initial values) may mean the 
actual line read is not actually a G header line at all. A G header 
line must contain the name of a term in the linear model spelt 
exactly as it appears in the model. 

G structure: ORDER 0 MODEL 
GAMMAS: 

a G structure line cannot be interpreted. 

G structure size does not 
match 

The size of the structure defined does not agree with the model 
term that it is associated with. 

Getting Pedigree: an error occurred processing the pedigree. The pedigree file 
must be ascii, free format with ANIMAL, SIRE and DAM as the 
first three fields. 

GLM Bounds failure ASReml failed to calculate the GLM working variables or 
weights. Check the data. 

Increase declared levels 
for factor 

Either the field has alphanumeric values but has not been 
declared using the !A qualifier, or there is not enough space 
to hold the levels of the factor. To ’increase the levels’, insert 
the expected number of levels after the !A or !I qualifier in 
the field definition. 

Increase workspace ... Use !WORKSPACE s to increase the workspace available to 
ASReml. If the data set is not extremely big, check the data 
summary. 

Insufficient data read from 
file 

Maybe the response variable is all missing. 

Insufficient points for : there must be at least 3 distinct data values for a spline term 
Insufficient workspace If ASReml has not obtained the maximum available workspace, 

then use !WORKSPACE to increase it. The problem could be 
with the way the model is specified. Try fitting a simpler model 
or using a reduced data set to discover where the workspace is 
being used. 

invalid analysis trait 
number 

The response variable nominated by the !YVAR command line 
qualifier is not in the data. 
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Table 15.3: Alphabetical list of error messages and probable cause(s)/remedies 

error message probable cause/remedy 

Invalid binary data Invalid 
Binomial Variable 

The data values are out of the expected range for 
binary/binomial data. 

Invalid definition of 
factor ... 

there is a problem with forming one of the generated factors. 
The most probable cause is that an interaction cannot be 
formed. 

Invalid error structure for 
Multivariate Analysis 

You must either use the US error structure or use the !ASUV 
qualifier (and maybe include mv in the model). 

Invalid factor in model: a term in the model specification is not among the terms that 
have been defined. Check the spelling. 

Invalid model factor ... there is a problem with the named variable. 
Invalid SOURCE in R 
structure definition 

The second field in the R structure line does not refer to a 
variate in the data. 

Invalid weight/filter 
column number: 

the weight and filter columns must be data fields. Check the 
data summary. 

Iteration aborted because 
of singularities 

See the discussion of !AISINGULARITIES. 

Iteration failed Maybe increase workspace or restructure/simplify the model. 
Matérn: ... Numerical problems calculating the Matérn function. If 

rescaling the X, Y coordinates so that the step size is closer to 
1.0 does not resolve the issue, try AEXP instead. 

Maximum number of special 
structures exceeded 

special structures are weights, the Ainverse and GIV 
structures. The limit is 98 and so no more than 96 GIV 
structures can be defined. 

Maximum number of variance 
parameters exceeded 

The limit is 1500. It may be possible to restructure the job so 
the limit is not exceeded, assuming that the actual number of 
parameters to be estimated is less. 

Missing/faulty !SKIP or !A 
needed for ... 

ASReml failed to read the first data record. Maybe it is a 
heading line which should be skipped by using the !SKIP 
qualifier, or maybe the field is an alphanumeric field but has 
not been declared so with the !A qualifier. 

Missing values in design 
variables/factors 

You need to identify which design terms contain missing 
values and decide whether to delete the records containing the 
missing values in these variables or, if it is reasonable, to treat 
the missing values as zero by using !MVINCLUDE. 

Missing Value Miscount 
forming design 

More missing values in the response were found than 
expected. 

Missing values not allowed 
here: 

missing observations have been dropped so that direct product 
R structure does not match the multivariate data structure. 

Multiple trait mapping 
problem 

Maybe a trait name is repeated. 

  



15.5 Information, Warning and Error messages 

268 
 

Table 15.3: Alphabetical list of error messages and probable cause(s)/remedies 

error message probable cause/remedy 

Negative Sum of Squares: This is typically caused by negative variance parameters; try 
changing the starting values or using the !STEP option. If the 
problem occurs after several iterations it is likely that the 
variance components are very small. Try simplifying the model. 
In multivariate analyses it arises if the error variance is 
(becomes) negative definite. Try specifying !GP on the 
structure line for the error variance. 

NFACT out of range: too many terms are being defined. 
No .giv file for Fix the argument to giv(). 
No residual variation: after fitting the model, the residual variation is essentially zero, 

that is, the model fully explains the data. If this is intended, use 
the !BLUP 1 qualifier so that you can see the estimates. 
Otherwise check that the dependent values are what you intend 
and then identify which variables explain it. Again, the !BLUP 1 
qualifier might help. 

Out of ... A program limit has been breached. Try simplifying the model. 
Out of memory ... use !WORKSPACE qualifier to increase the workspace allocation. 

It may be possible to revise the models to increase sparsity. 
Out of memory: forming 
design: 

factors are probably not declared properly. Check the number of 
levels. Possibly use the !WORKSPACE qualifier. 

Overflow forming !PRESENT 
table 

The predict table appears to be too big. Try increasing 
WORKSPACE, or predicting in parts. 

Overflow structure table: occurs when space allocated for the structure table is exceeded. 
There is room for three structures for each model term for which 
G structures are explicitly declared. The error might occur when 
ASReml needs to construct rows of the table for structured terms 
when the user has not formally declared the structures. 
Increasing g on the variance header line for the number of G 
structures (see ASReml User Guide: Structural Specification) will 
increase the space allocated for the table. You will need to add 
extra explicit declarations also. 

Pedigree coding errors: check the pedigree file and see any messages in the output. 
Check that identifiers and pedigrees are in chronological order. 

Pedigree factor has wrong 
size: 

the A-inverse factors are not the same size as the A-inverse. 
Delete the ainverse.bin file and rerun the job. 

Pedigree too big! or in 
error 

Typically this arises when there is a problem processing the 
pedigree file. 

POWER model setup error Check the details for the distance-based variance structure. 

POWER Model: Unique 
points disagree with size 

Check the distances specified for the distance-based variance 
structure. 

PROGRAM failed in ... Try increasing workspace. Otherwise send problem to VSNi. 
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Table 15.3: Alphabetical list of error messages and probable cause(s)/remedies 

error message probable cause/remedy 

PROGRAMMING error: indicates ASReml has failed deep in its core. It is likely to be an 
interaction between the data and the variance model being 
fitted. Try increasing the memory, simplifying the model and 
changing starting values for the gammas. If this fails send the 
problem to VSNi support@asreml.co.uk for investigation. 

reading !SELF option Check the argument. 
Reading distances for POWER 
structure 

POWER structures are the spatial variance models which require 
a list of distances. Distances should be in increasing order. If the 
distances are not obtained from variables, the ’SORT’ field is 
zero and the distances are presented after all the R and G 
structures are defined. 

Reading factor names: something is wrong in the terms definitions. It could also be that 
the data file is misnamed. 

reading Overdispersion factor Check the argument. 
READING OWN structures ... There is probably a problem with the output from MYOWNGDG. 

Check the files, including the time stamps to check the .gdg file 
is being formed properly. 

Reading the data: if you read less data than you expect, there are two likely 
explanations. First, the data file has less fields than implied by 
the data structure definitions (you will probably read half the 
expected number). Second, there is an alphanumeric field where 
a numeric field is expected. 

Reading Update step size: check the !STEP qualifier argument. 
Residual Variance is Zero: either all data are deleted or the model fully fits the data. 
R header SECTIONS DIMNS 
GSTRUCT 

R structure header SITE DIM 
GSTRUCT 

Variance header: SEC DIM 
GSTRUCT 

error with the variance header line. Often, some other error has 
meant that the wrong line is being interpreted as the variance 
header line. Commonly, the model is written over several lines 
but the incomplete lines do not all end with a COMMA. 

R structure error ORDER 
SORTCOL MODEL GAMMAS: 

an error reading the error model. 

R structures are larger than 
number of records 

Maybe you need to include mv in the model to stop ASReml 
discarding records with missing values in the response variable. 

REQUIRE !ASUV qualifier for 
this R structure 

REQUIRE I x E R structure 

Without the ASUV qualifier, the multivariate error variance 
MUST be specified as US. 

Scratch: Apparently ASReml could not open a scratch file to hold the 
transformed data. On UNIX, check the temp directory //tmp 
for old large scratch files. 
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Table 15.3: Alphabetical list of error messages and probable cause(s)/remedies 

error message probable cause/remedy 

Segmentation fault: this is a UNIX memory error. It typically occurs when a memory 
address is outside the job memory. The first thing to try is to 
increase the memory workspace using the !WORKSPACE (see 
Section 11.3 on memory) command line option. Otherwise you 
may need to send your data and the .as files to Customer Support 
for debugging. 

Singularity appeared in AI 
matrix 

Singularity in Average 
Information Matrix 

See the discussion on !AISINGULARITIES 

SINGULARITY IN ... Problem performing the ’Regression Screen’ 
Sorting data by !Section !Row 
... 

Sorting the data into field 
order 

the field order coding in the spatial error model does not 
generate a complete grid with one observation in each cell; 
missing values may be deleted: they should be fitted. Also may 
be due to incorrect specification of number of rows or columns. 

STOP SCRATCH FILE DATA 
STORAGE ERROR: 

ASReml attempts to hold the data on a scratch file. Check that 
the disk partition where the scratch files might be written is not 
too full; use the !NOSCRATCH qualifier to avoid these scratch 
files. 

Structure/ Factor mismatch: the declared size of a variance structure does not match the size 
of the model term that it is associated with. 

Too many alphanumeric factor 
level labels: 

if the factor level labels are actually all integers, use the !I 
option instead. Otherwise, you will have to convert a factor with 
alphanumeric labels to numeric sequential codes external to 
ASReml so that an !A option can be avoided. 

Too many factors with !A or 
!I; max 100 

The data file may need to be rewritten with some factors recoded 
as sequential integers. 

Too many [max 20] dependent 
variables 

This is an internal limit. Reduce the number of response 
variables. Response variables may be grouped using the !G 
factor definition qualifier so that more than 20 actual variables 
can be analysed. 

Unable to invert R or G [US?] 
matrix: 

this message occurs when there is an error forming the inverse 
of a variance structure. The probable cause is a non positive 
definite (initial) variance structure (US, CHOL and ANTE 
models). It may also occur if an identity by unstructured  
(ID⊗US) error variance model is not specified in a multivariate 
analysis (including !ASMV), see Chapter 8. If the failure is on the 
first iteration, the problem is with the starting values. If on a 
subsequent iteration, the updates have caused the problem. You 
can specify !GP to force the matrix positive definite, and try 
reducing the updates by using the !STEP qualifier. Otherwise, 
you could try fitting an alternative parameterisation. 

Unable to invert R or G 
[CORR?] matrix: 

generally refers to a problem setting up the mixed model 
equations. Most commonly, it is caused by a non-positive 
definite matrix. 
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Table 15.3: Alphabetical list of error messages and probable cause(s)/remedies 

error message probable cause/remedy 

Variance structure is not 
positive definite 

Use better initial values or a structured variance matrix that is 
positive definite. 

XFA model not permitted in R 
structures 

XFA may not be used as an R 
structure 

You may use FA or FACV. The R structure must be positive 
definite. 
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16 Examples 
 
 

16.1 Introduction 
 
In this chapter we present the analysis of a variety of examples. The primary aim is to illustrate 
the capabilities of ASReml in the context of analysing real data sets. We also discuss the output 
produced by ASReml and indicate when problems may occur. Statistical concepts and issues 
are discussed as necessary but we stress that the analyses are illustrative, not prescriptive. 
 
16.2 Split plot design - Oats 
The first example involves the analysis of a split plot design originally presented by Yates 
(1935). The experiment was conducted to assess the effects on yield of three oat varieties 
(Golden Rain, Marvellous and Victory) with four levels of nitrogen application (0, 0.2, 0.4 and 
0.6 cwt/acre). The field layout consisted of six blocks (labelled I, II, III, IV, V and VI) with three 
whole-plots each split into four sub-plots. The three varieties were randomly allocated to the 
three whole-plots while the four levels of nitrogen application were randomly assigned to the 
four sub-plots within each whole-plot. The data is presented in Table 16.1. 

Table 16.1: A split-plot field trial of oat varieties and nitrogen application 
 

block 
 

variety 
 

0.0cwt 
nitrogen 

0.2cwt 0.4cwt 
 

0.6cwt 
 GR 111 130 157 174 

I M 117 114 161 141 
 V 105 140 118 156 
 GR 61 91 97 100 

II M 70 108 126 149 
 V 96 124 121 144 
 GR 68 64 112 86 

III M 60 102 89 96 
 V 89 129 132 124 
 GR 74 89 81 122 

IV M 64 103 132 133 
 V 70 89 104 117 
 GR 62 90 100 116 

V M 80 82 94 126 
 V 63 70 109 99 
 GR 53 74 118 113 

VI M 89 82 86 104 
 V 97 99 119 121 
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A standard analysis of these data recognises the two basic elements inherent in the experiment. 
These are firstly the stratification of the experiment units, that is the blocks, whole-plots and 
subplots, and secondly, the treatment structure that is superimposed on the experimental material. 
The latter is of prime interest, in the presence of stratification. Thus the aim of the analysis is to 
examine the importance of the treatment effects while accounting for the stratification and 
restricted randomisation of the treatments to the experimental units. The ASReml input file is 
presented below. 
 
split plot example 
blocks 6 # Coded 1...6 in first data field of oats.asd  
nitrogen !A 4 # Coded alphabetically 
subplots * # Coded 1...4 
variety !A 3 # Coded alphabetically  
wplots * # Coded 1...3 
yield 
oats.asd !SKIP 2 
 
yield ~ mu variety nitrogen variety.nitrogen !r idv(blocks) idv(blocks.wplots)  
residual idv(units) 
predict nitrogen # Print table of predicted nitrogen means  
predict variety 
predict variety nitrogen !SED 
 
The data fields were blocks, wplots, subplots, variety, nitrogen and yield. The 
first five variables are factors that describe the stratification or experiment design and treatments. 
The standard split plot analysis is achieved by fitting the model terms blocks and 
blocks.wplots as random effects. The blocks.wplots.subplots term is not listed in 
the model because this interaction corresponds to the experimental units and is automatically 
included as the residual term. The fixed effects include the main effects of both variety and 
nitrogen and their interaction. The tables of predicted means and associated standard errors 
of differences (SEDs) have been requested. These are reported in the .pvs file. Abbreviated 
output is shown below. 
 

- - - Results from analysis of yield - - - 
Akaike Information Criterion 424.76 (assuming 3 
parameters). Bayesian Information Criterion 431.04 

Approximate stratum variance decomposition 
Stratum Degrees-Freedom Variance Component Coefficients 
idv(blocks) 5.00 3175.06 12.0 4.0 1.0 
idv(blocks.wplots 10.00 601.331 0.0 4.0 1.0 
Residual Variance 45.00 177.083 0.0 0.0 1.0 
 
Model_Term 

   
Gamma 

 
Sigma 

 
Sigma/SE 

 
% 
 
C 

blocks IDV_V 6 1.21116 214.477 1.27 0 P 
blocks.wplots IDV_V 18 0.598937 106.062 1.56 0 P 
idv(units)  72 effects     
Residual SCA_V 72 1.000000 177.083 4.74 0 P 
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Source of 

 
Variation 

Wald F 
NumDF 

statistics 
DenDF 

 
F-inc 

 
P-inc 

7 mu 1 5.0 245.14 <.001 
4 variety 2 10.0 1.49 0.272 
2 nitrogen 3 45.0 37.69 <.001 
8 variety.nitrogen 6 45.0 0.30 0.932 

 

For simple variance component models such as the above, the default parameterisation for the 
variance component parameters is as the ratio to the residual variance. Thus ASReml prints the 
variance component ratio and variance compo for each term in the random model in the columns 
labelled Gamma and Component respectively. 

 
A table of Wald F statistics is printed below this summary. The usual decomposition has three 
strata, with treatment effects separating into different strata as a consequence of the balanced 
design and the allocation of variety to whole-plots. In this balanced case, it is straightforward 
to derive the ANOVA estimates of the stratum variances from the REML estimates of the variance 
components. That is 

blocks = 12𝜎𝜎�𝑏𝑏2 + 4𝜎𝜎�𝑤𝑤2  + 𝜎𝜎�2 = 3175.1 
blocks.wplots =  4𝜎𝜎�𝑤𝑤2  + 𝜎𝜎�2 = 601.3 

residual = 𝜎𝜎�2= 177.1 

The default output for testing fixed effects used by ASReml is a table of so-called incremental 
Wald F statistics. These Wald F statistics are described in Section 6.11. They are simply the Wald 
test statistics divided by the number of estimable effects for that term. In this example there are 
four terms included in the summary. The overall mean (denoted by mu) is of no interest for these 
data. The tests are sequential, that is the effect of each term is assessed by the change in sums of 
squares achieved by adding the term to the current model, defined by the model which includes 
those terms appearing above the current term given the variance parameters. For example, the 
test of nitrogen is calculated from the change in sums of squares for the two models mu 
variety nitrogen and mu variety. No refitting occurs, that is the variance parameters 
are held constant at the REML estimates obtained from the currently specified fixed model. 
 
The incremental Wald statistics have an asymptotic 𝜒𝜒2 distribution, with degrees of freedom (df) 
given by the number of estimable effects (the number in the DF column). In this example, the 
incremental Wald F statistics are numerically the same as the ANOVA F statistics, and ASReml 
has calculated the appropriate denominator df for testing fixed effects. This is a simple problem 
for balanced designs, such as the split plot design, but it is not straightforward to determine the 
relevant denominator df in unbalanced designs, such as the rat data set described in the next 
section. 
 
Tables of predicted means are presented for the nitrogen, variety, and variety by nitrogen tables 
in the .pvs file. The qualifier !SED has been used on the third predict statement and so the 
matrix of SEDs for the variety by nitrogen table is printed. For the first two predictions, the 
average SED is calculated from the average variance of differences.   
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Note also that the order of the predictions (e.g. 0.6_cwt, 0.4_cwt 0.2_cwt 0_cwt for nitrogen) is 
simply the order those treatment labels were discovered in the data file. 
 
Split plot analysis - oat Variety.Nitrogen 14 Apr 2008 

16:15:49 oats 
Ecode is E for Estimable, * for Not Estimable 

 
The predictions are obtained by averaging across the hypertable  

calculated from model terms constructed solely from factors  
in the averaging and classify sets. 

Use !AVERAGE to move ignored factors into the averaging set. 
 
---- ---- ---- ---- ---- ----  1 ---- ---- ---- ---- ---- ---- ---- 

Predicted values of yield 
The SIMPLE averaging set: 
variety The ignored set: 
blocks wplots 

 
nitrogen Predicted_Value Standard_Error 
Ecode 0.6_cwt  123.3889 7.1747 E 
0.4_cwt 114.2222 7.1747 E 
0.2_cwt 98.8889 7.1747 E 
0_cwt 79.3889 7.1747 E 
SED: Overall Standard Error of Difference 4.436 
 
---- ---- ---- ---- ---- ----  2 ---- ---- ---- ---- ---- ---- ---- 

Predicted values of yield 
The SIMPLE averaging set: 
nitrogen The ignored set: 
blocks wplots 

 
variety Predicted_Value Standard_Error 
Ecode Marvellous  109.7917
 7.7975 E 
Victory 97.6250 7.7975 E 
Golden_rain 104.5000 7.7975 
E SED: Overall Standard Error of Difference
 7.079 
 
---- ---- ---- ---- ---- ----  3 ---- ---- ---- ---- ---- ---- ---- 

Predicted values of yield 
The ignored set: blocks wplots 
 
nitrogen variety Predicted_Value Standard_Error Ecode 
0.6_cwt Marvellous 126.8333 9.1070 E 
0.6_cwt Victory 118.5000 9.1070 E 
0.6_cwt Golden_rain 124.8333 9.1070 E 
0.4_cwt Marvellous 117.1667 9.1070 E 
0.4_cwt Victory 110.8333 9.1070 E 
0.4_cwt Golden_rain 114.6667 9.1070 E 
0.2_cwt Marvellous 108.5000 9.1070 E 
0.2_cwt Victory 89.6667 9.1070 E 
0.2_cwt Golden_rain 98.5000 9.1070 E 
0_cwt Marvellous 86.6667 9.1070 E 
0_cwt Victory 71.5000 9.1070 E 
0_cwt Golden_rain 80.0000 9.1070 E 
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Predicted values with SED(PV)   
126.833   
118.500 9.71503  
124.833 9.71503 9.71503 
117.167 7.68295 9.71503 9.71503  
110.833 9.71503 7.68295 9.71503 9.71503 
114.667 9.71503 9.71503 7.68295 9.71503 
9.71503     
108.500 7.68295 9.71503 9.71503 7.68295 
9.71503 9.71503    
89.6667 9.71503 7.68295 9.71503 9.71503 
7.68295 9.71503 9.71503   
98.5000 9.71503 9.71503 7.68295 9.71503 
9.71503 7.68295 9.71503 9.71503  
86.6667 7.68295 9.71503 9.71503 7.68295 
9.71503 9.71503 7.68295 9.71503 9.71503 
71.5000 9.71503 7.68295 9.71503 9.71503 
7.68295 9.71503 9.71503 7.68295 9.71503 
9.71503     
80.0000 9.71503 9.71503 7.68295 9.71503 
9.71503 7.68295 9.71503 9.71503 7.68295 
9.71503 9.71503    

SED: Standard Error of Difference: Min 7.6830 Mean 9.1608 Max 9.7150 

 

16.3 Unbalanced nested design - Rats 

The second example we consider is a data set which illustrates some further aspects of testing 
fixed effects in linear mixed models. This example differs from the split plot example, as it is 
unbalanced and so more care is required in assessing the significance of fixed effects. 

 
The experiment was reported by Dempster et al. (1984) and was designed to compare the effect 
of three doses of an experimental compound (control, low and high) on the maternal performance 
of rats. Thirty female rats (dams) were randomly split into three groups of 10 and each group 
randomly assigned to the three different doses. All pups in each litter were weighed. The litters 
differed in total size and in the numbers of males and females. Thus the additional covariate, 
littersize was included in the analysis. The differential effect of the compound on male and 
female pups was also of interest. Three litters had to be dropped from experiment, which meant 
that one dose had only 7 dams. The analysis must account for the presence of between dam 
variation, but must also recognise the stratification of the experimental units (pups within litters) 
and that doses and littersize belong to the dam stratum. Table 16.2 presents an indicative AOV 
decomposition for this experiment. 
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Table 16.2: Rat data: AOV decomposition 

stratum decomposition type df or ne 
 
constant 1 

 
F 

 
1 

dams   
dose F 2 
littersize F 1 
dam R 27 

dams.pups 
sex F 1 
dose.sex F 2 

error R 
 

 
The dose and littersize effects are tested against the residual dam variation, while the remaining 
effects are tested against the residual within litter variation. The ASReml input to achieve this 
analysis is presented below. 
Rats example 
 dose 3 !A 
sex 2 !A  
littersize  
dam 27 
pup 18  
weight 
rats.asd !DOPATH 1 # Change DOPATH argument to select each PATH 
!PATH 1 
weight ~ mu littersize dose sex dose.sex !r idv(dam) 
residual idv(units) 
!PATH 2 
weight ~ mu out(66) littersize dose sex dose.sex !r idv(dam)  
residual idv(units) 
!PATH 3 
weight ~ mu littersize dose sex !r idv(dam)  
residual idv(units) 
!PATH 4 
weight ~ mu littersize dose sex  
residual idv(units) 

 
The input file contains an example of the use of the !DOPATH qualifier. Its argument specifies 
which part to execute. We will discuss the models in the two parts. It also includes the !FCON 
qualifier to request conditional Wald F statistics.  
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Abbreviated output from part 1 is presented below.  
 

1 LogL= 74.2174 S2= 0.19670 315 df 0.1000 1.000 
2 LogL= 79.1579 S2= 0.18751 315 df 0.1488 1.000 
3 LogL= 83.9408 S2= 0.17755 315 df 0.2446 1.000 
4 LogL= 86.8093 S2= 0.16903 315 df 0.4254 1.000 
5 LogL= 87.2249 S2= 0.16594 315 df 0.5521 1.000 
6 LogL= 87.2398 S2= 0.16532 315 df 0.5854 1.000 
7 LogL= 87.2398 S2= 0.16530 315 df 0.5867 1.000 
8 LogL= 87.2398 S2= 0.16530 315 df 0.5867 1.000 

Final parameter values 0.5867 

- - - Results from analysis of weight - - - 
Akaike Information Criterion -170.48 (assuming 2 parameters).  
Bayesian Information Criterion -162.97 

Approximate stratum variance decomposition 
Stratum Degrees-Freedom Variance Component Coefficients  
idv(dam)  22.56  1.27762  11.5 1.0 
Residual Variance 292.44 0.165300 0.0 1.0 

 
Model_Term   Gamma Sigma Sigma/SE % C 
idv(dam) IDV_V 27 0.586674 0.969770E-01 2.92 0 P 
idv(units)  322 effects    
Residual SCA_V 322 1.000000 0.165300 12.09 0 P 
 
 

Source 

 
 
of Variation 

 
Wald F 
NumDF 

 
statistics 
DenDF_con F_inc 

 
 

F_con 

 
 
M 

 
 
P_con 

7 mu 1 32.0 9049.48 1099.20 b <.001 
3 littersize 1 31.5 27.99 46.25 B <.001 
1 dose 2 23.9 12.15 11.51 A <.001 
2 sex 1 299.8 57.96 57.96 A <.001 
8 dose.sex 2 302.1 0.40 0.40 B 0.673 

Notice: The DenDF values are calculated ignoring fixed/boundary/singular  
variance parameters using algebraic derivatives. 

4 dam 27 effects fitted 
SLOPES FOR LOG(ABS(RES)) on LOG(PV) for Section 1 
2.27 

3 possible outliers: see .res file  
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The iterative sequence has converged and the variance component parameter for dam hasn’t 
changed for the last three iterations. The incremental Wald F statistics indicate that the interaction 
between dose and sex is not significant. The F_con column helps us to assess the significance 
of the other terms in the model. It confirms littersize is significant after the other terms, 
that dose is significant when adjusted for littersize and sex but ignoring dose.sex, and 
that sex is significant when adjusted for littersize and dose but ignoring dose.sex. 
These tests respect marginality to the dose.sex interaction. 

 
We also note the comment 3 possible outliers: see .res file. Checking the 
.res file, we discover unit 66 has a standardised residual of -8.80 (see Figure 16.1). The weight 
of this female rat, within litter 9 is only 3.68, compared to weights of 7.26 and 6.58 for two other 
female sibling pups. This weight appears erroneous, but without knowledge of the actual 
experiment we retain the observation in the following. However, part 2 shows one way of 
’dropping’ unit 66 by fitting an effect for it with out(66). 

Figure 16.1: Residual plot for the rat data 

We refit the model without the dose.sex term. Note that the variance parameters are re-
estimated, though there is little change from the previous analysis. 
Model_Term  Gamma Sigma Sigma/SE % C 
idv(dam) IDV_V 27 0.595157 0.979179E-01 2.93 0 P 
idv(units) 322 effects   
Residual SCA_V 322 1.000000 0.164524 12.13 0 P 

Wald F statistics 
Source of Variation NumDF DenDF_con F_inc F_con M P_con 
7 mu 1 32.0 8981.48 1093.05 . <.001 
3 littersize 1 31.4 27.85 46.43 A <.001 
1 dose 2 24.0 12.05 11.42 A <.001 
2 sex 1 301.7 58.27 58.27 A <.001 

 



16.4 Source of variability in unbalanced data - Volts 

280 
 

Part 4 shows what happens if we (wrongly) drop dam from this model. Even if a random term is 
not ’significant’, it should not be dropped from the model when we are testing fixed effects, or 
desire standard errors of adjusted means, if it represents a strata of the design as in this case. 
 
Model_Term 
idv(units) 

 Gamma 
322 effects 

Sigma Sigma/SE % C 

Residual SCA_V 322 1.000000 0.253182 12.59 0 P 
 
 

Source 

 
 
of Variation 

 
Wald F 
NumDF 

 
statistics 
DenDF_con F_inc 

 
 

F_con 

 
 
M 

 
 
P_con 

7 mu 1 317.0 47077.31 3309.42 . <.001 
3 littersize 1 317.0 68.48 146.50 A <.001 
1 dose 2 317.0 60.99 58.43 A <.001 
2 sex 1 317.0 24.52 24.52 A <.001 

 
 

16.4 Source of variability in unbalanced data - Volts 

In this example we illustrate an analysis of unbalanced data in which the main aim is to determine 
the sources of variation rather than assess the significance of imposed treatments. The data are 
taken from Cox and Snell (1981) and involve an experiment to examine the variability in the 
production of car voltage regulators. Standard production of regulators involves two steps. 
Regulators are taken from the production line to a setting station and adjusted to operate within 
a specified voltage range. From the setting station the regulator is then passed to a testing station 
where it is tested and returned if outside the required range. 
 
The voltage of 64 regulators was set at 10 setting stations (setstat); between 4 and 8 
regulators were set at each station. The regulators were each tested at four testing stations 
(teststat). The ASReml input file is presented below. 
 
Voltage data 
teststat 4 # 4 testing stations tested each regulator  
setstat !A # 10 setting stations each set 4-8 regulators  
regulator 8  # regulators numbered within setting stations  
voltage 
voltage.asd !skip 1 
voltage ~ mu !r idv(setstat) idv(setstat.regulator) idv(teststat) idv(setstat.teststat) 
residual idv(units) 

 
The factor regulator numbers the regulators within each setting station. Thus the term 
setstat.regulator fits an effect for each regulator, while the other terms examine the effects 
of the setting and testing stations and possible interaction. The abbreviated output follows.  
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LogL= 188.604 S2= 0.67074E-01 255 df 
LogL= 199.530 S2= 0.59303E-01 255 df 
LogL= 203.007 S2= 0.52814E-01 255 df 
LogL= 203.240 S2= 0.51278E-01 255 df 
LogL= 203.242 S2= 0.51141E-01 255 df 
LogL= 203.242 S2= 0.51140E-01 255 df 
 
Model_Term 

   
Gamma 

 
Sigma Sigma/SE 

 
% 

 
C 

idv(TestStat) IDV_V 4 0.642752E-01 0.328704E-02 0.98 0 P 
idv(Setstat) IDV_V 10 0.233416 0.119369E-01 1.35 0 P 
idv(TestStat.Setstat) IDV_V 40 0.101193E-06 0.517501E-08 0.00 0 B 
idv(Regulator.Setstat) IDV_V 80 0.601817 0.307770E-01 3.64 0 P 
idv(units)  256 effects    
Residual SCA_V 256 1.000000 0.511400E-01 9.72 0 P 
Warning: Code B - fixed at a boundary (!GP) F - fixed by user 

? - liable to change from P to B P - positive 
definite C - Constrained by user (!VCC) U - 
unbounded 
S - Singular Information matrix 

 
The convergence criteria have been satisfied after six iterations. A warning message is printed 
below the summary of the variance components because the variance component for the 
setstat.teststat term has been fixed near the boundary. The default constraint for 
variance components (!GP) is to ensure that the REML estimate remains positive. Under this 
constraint, if an update for any variance component results in a negative value then ASReml sets 
that variance component to a small positive value. If this occurs in subsequent iterations the 
parameter is fixed to a small positive value and the code B replaces P in the C column of the 
summary table. The default constraint can be overridden using the !GU qualifier, but it is not 
generally recommended for standard analyses. 
 
Figure 16.2 presents the residual plot which indicates two unusual data values. These values are 
successive observations, namely observation 210 and 211, being testing stations 2 and 3 for 
setting station 9(J), regulator 2. These observations will not be dropped from the following 
analyses for consistency with other analyses conducted by Cox and Snell (1981) and in the 
GENSTAT manual. 
 
The REML log-likelihood from the model without the setstat.teststat term was 203.242, 
the same as the REML log-likelihood for the previous model. Table 16.3 presents a summary of 
the REML log-likelihood ratio for the remaining terms in the model. The summary of the ASReml 
output for the current model is given below. The column labelled Sigma/SE is printed by 
ASReml to give a guide as to the significance of the variance component for each term in the 
model. The statistic is simply the REML estimate of the variance component divided by the square 
root of the diagonal element (for each component) of the inverse of the average information 
matrix. The diagonal elements of the expected (not the average) information matrix are the 
asymptotic variances of the REML estimates of the variance parameters. These Sigma/SE 
statistics cannot be used to test the null hypothesis that the variance component is zero. If we had 
used this crude measure then the conclusions would have been inconsistent with the conclusions 
obtained from the REML log-likelihood ratio test (see Table 16.3).  
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Figure 16.2: Residual plot for the voltage data 

 
Model_Term Gamma Sigma Sigma/SE % C 
idv(TestStat) IDV_V 4 0.642752E-01 0.328704E-02 0.98 0 P 
idv(Setstat) IDV_V 10 0.233416 0.119369E-01 1.35 0 P 
idv(Regulator.Set) IDV_V 80 0.601817 0.307770E-01 3.64 0 P 
idv(units)  256 effects     
Residual SCA_V 256 1.000000 0.511400E-01 9.72 0 P 

 

Table 16.3: REML log-likelihood ratio for the variance  
components in the voltage data 

 REML −2 ×  
terms log-likelihood difference P-value 

− setstat 200.31 5.864 .0077 

− setstat.regulator 184.15 38.19 .0000 

− teststat 199.71 7.064 .0039 
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16.5 Balanced repeated measures - Height 
The data for this example is taken from the GENSTAT manual. It consists of a total of 5 
measurements of height (cm) taken on 14 plants. The 14 plants were either diseased or healthy 
and were arranged in a glasshouse in a completely random design. The heights were measured 
1, 3, 5, 7 and 10 weeks after the plants were placed in the glasshouse. There were 7 plants in each 
treatment. The data are depicted in Figure 16.3 obtained by qualifier line 
!Y y1 !G tmt !JOIN 
in the following multivariate ASReml job. 

 

Figure 16.3: Trellis plot of the height for each of 14 plants 

In the following we illustrate how various repeated measures analyses can be conducted in 
ASReml. For these analyses it is convenient to arrange the data in a multivariate form, with 7 
fields representing the plant number, treatment identification and the 5 heights. The ASReml 
input file for our first model is 

This is plant data multivariate  
tmt !A # Diseased Healthy  
plant 14 
y1 y3 y5 y7 y10  

grass.asd !skip 1 !ASUV 
!Y y1 !G tmt !JOIN # Plot the data 
y1 y3 y5 y7 y10 ~ Trait tmt Tr.tmt !r idv(units)  
residual idv(units.Trait) 
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The focus is modelling of the error variance for the data. Specifically we fit the multivariate 
regression model given by 

𝒀𝒀 = 𝑫𝑫𝑫𝑫 + 𝑬𝑬  (16.1) 

where 𝒀𝒀14×5 is the matrix of heights, 𝑫𝑫14×2 is the design matrix, 𝑻𝑻2×5 is the matrix of fixed 
effects and 𝑬𝑬14×5 is the matrix of errors. The heights taken on the same plants will be correlated 
and so we assume that 

 
var (vec(𝑬𝑬))  =  𝑰𝑰14 ⊗ 𝚺𝚺  (16.2) 

 

 where 𝚺𝚺5×5 is a symmetric positive definite matrix. 

The variance models used for Σ are given in Table 16.4. These represent some commonly used 
models for the analysis of repeated measures data (see Wolfinger, 1986). Note that we have 
specified the !ASUV qualifier. This is required to allow the fitting of all these models. Without 
!ASUV, ASReml would only allow us to fit the final (UnStructured) variance model.  

Table 16.4: Summary of variance models fitted to the plant data 

 
model 

number of 
parameters 

REML 
log-likelihood 

 
BIC 

 
Uniform 

 
2 

 
-196.88 

 
401.95 

Power 2 -182.98 374.15 
Heterogeneous Power 6 -171.50 367.57 
Antedependence (order 1) 9 -160.37 357.51 
Unstructured 15 -158.04 377.50 

 
The split plot in time model can be fitted in two ways, either by fitting a units term plus an 
independent residual as above, or by specifying a CORU variance model for the R-structure as 
follows 
y1 y3 y5 y7 y10 ~ Trait tmt Tr.tmt 
residual id(units).coru(Trait) 

The two forms for Σ are given by 

 𝚺𝚺 = 𝜎𝜎12 𝑱𝑱 + 𝜎𝜎22𝑰𝑰, units 
(16.3)  𝚺𝚺 = 𝜎𝜎𝑒𝑒2 𝑰𝑰 + 𝜎𝜎𝑒𝑒2𝜌𝜌(𝑱𝑱 − 𝑰𝑰), CORU 

It follows that 
𝜎𝜎𝑒𝑒2 = 𝜎𝜎12 + 𝜎𝜎22 

(16.4) 
𝜌𝜌 =

𝜎𝜎12

𝜎𝜎12 + 𝜎𝜎22
 

Portions of the two outputs are given below. The REML log-likelihoods for the two models are 
the same and it is easy to verify that the REML estimates of the variance parameters satisfy viz. 
𝜎𝜎𝑒𝑒2= 286.310 ≈ 159.858 + 126.528 = 286.386; 159.858/286.386 = 0.558191.  
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# 
# !r idv(units.Trait)  
# 
LogL=-204.593 S2= 224.61 60 df 0.1000 1.000 
LogL=-201.233 S2= 186.52 60 df 0.2339 1.000 
LogL=-198.453 S2= 155.09 60 df 0.4870 1.000 
LogL=-197.041 S2= 133.85 60 df 0.9339 1.000 
LogL=-196.881 S2= 127.56 60 df 1.204 1.000 
LogL=-196.877 S2= 126.53 60 df 1.261 1.000 
Final parameter values    1.2634 1.0000 

- - - Results from analysis of y1 y3 y5 y7 y10 - - 
Akaike Information Criterion 397.75 (assuming 2 
parameters) Bayesian Information Criterion  401.9 

Approximate stratum variance decomposition 
Stratum Degrees-Freedom Variance Component 
Coefficients idv(units)  12.00  925.584  5.0
 1.0 
Residual Variance 48.00 126.494 0.0 1.0 

 
Model_Term  Gamma Sigma Sigma/SE % C 
idv(units) IDV_V 14 1.26342 159.816 2.11 0 P 
idv(units.Trait) 70 effects    
Residual SCA_V 70 1.000000 126.494 4.90 0 P 

# 
# id(units).coru(Trait)  
# 
LogL=-196.975 S2= 264.10 60 df 1.000 0.5000 
LogL=-196.924 S2= 270.14 60 df 1.000 0.5178 
LogL=-196.886 S2= 278.58 60 df 1.000 0.5400 
LogL=-196.877 S2= 286.23 60 df 1.000 0.5580 
LogL=-196.877 S2= 286.31 60 df 1.000 0.5582 
Final parameter values    1.0000 0.55819 

- - - Results from analysis of y1 y3 y5 y7 y10 - - 
Akaike Information Criterion 397.75 (assuming 2 
parameters) Bayesian Information Criterion  401.9 

 
Model_Term  Gamma Sigma Sigma/SE % 
C id(units).coru(Trait) 70 effects 
Residual SCA_V 70 1.000000 286.310 3.65 0 P 
Trait COR_R 1 0.558191 0.558191 4.28 0 P 

 
A more realistic model for repeated measures data would allow the correlations to decrease as 
the lag increases such as occurs with the first order autoregressive model. However, since the 
heights are not measured at equally spaced time points we use the EXP model. The correlation 
function is given by 

𝜌𝜌(𝑢𝑢)  =   𝜙𝜙 𝑢𝑢 

where 𝑢𝑢 is the time lag is weeks. The coding for this is 
y1 y3 y5 y7 y10 ~ Trait tmt Tr.tmt 
residual id(units).exp(Trait !INIT 0.5 !COORD 1 3 5 7 10 )  
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A portion of the output is 
 

1 LogL=-202.139 S2= 234.04 60 df 1.0000 0.5000 
2 LogL=-183.773 S2= 440.42 60 df 1.0000 0.9507 
3 LogL=-183.070 S2= 337.51 60 df 1.0000 0.9308 
4 LogL=-182.981 S2= 297.16 60 df 1.0000 0.9172 
5 LogL=-182.979 S2= 302.31 60 df 1.0000 0.9193 
6 LogL=-182.979 S2= 301.45 60 df 1.0000 0.9190 

Final parameter values 1.0000 0.9190 

- - - Results from analysis of y1 y3 y5 y7 y10 - - - 
Akaike Information Criterion 369.96 (assuming 2 parameters).  
Bayesian Information Criterion 374.15 

 
Model_Term 
id(units).exp(Trait) 

 
70 

Gamma Sigma 
effects 

Sigma/SE % C 

Residual SCA_V 70 1.000000 301.449 3.12 0 P 
Trait EXP_P 1 0.919007 0.919007 29.49 0 P 

 
When fitting power models be careful to ensure the scale of the defining variate, here time, does 
not result in an estimate of 𝜙𝜙 too close to 1. For example, use of days in this example would 
result in an estimate for 𝜙𝜙 of about .993. 

 

Figure 16.4: Residual plots for the EXP variance model for the plant data 
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The residual plot from this analysis is presented in Figure 16.4. This suggests increasing variance 
over time. This can be modelled by using the EXPH model, which models Σ by 

 
𝚺𝚺 = 𝑫𝑫0.5𝑪𝑪𝑪𝑪0.5 

where D is a diagonal matrix of variances and C is a correlation matrix with elements given by 
𝑐𝑐𝑖𝑖𝑖𝑖  = 𝜙𝜙�𝑡𝑡𝑖𝑖−𝑡𝑡𝑗𝑗� . The coding for this is 
 
y1 y3 y5 y7 y10 ~ Trait tmt Tr.tmt 
residual id(units).exph(Trait !INIT 0.5 100 200 300 300 300 !COORD 1 3 5 7 10) 

 
Abbreviated output from this analysis is 

 
9 LogL=-171.512 S2= 1.00000 60 df 
10 LogL=-171.500 S2= 1.00000 60 df 
11 LogL=-171.497 S2= 1.00000 60 df 
12 LogL=-171.496 S2= 1.00000 60 df 

 
- - - Results from analysis of y1 y3 y5 y7 y10 - - -  

Akaike Information Criterion 354.99 (assuming 6 parameters).  
Bayesian Information Criterion 367.56 

 
Model_Term 
id(units).exph(Trait) 

  
70 

Sigma 
effects 

Sigma Sigma/SE % C 

Trait EXP_P 1 0.906843 0.906843 21.88 0 P 
Trait EXP_V 1 60.8955 60.8955 2.12 0 P 
Trait EXP_V 2 73.0128 73.0128 1.99 0 P 
Trait EXP_V 3 309.013 309.013 2.22 0 P 
Trait EXP_V 4 435.964 435.964 2.52 0 P 
Trait EXP_V 5 382.312 382.312 2.74 0 P 
Covariance/Variance/Correlation Matrix Residual 
61.05  0.8227 0.6768 0.5568 0.4155  
54.90  72.95 0.8227 0.6768 0.5050  
93.05  123.6 309.6 0.8227 0.6139  
90.95  120.8 302.6 437.0 0.7462  
63.49  84.36 211.2 305.1 382.5  

   Wald F statistic   
Source of Variation NumDF DenDF F-inc P-in 

8 Trait   5 18.7 108.25 <.00 
1 tmt   1 13.1 0.00 0.96 
9 Tr.tmt   4 21.0 4.37 0.01 

 
The last two models we fit are the antedependence model of order 1 and the unstructured model. 
Starting values need not actually be supplied in this example (the defaults are adequate) but are 
supplied to demonstrate the syntax. We use the REML estimate of Σ from the heterogeneous 
power model shown in the previous output. The antedependence model models Σ by the inverse 
cholesky decomposition 

𝚺𝚺−1 = 𝑼𝑼𝑼𝑼𝑼𝑼′ 
where D is a diagonal matrix and U is a unit upper triangular matrix. For an antedependence 
model of order 𝑞𝑞, then 𝑢𝑢𝑖𝑖𝑖𝑖 = 0 for 𝑗𝑗 > 𝑖𝑖 + 𝑞𝑞 − 1. The antedependence model of order 1 has 9 
parameters for these data, 5 in D and 4 in U.   
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The input is given by 

!ASSIGN ANTEI !< !INIT  
60.1 
54.65 73.65 
91.50 123.3 306.4 
89.17 120.2 298.6 431.8 
62.21 83.85 208.3 301.2 379.8 
!>   

y1 y3 y5 y7 y10 ~ Trait tmt Tr.tmt  
redidual units.ante(Trait $ANTEI) 

 
The abbreviated output file is 

 
1 LogL=-171.501 S2= 1.0000 60 df 
2 LogL=-170.097 S2= 1.0000 60 df 
3 LogL=-166.085 S2= 1.0000 60 df 
4 LogL=-161.335 S2= 1.0000 60 df 
5 LogL=-160.407 S2= 1.0000 60 df 
6 LogL=-160.370 S2= 1.0000 60 df 
7 LogL=-160.369 S2= 1.0000 60 df 
8 LogL=-160.369 S2= 1.0000 60 df 
9 LogL=-160.369 S2= 1.0000 60 df 

- - - Results from analysis of y1 y3 y5 y7 y10 - - 
Akaike Information Criterion 338.74 (assuming 9 
parameters) Bayesian Information Criterion 357.59 

 
Model_Term 
id(units).ante(Trait) 

   
70 

Sigma 
effects 

Sigma Sigma/SE % C 

Trait ANTE_U 1 1 0.268643E-01 0.268643E-01 2.44 0 P 
Trait ANTE_U 2 1 -0.628417 -0.628417 -2.55 0 P 
Trait ANTE_U 2 2 0.372830E-01 0.372830E-01 2.41 0 P 
Trait ANTE_U 3 2 -1.49102 -1.49102 -2.54 0 P 
Trait ANTE_U 3 3 0.599612E-02 0.599612E-02 2.43 0 P 
Trait ANTE_U 4 3 -1.28037 -1.28037 -6.19 0 P 
Trait ANTE_U 4 4 0.789716E-02 0.789716E-02 2.44 0 P 
Trait ANTE_U 5 4 -0.967820 -0.967820 -15.40 0 P 
Trait ANTE_U 5 5 0.390635E-01 0.390635E-01 2.45 0 P 
Covariance/Variance/Correlation Matrix ANTE Residual 
37.20 0.5946 0.3550 0.3115 0.3041 
23.38 41.55 0.5970 0.5239 0.5114 
34.84 61.93 258.9 0.8776 0.8566 
44.60 79.27 331.5 550.9 0.9761 
43.16 76.72 320.8 533.2 541.6 

 
Wald F statistics 

Source of Variation NumDF F-inc 
8 Trait 5 188.83 
1 tmt 1 4.14 
9 Trait.tmt 4 3.91 
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The iterative sequence converged and the antedependence parameter estimates are printed 
column-wise by time, the column of U and the element of D, i.e. 
 

 
 
Finally the input and output files for the unstructured model are presented below. The REML 
estimate of Σ from the ANTE model is used to provide starting values. 
 
!ASSIGN USI !< !INIT   

37.20    
23.38  41.55  
34.83  61.89 258.9 
44.58  79.22 331.4 550.8  
43.14  76.67 320.7 533.0 541.4 
!>      

y1 y3 y5 y7 y10 ~ Trait tmt 
Trait.tmt residual 
id(units).us(Trait $USI) 

 
1 LogL=-160.368 S2= 1.0000 60 df 
2 LogL=-159.027 S2= 1.0000 60 df 
3 LogL=-158.247 S2= 1.0000 60 df 
4 LogL=-158.040 S2= 1.0000 60 df 
5 LogL=-158.036 S2= 1.0000 60 df 

 

- - - Results from analysis of y1 y3 y5 y7 y10 - - 
Akaike Information Criterion 346.07 (assuming 15 
parameters) Bayesian Information Criterion 377.49 

 
Model_Term 
id(units).us(Trait) 

 Sigma 
70 effects 

Sigma Sigma/SE % C 

Trait US V 1 1 37.2262 37.2262 2.45 0 P 
Trait US_C 2 1 23.3935 23.3935 1.77 0 P 
Trait US_V 2 2 41.5195 41.5195 2.45 0 P 
Trait US_C 3 1 51.6524 51.6524 1.61 0 P 
Trait US_C 3 2 61.9169 61.9169 1.78 0 P 
Trait US_V 3 3 259.121 259.121 2.45 0 P 
Trait US_C 4 1 70.8113 70.8113 1.54 0 P 
Trait US_C 4 2 57.6146 57.6146 1.23 0 P 
Trait US_C 4 3 331.807 331.807 2.29 0 P 
Trait US_V 4 4 551.507 551.507 2.45 0 P 
Trait US_C 5 1 73.7857 73.7857 1.60 0 P 
Trait US_C 5 2 62.5691 62.5691 1.33 0 P 
Trait US_C 5 3 330.851 330.851 2.29 0 P 
Trait US_C 5 4 533.756 533.756 2.42 0 P 
Trait US_V 5 5 542.175 542.175 2.45 0 P 
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However, the usual syntax for fitting an unstructured error model for multivariate data is to 
omit the !ASUV qualifier and write 
 
y1 y3 y5 y7 y10 ~ Trait tmt Tr.tmt  
residual id(units).us(Trait) 
 
The antedependence model of order 1 is clearly more parsimonious than the unstructured model. 
Table 16.5 presents the incremental Wald F statistics for each of the variance models. There is a 
surprising level of discrepancy between models for the Wald F statistics. The main effect of 
treatment is significant for the uniform, power and antedependence models. 

Table 16.5: Summary of Wald F statistics for fixed effects for  
variance models fitted to the plant data 

 
model 

treatment 
(df=1) 

treatment.time 
(df=4) 

Uniform 9.41 5.10 
Power 6.86 6.13 
Heterogenous power 0.00 4.81 
Antedepedence (order 1) 4.14 3.91 
Unstructured 1.71 4.46 

16.6 Spatial analysis of a field experiment - Barley 

In this section we illustrate the ASReml syntax for performing spatial and incomplete block 
analysis of a field experiment. There has been a large amount of interest in developing techniques 
for the analysis of spatial data both in the context of field experiments and geostatistical data (see 
for example, Cullis and Gleeson, 1991; Cressie, 1991; Gilmour et al., 1997). This example 
illustrates the analysis of ’so-called’ regular spatial data, in which the data is observed on a lattice 
or regular grid. This is typical of most small plot designed field experiments. Spatial data is often 
irregularly spaced, either by design or because of the observational nature of the study. The 
techniques we present in the following can be extended for the analysis of irregularly spaced 
spatial data, though, larger spatial data sets may be computationally challenging, depending on 
the degree of irregularity or models fitted. 

 
The data we consider is taken from Gilmour et al. (1995) and involves a field experiment 
designed to compare the performance of 25 varieties of barley. The experiment was conducted 
at Slate Hall Farm, UK in 1976, and was designed as a balanced lattice square with replicates 
laid out as shown in Table 16.6. The data fields were Rep, RowBlk, ColBlk, row, column 
and yield. Lattice row and column numbering is typically within replicates and so the terms 
specified in the linear model to account for the lattice row and lattice column effects would be 
Rep.latticerow Rep.latticecolumn. However, in this example lattice rows and 
columns are both numbered from 1 to 30 across replicates (see Table 16.6). The terms in the 
linear model are therefore simply RowBlk ColBlk. Additional fields row and column 
indicate the spatial layout of the plots. 
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The ASReml input file is presented below. Three models have been fitted to these data. The lattice 
analysis is included for comparison in PATH 3. In PATH 1 we use the separable first order 
autoregressive model to model the variance structure of the plot errors. Gilmour et al. (1997) 
suggest this is often a useful model to commence the spatial modelling process. The form of the 
variance matrix for the plot errors (R structure) is given by 

𝜎𝜎2𝚺𝚺 =  𝜎𝜎2(𝚺𝚺𝑐𝑐 ⊗ 𝚺𝚺𝑟𝑟) (16.5) 

where 𝚺𝚺𝑐𝑐 and 𝚺𝚺𝑟𝑟 are 15 × 15 and 10 × 10 matrix functions of the column (𝜙𝜙𝑐𝑐) and row (𝜙𝜙𝑟𝑟) 
autoregressive parameters respectively. Gilmour et al. (1997) recommend revision of the current 
spatial model based on the use of diagnostics such as the sample variogram of the residuals (from 
the current model). This diagnostic and a summary of row and column residual trends are produced 
by default with graphical versions of ASReml when a spatial model has been fitted to the errors. It 
can be suppressed, by the use of the -n option on the command line. We have produced the 
following plots by use of the !EPS qualifier. The !RENAME !ARG 1 2 3 qualifiers in 
conjunction with !DOPART $1 cause ASReml to run all three parts, appending the part number 
to the output file names. 

Table 16.6: Field layout of Slate Hall Farm experiment 
Column - Replicate levels 

Row 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 
2 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 
3 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 
4 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 
5 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 
6 4 4 4 4 4 5 5 5 5 5 6 6 6 6 6 
7 4 4 4 4 4 5 5 5 5 5 6 6 6 6 6 
8 4 4 4 4 4 5 5 5 5 5 6 6 6 6 6 
9 4 4 4 4 4 5 5 5 5 5 6 6 6 6 6 
10 4 4 4 4 4 5 5 5 5 5 6 6 6 6 6 

Column - Rowblk levels 
Row 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
1 1 1 1 1 1 11 11 11 11 11 21 21 21 21 21 
2 2 2 2 2 2 12 12 12 12 12 22 22 22 22 22 
3 3 3 3 3 3 13 13 13 13 13 23 23 23 23 23 
4 4 4 4 4 4 14 14 14 14 14 24 24 24 24 24 
5 5 5 5 5 5 15 15 15 15 15 25 25 25 25 25 
6 6 6 6 6 6 16 16 16 16 16 26 26 26 26 26 
7 7 7 7 7 7 17 17 17 17 17 27 27 27 27 27 
8 8 8 8 8 8 18 18 18 18 18 28 28 28 28 28 
9 9 9 9 9 9 19 19 19 19 19 29 29 29 29 29 
10 10 10 10 10 10 20 20 20 20 20 30 30 30 30 30 

Column - Colblk levels 
Row 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
6 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 
7 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 
8 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 
9 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 
10 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 
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!EPS !RENAME !ARG 1 2 
Slate Hall example 

Rep 6 # Six replicates of 5x5 plots in 2x3 arrangement  
RowBlk 30 # Rows within replicates numbered across replicates 
ColBlk 30 # Columns within replicates numbered across replicates  
row 10 # Field row 
column 15 # Field column  
variety 25 
yield 

barley.asd !skip 1 !DOPATH $1 
!PATH 1 # AR1 x AR1 
y ~ mu var 
residual ar1v(column).ar1(row) 
!PATH 2 # AR1 x AR1 + units  
y ~ mu var !r idv(units) 
residual ar1v(column).ar1(row) 
!PATH 3 # incomplete blocks 
y ~ mu var !r idv(Rep) idv(Rowblk) idv(Colblk)  
residual idv(units) 
!PATH 0 
predict variety !TWOSTAGEWEIGHTS 

Abbreviated ASReml output file is presented below. The iterative sequence has converged to 
column and row correlation parameters of (.68377,.45859) respectively. The plot size was 14ft 
lengthwise by 5ft in width. It is generally found that the closer the plot centroids, the higher the 
spatial correlation. This is not always the case and if the highest between plot correlation relates 
to the larger spatial distance then this may suggest the presence of extraneous variation (see 
Gilmour et al., 1997), for example. Figure 16.5 presents a plot of the sample variogram of the 
residuals from this model. The plot appears in reasonable agreement with the model. 
The next model includes a measurement error or nugget effect component. That is the variance 
model for the plot errors is now given by 

𝜎𝜎2𝚺𝚺 =  𝜎𝜎2(𝚺𝚺𝑐𝑐 ⊗ 𝚺𝚺𝑟𝑟) + 𝜓𝜓𝑰𝑰150  (16.6) 

where 𝜓𝜓 is the ratio of nugget variance to error variance (𝜎𝜎2). The abbreviated output for this 
model is given below. There is a significant improvement in the REML log-likelihood with the 
inclusion of the nugget effect (see Table 16.7). 
# AR1 x AR1  
# 

1 LogL=-739.681 S2= 36034. 125 df 1.000 0.1000 0.1000 
2 LogL=-714.340 S2= 28109. 125 df 1.000 0.4049 0.1870 
3 LogL=-703.338 S2= 29914. 125 df 1.000 0.5737 0.3122 
4 LogL=-700.371 S2= 37464. 125 df 1.000 0.6789 0.4320 
5 LogL=-700.324 S2= 38602. 125 df 1.000 0.6838 0.4542 
6 LogL=-700.322 S2= 38735. 125 df 1.000 0.6838 0.4579 
7 LogL=-700.322 S2= 38754. 125 df 1.000 0.6838 0.4585 
8 LogL=-700.322 S2= 38757. 125 df 1.000 0.6838 0.4586 

Final parameter values 1.0000 0.68377 0.45861 

- - - Results from analysis of yield - - - 
Akaike Information Criterion 1406.64 (assuming 3 parameters).  
Bayesian Information Criterion 1415.13  
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Figure 16.5: Sample variogram of the residuals from the AR1×AR1 model 

 
Model_Term 
ar1(column).ar1(row) 

 
150 

Gamma 
effects 

Sigma Sigma/SE % C 

Residual SCA_V 150 1.000000 38754.3 5.00 0 P 
column AR_R 1 0.683769 0.683769 10.80 0 P 
row AR_R 1 0.458594 0.458594 5.55 0 P 

 
  

Source 
 
of 

 
Variation 

Wald F 
NumDF 

statistics 
DenDF 

 
F_inc 

 
Prob 

8 mu   1 12.8 850.88 <.001 
6 variety   24 80.0 13.04 <.001 

# AR1 x AR1 + units 
1 LogL=-740.735 S2= 33225. 125 df : 2 components constrained 
2 LogL=-723.595 S2= 11661. 125 df : 1 components constrained 
3 LogL=-698.498 S2= 46239. 125 df   
4 LogL=-696.847 S2= 44725. 125 df   
5 LogL=-696.823 S2= 45563. 125 df   
6 LogL=-696.823 S2= 45753. 125 df   
7 LogL=-696.823 S2= 45796. 125 df   

 
- - - Results from analysis of yield - - - 

Akaike Information Criterion 1401.65 (assuming 4 parameters).  
Bayesian Information Criterion 1412.96 
 
Model_Term Gamma Sigma Sigma/SE % C 
idv(units) IDV_V 150 0.106152 4861.06 2.72 0 P 
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ar1(column).ar1(row)  150 effects  

Residual SCA_V 150 1.000000 45793.4 2.74 0 P 
column AR_R 1 0.843791 0.843791 12.33 0 P 
row AR_R 1 0.682682 0.682682 6.68 0 P 

 
  

Source 
 
of 

 
Variation 

Wald F 
NumDF 

statistics 
DenDF 

 
F-inc 

 
P-inc 

8 mu   1 3.5 259.83 <.001 
6 variety   24 75.7 10.21 <.001 

The lattice analysis (with recovery of between block information) is presented below. This 
variance model is not competitive with the preceding spatial models. The models can be 
formally compared using the BIC values for example. 

 
# IB analysis  

1 LogL=-734.184 S2= 26778. 125 df 
2 LogL=-720.060 S2= 16591. 125 df 
3 LogL=-711.119 S2= 11173. 125 df 
4 LogL=-707.937 S2= 8562.4 125 df 
5 LogL=-707.786 S2= 8091.2 125 df 
6 LogL=-707.786 S2= 8061.8 125 df 
7 LogL=-707.786 S2= 8061.8 125 df 

 
- - - Results from analysis of yield - - - 

Akaike Information Criterion 1423.57 (assuming 4 
parameters). Bayesian Information Criterion 1434.88 

 
Approximate stratum variance decomposition 

Stratum Degrees-Freedom Variance Component Coefficients 
idv(Rep) 5.00 266657. 25.0 5.0 5.0 1.0 
idv(RowBlk) 24.00 74887.8 0.0 4.3 0.0 1.0 
idv(ColBlk) 23.66 71353.5 0.0 0.0 4.3 1.0 
Residual Variance 72.34 8061.81 0.0 0.0 0.0 1.0 
 
Model_Term 

   
Gamma 

 
Sigma 

 
Sigma/SE 

 
% 
 
C 

idv(Rep) IDV_V 6 0.528714 4262.39 0.62 0 P 
idv(RowBlk) IDV_V 30 1.93444 15595.1 3.06 0 P 
idv(ColBlk) IDV_V 30 1.83725 14811.6 3.04 0 P 
idv(units)  150 effects     
Residual SCA_V 150 1.000000 8061.81 6.01 0 P 
 
 

Source 

 
 
of 

 
 
Variation 

 
Wald F 
NumDF 

 
statistics 

DenDF 

 
 

F_inc 

 
 

Prob 
8 mu   1 5.0 1216.29 <.001 
6 variety   24 79.3 8.84 <.001 

 
Finally, we present portions of the .pvs files to illustrate the prediction facility of ASReml. 
The first five and last three variety means are presented for illustration. The overall SED 
printed is the square root of the average variance of difference between the variety means. 
The two spatial analyses have a range of SEDs which are available if the !SED qualifier is 
used. All variety comparisons have the same SED from the third analysis as the design is a 
balanced lattice square. The Wald F statistic statistics for the spatial models are greater 
than for the lattice analysis.  
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We note the Wald F statistic for the AR1×AR1 + units model is smaller than the Wald F 
statistic for the AR1×AR1. 
 
Predicted values of yield  
#AR1 x AR1   
variety  Predicted_Value Standard_Error Ecode 

1.0000  1257.9763 64.6146 E 
2.0000  1501.4483 64.9783 E 
3.0000  1404.9874 64.6260 E 
4.0000  1412.5674 64.9027 E 
5.0000  1514.4764 65.5889 E 

.  . .  

23.0000 1311.4888 64.0767 E 
24.0000 1586.7840 64.7043 E 
25.0000 1592.0204 63.5939 E 

SED: Overall Standard Error of Difference 59.05  

#AR1 x AR1 + units 
variety Predicted_Value Standard_Error Ecode 

1.0000 1245.5843 97.8591 E 
2.0000 1516.2331 97.8473 E 
3.0000 1403.9863 98.2398 E 
4.0000 1404.9202 97.9875 E 
5.0000 1471.6197 98.3607 E 
. . .  

23.0000 1316.8726 98.0402 E 
24.0000 1557.5278 98.1272 E 
25.0000 1573.8920 97.9803 E 

SED: Overall Standard Error of Difference 60.51  

 
# IB 
Rep is ignored in the prediction 
RowBlk is ignored in the prediction 
ColBlk is ignored in the prediction 

 
variety Predicted_Value Standard_Error Ecode 

1.0000 1283.5870 60.1994 E 
2.0000 1549.0133 60.1994 E 
3.0000 1420.9307 60.1994 E 
4.0000 1451.8554 60.1994 E 
5.0000 1533.2749 60.1994 E 
. . .  

23.0000 1329.1088 60.1994 E 
24.0000 1546.4699 60.1994 E 
25.0000 1630.6285 60.1994 E 

SED: Overall Standard Error of Difference 62.02  

 
Notice the differences in SE and SED associated with the various models. Choosing a model on 
the basis of smallest SE or SED is not recommended because the model is not necessarily fitting 
the variability present in the data. 
 
The predict statement included the qualifier !TWOSTAGEWEIGHTS. This generates an extra 
table in the .pvs file which we now display for each model.  
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Table 16.7: Summary of models for the Slate Hall data 

model 
REML 

log-likelihood 
number of 

parameters 
Wald  

F statistic SED 

AR1 × AR1 -700.32 3 13.04 59.0 
AR1 × AR1 + units -696.82 4 10.22 60.5 
IB -707.79 4 8.84 62.0 

 
Predicted values with Effective Replication assuming  
Variance= 38754.26 
Heron: 1 1257.98 22.1504 
Heron: 2 1501.45 20.6831 
Heron: 3 1404.99 22.5286 
Heron: 4 1412.57 22.7623 
Heron: 5 1514.48 21.1830 
. . . . 

Heron: 25 1592.02 26.0990 

Predicted values with Effective Replication assuming  
Variance= 45796.58 
Heron: 1 1245.58 23.8842 
Heron: 2 1516.24 22.4423 
Heron: 3 1403.99 24.1931 
Heron: 4 1404.92 24.0811 
Heron: 5 1471.61 23.2995 
. . . . 

Heron: 25 1573.89 26.0505 

Predicted values with Effective Replication assuming  
Variance= 8061.808 
Heron: 1 1283.59 4.03145 
Heron: 2 1549.01 4.03145 
Heron: 3 1420.93 4.03145 
Heron: 4 1451.86 4.03145 
Heron: 5 1533.27 4.03145 
. . . . 

Heron: 25 1630.63 4.03145 

 
The value of 4 for the IB analysis is clearly reasonable given there are 6 actual replicates but this 
analysis has used up 48 degrees of freedom for the rowblk and colblk effects. The precision 
from the spatial analyse (45796.58/23.8842 = 1917.442 c.f. 8061.808/4.03145= 1999.729) are 
similar but slightly lower reflecting the gain in accuracy from the spatial analysis. For further 
reading, see Smith et al. (2001, 2005). 
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16.7 Unreplicated early generation variety trial - Wheat 

To further illustrate the approaches presented in the previous section, we consider an 
unreplicated field experiment conducted at Tullibigeal situated in south-western NSW.  

The trial was an S1 (early stage) wheat variety evaluation trial and consisted of 525 test lines 
which were randomly assigned to plots in a 67 by 10 array. There was a check plot variety every 
6 plots within each column. That is the check variety was sown on rows 1,7,13,. . . ,67 of each 
column. This variety was numbered 526. A further 6 replicated commercially available varieties 
(numbered 527 to 532) were also randomly assigned to plots with between 3 to 5 plots of each. 
The aim of these trials is to identify and retain the top, say 20% of lines for further testing. Cullis 
et al. (1989) considered the analysis of early generation variety trials, and presented a one-
dimensional spatial analysis which was an extension of the approach developed by Gleeson and 
Cullis (1987). The test line effects are assumed random, while the check variety effects are 
considered fixed. This may not be sensible or justifiable for most trials and can lead to 
inconsistent comparisons between check varieties and test lines. Given the large amount of 
replication afforded to check varieties there will be very little shrinkage irrespective of the 
realised heritability. 

 
We consider an initial analysis with spatial correlation in one direction and fitting the variety 
effects (check, replicated and unreplicated lines) as random. We present three further spatial 
models for comparison. The ASReml input file is 
 
!EPS !RENAME !ARG 1 2 3 
Tullibigeal trial !DOPART 
$1 linenum 
yield 
weed 
column 
10 
row 67 
variety 532 # testlines 1:525, check lines 526:532 

wheat.asd !SKIP 1 
!PATH 1 # AR1 x I 
y ~ mu weed mv !r 
idv(variety) residual 
ar1v(row).id(col) 
!PATH 2 # AR1 x AR1 
y ~ mu weed mv !r variety 
residual ar1v(row).ar1(col) 
!PATH 3 # AR1 x AR1 + column trend 
y ~ mu weed pol(column,-1) mv !r 
idv(variety) residual ar1v(row).ar1(col) 
!PATH 4 # AR1 x AR1 + Nugget + column trend 
y ~ mu weed pol(column,-1) mv !r idv(variety) 
idv(units) residual ar1(row).ar1(col) 
predict var 

 
The data fields represent the factors variety, row and column, a covariate weed and the 
plot yield (yield). There are four paths in the ASReml file. We begin with the one-
dimensional spatial model, which assumes the variance model for the plot effects within 
columns is described by a first order autoregressive process. The abbreviated output file is 
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1 LogL=-4280.75 S2= 0.12850E+06 666 df 
2 LogL=-4268.58 S2= 0.12139E+06 666 df 
3 LogL=-4255.89 S2= 0.10969E+06 666 df 
4 LogL=-4243.76 S2= 88040. 666 df 
5 LogL=-4240.59 S2= 84420. 666 df 
6  LogL=-4280.75 S2=  85617. 666 df 
7  LogL=-4268.58 S2= 86032. 666 df 
8  LogL=-4255.89 S2= 86189. 666 df 
9  LogL=-4243.76 S2= 86253. 666 df 
10 LogL=-4240.59 S2= 86280. 666 df 

 

- - - Results from analysis of yield - - - 
Akaike Information Criterion 8485.76 (assuming 3 parameters).  
Bayesian Information Criterion 8499.26 

 
Model_Term  Gamma Sigma Sigma/SE % C 
idv(variety) IDV_V 532 0.959184 82758.6 8.98 0 P 
ar1(row).ar1(column) 670 effects    
Residual SCA_V 670 1.000000 86280.2 9.12 0 P 
row AR_R 1 0.672052 0.672052 16.04 0 P 

 
 

Source 
 
of 

 
Variation 

Wald F 
NumDF 

statistics 
DenDF 

 
F-inc 

 
P-inc 

7 mu   1 83.6 9899.20 <.001 
3 weed   1 477.0 109.33 <.001 

 
The iterative sequence converged, the REML estimate of the autoregressive parameter indicating 
substantial within column heterogeneity. 

 
The abbreviated output from the two-dimensional AR1×AR1 spatial model is 
 

1 LogL=-4277.99 S2= 0.12850E+06 666 df 
2 LogL=-4266.14 S2= 0.12097E+06 666 df 
3 LogL=-4253.06 S2= 0.10778E+06 666 df 
4 LogL=-4238.72 S2= 83163. 666 df 
5 LogL=-4234.53 S2= 79867. 666 df 
6 LogL=-4233.78 S2= 82024. 666 df 
7 LogL=-4233.67 S2= 82724. 666 df 
8 LogL=-4233.65 S2= 82975. 666 df 
9 LogL=-4233.65 S2= 83065. 666 df 
10 LogL=-4233.65 S2= 83100. 666 df 

- - - Results from analysis of yield - - - 
Akaike Information Criterion 8475.29 (assuming 4 parameters). 
Bayesian Information Criterion 8493.30 

 
Model_Term  Gamma Sigma Sigma/SE % C 
idv(variety) IDV_V 532 1.06038 88117.5 9.92 0 P 
ar1(row).ar1(column) 670 effects    
Residual SCA_V 670 1.000000 83100.1 8.90 0 P 
row AR_R 1 0.685387 0.685387 16.65 0 P 
column AR_R 1 0.285909 0.285909 3.87 0 P 
 

Source 
 
of 

 
Variation 

Wald F 
NumDF 

statistics 
DenDF 

 
F-inc 

 
P-inc 

7 mu   1 41.7 6248.66 <.001 
3 weed   1 491.2 85.84 <.001 
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The change in REML log-likelihood is significant (𝜒𝜒12 = 12.46,𝑝𝑝 < .001) with the inclusion of 
the autoregressive parameter for columns. Figure 16.6 presents the sample variogram of the 
residuals for the AR1 × AR1 model. There is an indication that a linear drift from column 1 to 
column 10 is present. We include a linear regression coefficient pol(column,-1) in the 
model to account for this. Note we use the ’-1’ option in the pol term to exclude the overall 
constant in the regression, as it is already fitted. The linear regression of column number on yield 
is significant (𝑡𝑡 = −2.96). The sample variogram (Figure 16.7) is more satisfactory, though 
interpretation of variograms is often difficult, particularly for unreplicated trials. This is an issue 
for further research. 

 

Figure 16.6: Sample variogram of the residuals from the 
AR1 × AR1 model for the Tullibigeal data 

The abbreviated output for this model and the final model in which a nugget effect has been 
included is 
 
#AR1xAR1 + pol(column,-1) 

1 LogL=-4271.06 S2= 0.12731E+06 665 df 
2 LogL=-4259.03 S2= 0.11963E+06 665 df 
3 LogL=-4245.41 S2= 0.10556E+06 665 df 
4 LogL=-4229.98 S2= 78754. 665 df 
5 LogL=-4226.66 S2= 75970. 665 df 
6 LogL=-4226.29 S2= 77975. 665 df 
7 LogL=-4226.25 S2= 78313. 665 df 
8 LogL=-4226.25 S2= 78396. 665 df 
9 LogL=-4226.25 S2= 78419. 665 df 
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Figure 16.7: Sample variogram of the residuals from the AR × 1AR1 + 
pol(column,-1)model for the Tullibigeal data  

 
10 LogL=-4226.25 S2= 78425. 665 df 

 
- - - Results from analysis of yield - - - 

Akaike Information Criterion 8460.50 (assuming 4 parameters).  
Bayesian Information Criterion 8478.50 

 
Model_Term  Gamma Sigma Sigma/SE % C 
idv(variety) IDV_V 532 1.12313 88081.9 9.81 0 P 
ar1(row).ar1(column) 670 effects    
Residual SCA_V 670 1.000000 78425.4 8.83 0 P 
row AR_R 1 0.665872 0.665872 15.37 0 P 
column AR_R 1 0.266047 0.266047 3.53 0 P 

 
 

Source 
 
of 

 
Variation 

Wald F 
NumDF 

statistics 
DenDF 

 
F-inc 

 
P-inc 

7 mu 1 42.5 7149.90 <.001 
3 weed 1 459.0 92.14 <.001 
8 pol(column,-1) 1 62.1 7.61 0.008 

#      
#AR1xAR1 + units + pol(column,-1)     

1 LogL=-4272.85 S2= 0.11684E+06 665 df   
2 LogL=-4265.70 S2= 83872. 665 df : 1 components restrained 
3 LogL=-4240.99 S2= 80942. 665 df   
4 LogL=-4227.44 S2= 53712. 665 df   
5 LogL=-4221.09 S2= 52201. 665 df   
6 LogL=-4220.94 S2= 54803. 665 df   
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7 LogL=-4220.94 S2= 54935. 665 df 
8 LogL=-4220.94 S2= 54934. 665 df 

 

- - - Results from analysis of yield - - - 
Akaike Information Criterion 8451.88 (assuming 5 
parameters). Bayesian Information Criterion 8474.37 

 
Model_Term  Gamma Sigma Sigma/SE % C 
idv(variety) IDV_V 532 1.32827 72967.0 6.99 0 P 
idv(units) IDV_V 670 0.562308 30889.9 3.78 0 P 
ar1(row).ar1(column) 670 effects    
Residual SCA_V 670 1.000000 54934.0 5.15 0 P 
row AR_R 1 0.835396 0.835396 18.38 0 P 
column AR_R 1 0.375499 0.375499 3.25 0 P 

 
 

Source 
 
of 

 
Variation 

Wald F 
NumDF 

statistics 
DenDF 

 
F-inc 

 
P-inc 

7 mu 1 13.6 4272.13 <.001 
3 weed 1 470.3 86.31 <.001 
8 pol(column,-1) 1 27.4 3.69 0.065 

 
The increase in REML log-likelihood is significant. The predicted means for the varieties can 
be produced and printed in the .pvs file as 

 
Ecode is E for Estimable, * for Not Estimable 

 
Warning: mv_estimates is ignored for 
prediction Warning: units is ignored for 
prediction 
 
---- ---- ---- ---- ---- ----   1  ---- ---- ---- ---- ---- ---- 
Predicted values of yield 
column is evaluated at 5.5000 
Model terms involving weed are predicted at the average:  0:4597 
 
variety Predicted_Value Standard_Error 
Ecode 1  2916.6768 179.5421 E 
2 2955.1002 179.0278 E 
3 2869.7482 177.2955 E 
4 2982.5846 178.9939 E 
... 
522 2777.5127 179.3317 E 
523 2907.1301 179.7729 E 
524 2776.0280 180.3853 E 
525 2716.1221 181.8923 E 
526 2381.9697 44.1852 E 
527 2696.4092 133.8687 E 
528 2723.5890 112.6784 E 
529 2701.6306 104.2832 E 
530 3006.8237 112.7234 E 
531 3019.5559 112.6742 E 
532 3064.3052 113.0868 E 
SED: Overall Standard Error of Difference 246.2 
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Note that the (replicated) check lines have lower SE than the (unreplicated) test lines. There will 
also be large differences in SEDs. Rather than obtaining the large table of all SEDs, you could do 
the prediction in parts 
predict var 1:525 column 5.5 
predict var 526:532 column 5.5 !SED 
to examine the matrix of pairwise prediction errors of variety differences. 

 
16.8 Paired Case-Control study - Rice 

This data is concerned with an experiment conducted to investigate the tolerance of rice varieties 
to attack by the larvae of bloodworms. The data have been kindly provided by Dr. Mark Stevens, 
Yanco Agricultural Institute. A full description of the experiment is given by Stevens et al. 
(1999). Bloodworms are a significant pest of rice in the Murray and Murrumbidgee irrigation 
areas where they can cause poor establishment and substantial yield loss. 
 
The experiment commenced with the transplanting of rice seedlings into trays. Each tray 
contained 32 seedlings and the trays were paired so that a control tray (no bloodworms) and a 
treated tray (bloodworms added) were grown in a controlled environment room for the duration 
of the experiment. At the end of this time rice plants were carefully extracted, the root system 
washed and root area determined for the tray using an image analysis system described by 
Stevens et al. (1999). Two pairs of trays, each pair corresponding to a different variety, were 
included in each run. A new batch of bloodworm larvae was used for each run. A total of 44 
varieties was investigated with three replicates of each. Unfortunately the variety concurrence 
within runs was less than optimal. Eight varieties occurred with only one other variety, 22 with 
two other varieties and the remaining 14 with three different varieties. 
 
In the next three sections we present an exhaustive analysis of these data using equivalent 
univariate and multivariate techniques. It is convenient to use two data files one for each 
approach. The univariate data file consists of factors pair, run, variety, tmt, unit and 
variate rootwt. The factor unit labels the individual trays, pair labels pairs of trays (to 
which varieties are allocated) and tmt is the two-level bloodworm treatment factor 
(control/treated). The multivariate data file consists of factors variety and run and variates 
for root weight of both the control and exposed treatments (labelled yc and ye respectively). 
 
Preliminary analyses indicated variance heterogeneity so that subsequent analyses were 
conducted on the square root scale. Figure 16.8 presents a plot of the treated and the control root 
area (on the square root scale) for each variety. There is a strong dependence between the treated 
and control root area, which is not surprising. The aim of the experiment was to determine the 
tolerance of varieties to bloodworms and thence identify the most tolerant varieties. The 
definition of tolerance should allow for the fact that varieties differ in their inherent seedling 
vigour (Figure 16.8). The original approach of the scientist was to regress the treated root area 
against the control root area and define the index of vigour as the residual from this regression. 
This approach is clearly inefficient since there is error in both variables. We seek to determine 
an index of tolerance from the joint analysis of treated and control root area.  
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Figure 16.8: Rice bloodworm data: Plot of square root of  
root weight for treated versus control 

16.8.1 Standard analysis 
The allocation of bloodworm treatments within varieties and varieties within runs defines a 
nested block structure of the form 

 
run/variety/tmt = run + run.variety + run.variety.tmt  

( = run + pair + pair.tmt ) 
( = run + run.variety + units ) 

 
There is an additional blocking term, however, due to the fact that the bloodworms within a run 
are derived from the same batch of larvae whereas between runs the bloodworms come from 
different sources. This defines a block structure of the form 

 
run/tmt/variety = run + run.tmt + run.tmt.variety  

( = run + run.tmt + pair.tmt ) 
 

Combining the two provides the full block structure for the design, namely 
 

run + run.variety + run.tmt + run.tmt.variety 
= run + run.variety + run.tmt + units 
= run + pair + run.tmt + pair.tmt 
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In line with the aims of the experiment the treatment structure comprises variety and treatment 
main effects and treatment by variety interactions. In the traditional approach the terms in the 
block structure are regarded as random and the treatment terms as fixed. The choice of treatment 
terms as fixed or random depends largely on the aims of the experiment. The aim of this example 
is to select the ”best” varieties. The definition of best is somewhat more complex since it does 
not involve the single trait sqrt(rootwt) but rather two traits, namely sqrt(rootwt) in the 
presence/absence of bloodworms. Thus to minimise selection bias the variety main effects and 
thence the tmt.variety interactions are taken as random. The main effect of treatment is 
fitted as fixed to allow for the likely scenario that rather than a single population of treatment by 
variety effects there are in fact two populations (control and treated) with a different mean for 
each. There is evidence of this prior to analysis with the large difference in mean sqrt(rootwt) for 
the two groups (14.93 and 8.23 for control and treated respectively). The inclusion of tmt as a 
fixed effect ensures that BLUPs of tmt.variety effects are shrunk to the correct mean 
(treatment means rather than an overall mean). 

 
The model for the data is given by 

𝒚𝒚 = 𝑿𝑿𝑿𝑿 + 𝒁𝒁1𝒖𝒖1 + 𝒁𝒁2𝒖𝒖2 + 𝒁𝒁3𝒖𝒖3 + 𝒁𝒁4𝒖𝒖4 + 𝒁𝒁5𝒖𝒖5 + 𝒆𝒆 (16.7) 

where 𝒚𝒚 is a vector of length 𝑛𝑛 =  264 containing the sqrt(rootwt) values, τ corresponds to a 
constant term and the fixed treatment contrast and 𝒖𝒖1 . . .𝒖𝒖5 correspond to random variety, 
treatment by variety, run, treatment by run and variety by run effects. The random effects and 
error are assumed to be independent Gaussian variables with zero means and variance structures 
var (𝒖𝒖𝑖𝑖)  =  𝜎𝜎𝑖𝑖2𝑰𝑰𝑏𝑏𝑖𝑖 (where 𝑏𝑏𝑖𝑖 is the length of 𝒖𝒖𝑖𝑖, 𝑖𝑖 =  1 . . . 5) and var (𝒆𝒆) = 𝜎𝜎2𝑰𝑰𝑛𝑛. 

 
The ASReml code for this analysis is 

Bloodworm data Dr M Stevens  
pair 132 
rootwt  
run 66 
tmt 2 !A  
id 
variety 44 !A 
rice.asd !skip 1 !DOPATH 1 
!PATH 1 
sqrt(rootwt) ~ mu tmt !r idv(variety) idv(variety.tmt) idv(run) ,  
idv(pair) idv(run.tmt) 
residual idv(units) 
!PATH 2 
sqrt(rootwt) ~ mu tmt !r idv(variety) diag(tmt).id(variety) idv(run),  
 idv(pair) diag(tmt).id(run) idv(uni(tmt,2)) 
residual idv(units) 
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The two paths in the input file define the two univariate analyses we will conduct. We consider 
the results from the analysis defined in PATH 1 first. A portion of the output file is 

 
5 LogL=-345.306 S2= 1.3216 262 df 
6 LogL=-345.267 S2= 1.3155 262 df 
7 LogL=-345.264 S2= 1.3149 262 df 
8 LogL=-345.263 S2= 1.3149 262 df 

 
- - - Results from analysis of sqrt(rootwt) - - - 

Akaike Information Criterion 702.53 (assuming 6 
parameters). Bayesian Information Criterion 723.94 

Approximate stratum variance decomposition 
Stratum Degrees-Freedom Variance Component Coefficients 
idv(variety) 44.40 26.0156 7.3 3.0 3.6 2.0 1.5 1.0 
idv(run) 45.17 7.41702 0.0 3.5 -0.0 2.0 1.7 1.0 
idv(variety.tmt) 39.53 2.99833 0.0 0.0 2.7 -0.0 0.2 1.0 
idv(pair) 41.43 3.26838 0.0 0.0 0.0 2.0 -0.0 1.0 
idv(run.tmt) 52.38 5.12369 0.0 0.0 0.0 0.0 2.2 1.0 
Residual Variance 39.09 1.31486 0.0 0.0 0.0 0.0 0.0 1.0 
 
Model_Term 

   
Gamma 

 
Sigma 

 
Sigma/SE 

 
% 
 
C 

idv(variety) IDV_V 44 1.80947 2.37920 3.01 0 P 
idv(run) IDV_V 66 0.244243 0.321145 0.59 0 P 
idv(variety.tmt) IDV_V 88 0.374220 0.492047 1.78 0 P 
idv(pair) IDV_V 132 0.742328 0.976056 2.51 0 P 
idv(run.tmt) IDV_V 132 1.32973 1.74841 3.65 0 P 
idv(units)  264 effects     
Residual SCA_V 264 1.000000 1.31486 4.42 0 P 
 
 

Source 

 
 
of 

 
 
Variation 

 
Wald F 
NumDF 

 
statistics 

DenDF 

 
 

F-inc 

 
 

P-inc 
7 mu   1 53.6 1484.96 <.001 
4 tmt   1 60.4 469.35 <.001 
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Table 16.8: Estimated variance components from  
univariate analyses of bloodworm data 

(a) Model with homogeneous variance for all terms and 
(b) Model with heterogeneous variance for interactions involving tmt 
 

 
source 

(a) (b) 
control treated 

 
variety 

 
2.378 

 
2.334 

tmt.variety 0.492 1.505 -0.372 
run 0.321 0.319 
tmt.run 1.748 1.388 2.223 
variety.run (pair) 0.976 0.987 
tmt.pair 1.315 1.156 1.359 

REML log-likelihood -345.256 -343.22 

 
The estimated variance components from this analysis are given in column (a) of Table 16.8. The 
variance component for the variety main effects is large. There is evidence of tmt.variety 
interactions so we may expect some discrimination between varieties in terms of tolerance to 
bloodworms. 
 
Given the large difference (𝑝𝑝 <  0.001) between tmt means we may wish to allow for 
heterogeneity of variance associated with tmt. Thus we fit a separate variety variance for 
each level of tmt so that instead of assuming var (𝒖𝒖2)  =  𝜎𝜎22𝑰𝑰88 we assume  

var(𝒖𝒖2) = �𝜎𝜎2𝑐𝑐
2 0

0 𝜎𝜎2𝑡𝑡2
� ⊗ 𝑰𝑰44 

where 𝜎𝜎2𝑐𝑐2  and 𝜎𝜎2𝑡𝑡2  are the tmt.variety interaction variances for control and treated 
respectively. This model can be achieved using a diagonal variance structure for the treatment 
part of the interaction. We also fit a separate run variance for each level of tmt and 
heterogeneity at the residual level, by including the uni(tmt,2) term. We have chosen level 2 
of tmt as we expect more variation for the exposed treatment and thus the extra variance 
component for this term should be positive. Had we mistakenly specified level 1 then ASReml 
would have estimated a negative component by setting the !GU option for this term. The portion 
of the ASReml output for this analysis is 

5 LogL=-343.759 S2= 1.2242 262 df : 1 components restrained 
6 LogL=-343.577 S2= 1.1738 262 df : 1 components restrained 
7 LogL=-343.543 S2= 1.1559 262 df   
8 LogL=-343.535 S2= 1.1469 262 df   
9 LogL=-343.535 S2= 1.1451 262 df   

- - - Results from analysis of sqrt(rootwt) - - -  
Akaike Information Criterion 705.07 (assuming 9 parameters).  
Bayesian Information Criterion 737.18  
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Model_Term  Gamma Sigma Sigma/SE % C 
idv(variety) IDV_V 44 1.89172 2.16613 2.99 0 P 
idv(run) IDV_V 66 0.296929 0.340000 0.62 0 P 
idv(pair) IDV_V 132 0.871770 0.998227 2.64 0 P 
idv(uni(tmt,2)) IDV_V 264 0.144454 0.165408 0.27 0 P 
idv(units) 264 effects   
Residual SCA_V 264 1.000000 1.14506 2.79 0 P 
diag(tmt).id(variety) 88 effects   
tmt DIAG_V 1 1.09032 1.24848 2.21 0 P 
tmt DIAG_V 2 0.148952E-05 0.170558E-05 2.79 0 B 
diag(tmt).id(run) 132 effects   
tmt DIAG_V 1 1.25736 1.43975 2.25 0 P 
tmt DIAG_V 2 1.86671 2.13750 2.97 0 P 
Warning: Code  B - fixed at a boundary (!GP) F - fixed by user 

? - liable to change from P to B P - positive definite  
C - Constrained by user (!VCC) U - unbounded 
S - Singular Information matrix 

S means there is no information in the data for this parameter. 
Very small components with Comp/SE ratios of zero sometimes indicate poor 

scaling. Consider rescaling the design matrix in such cases. 
 

Wald F statistics 
Source of Variation NumDF F-inc 

7 mu 1 1405.14 
4 tmt 1 441.72 

The estimated variance components from this analysis are given in column (b) of Table 16.8. 
There is no significant variance heterogeneity at the residual or tmt.run level. This indicates 
that the square root transformation of the data has successfully stabilised the error variance. There 
is, however, significant variance heterogeneity for tmt.variety interactions with the variance 
being much greater for the control group. This reflects the fact that in the absence of bloodworms 
the potential maximum root area is greater. Note that the tmt.variety interaction variance for 
the treated group is negative. The negative component is meaningful (and in fact necessary and 
obtained by use of the !GU option) in this context since it should be considered as part of the 
variance structure for the combined variety main effects and treatment by variety interactions. 
That is, 

var(𝟏𝟏2 ⊗ 𝒖𝒖1 + 𝒖𝒖2) =  �
𝜎𝜎12 + 𝜎𝜎2𝑐𝑐2 𝜎𝜎12

𝜎𝜎12 𝜎𝜎12 + 𝜎𝜎2𝑡𝑡2
� ⊗ 𝑰𝑰44  (16.8) 

Using the estimates from Table 16.8.  this structure is estimated as  

�3.84 2.33
2.33 1.96� ⊗ 𝑰𝑰44  

Thus the variance of the variety effects in the control group (also known as the genetic variance 
for this group) is 3.84. The genetic variance for the treated group is much lower (1.96). The 
genetic correlation is 2.33 / √3.84 ∗ 1.96  =  0.85 which is strong, supporting earlier 
indications of the dependence between the treated and control root area (Figure 16.8).  
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Table 16.9: Equivalence of random effects in bivariate and univariate analyses 

effects 
bivariate 

(model 16.10) 
univariate 

(model 16.7) 

trait.variety 𝒖𝒖𝑣𝑣 𝟏𝟏2 ⊗  𝒖𝒖1 + 𝒖𝒖2 

trait.run 𝒖𝒖𝑟𝑟 𝟏𝟏2  ⊗  𝒖𝒖3 +  𝒖𝒖4 
trait.pair 𝒆𝒆∗ 𝟏𝟏2  ⊗  𝒖𝒖5 +  𝒆𝒆 

 
16.8.2 A multivariate approach 
In this simple case in which the variance heterogeneity is associated with the two-level factor 
tmt, the analysis is equivalent to a bivariate analysis in which the two traits correspond to the 
two levels of tmt, namely sqrt(rootwt) for control and treated. The model for each trait is given 
by 

𝒚𝒚𝑗𝑗 =  𝑿𝑿𝝉𝝉𝑗𝑗 + 𝒁𝒁𝑣𝑣𝒖𝒖𝑣𝑣𝑗𝑗 + 𝒁𝒁𝑟𝑟𝒖𝒖𝑟𝑟𝑗𝑗 + 𝒆𝒆𝑗𝑗  (𝑗𝑗 = 𝑐𝑐, 𝑡𝑡)  (16.9) 

where 𝒚𝒚𝑗𝑗  is a vector of length 𝑛𝑛 = 132 containing the sqrtroot values for variate 𝑗𝑗(𝑗𝑗 = 𝑐𝑐 for 
control and 𝑗𝑗 = 𝑡𝑡 for treated), 𝝉𝝉𝑗𝑗 corresponds to a constant term and 𝒖𝒖𝑣𝑣𝑗𝑗  and 𝒖𝒖𝑟𝑟𝑗𝑗  correspond to 
random variety and run effects. The design matrices are the same for both traits. The random 
effects and error are assumed to be independent Gaussian variables with zero means and variance 
structures var(𝒖𝒖𝑣𝑣𝑗𝑗) =  𝜎𝜎𝑣𝑣𝑗𝑗

2  𝑰𝑰44, var (𝒖𝒖𝑟𝑟𝑗𝑗) = 𝜎𝜎𝑟𝑟𝑗𝑗
2  𝑰𝑰66 and var (𝒆𝒆𝑗𝑗)  =  𝜎𝜎𝑗𝑗2𝑰𝑰132. The bivariate 

model can be written as a direct extension of (16.9), namely 
 𝒚𝒚 = (𝑰𝑰2 ⊗  𝑿𝑿) 𝝉𝝉+ (𝑰𝑰2 ⊗ 𝒁𝒁𝑣𝑣)𝒖𝒖𝑣𝑣 + (𝑰𝑰2 ⊗ 𝒁𝒁𝑟𝑟)𝒖𝒖𝑟𝑟 + 𝒆𝒆 ∗ (16.10) 

where 𝒚𝒚 = (𝒚𝒚𝑐𝑐′  ,𝒚𝒚𝑡𝑡′  )′,𝒖𝒖𝑣𝑣 = (𝒖𝒖𝑣𝑣𝑐𝑐
′

 ,𝒖𝒖𝑣𝑣𝑡𝑡
′ )′,𝒖𝒖𝑟𝑟 = (𝒖𝒖𝑟𝑟𝑐𝑐

′ ,𝒖𝒖𝑟𝑟𝑡𝑡
′

 )′ and 𝒆𝒆 ∗ = (𝒆𝒆𝑐𝑐′ ,𝒆𝒆𝑡𝑡′ )′. 

There is an equivalence between the effects in this bivariate model and the univariate model of 
(16.7). The variety effects for each trait (𝒖𝒖𝑣𝑣 in the bivariate model) are partitioned in (16.7) into 
variety main effects and tmt.variety interactions so that 𝒖𝒖𝑣𝑣 = 𝟏𝟏2 ⊗ 𝒖𝒖1 + 𝒖𝒖2. There is a 
similar partitioning for the run effects and the errors (see Table 16.9). 
 
In addition to the assumptions in the models for individual traits (16.9) the bivariate analysis 
involves the assumptions cov �𝒖𝒖𝑣𝑣𝑐𝑐� 𝒖𝒖𝑣𝑣𝑐𝑐

′ = 𝜎𝜎𝑣𝑣𝑐𝑐𝑐𝑐  𝑰𝑰44, cov �𝒖𝒖𝑟𝑟𝑐𝑐� 𝒖𝒖𝑟𝑟𝑡𝑡
′ = 𝜎𝜎𝑟𝑟𝑐𝑐𝑐𝑐  𝑰𝑰66 and cov (𝒆𝒆𝑐𝑐) 𝒆𝒆𝑡𝑡′ =

𝜎𝜎𝑐𝑐𝑐𝑐𝑰𝑰132. Thus random effects and errors are correlated between traits. So, for example, the 
variance matrix for the variety effects for each trait is given by 

var (𝒖𝒖𝑣𝑣) = �
𝜎𝜎𝑣𝑣𝑐𝑐
2 𝜎𝜎𝑣𝑣𝑐𝑐𝑐𝑐

𝜎𝜎𝑣𝑣𝑐𝑐𝑐𝑐 𝜎𝜎𝑣𝑣𝑡𝑡
2 � ⊗  𝑰𝑰44 
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This unstructured form for trait.variety in the bivariate analysis is equivalent to the 
variety main effect plus heterogeneous tmt.variety interaction variance structure (16.8) 
in the univariate analysis. Similarly the unstructured form for trait.run is equivalent to the 
run main effect plus heterogeneous tmt.run interaction variance structure. The unstructured 
form for the errors (trait.pair) in the bivariate analysis is equivalent to the pair plus 
heterogeneous error (tmt.pair) variance in the univariate analysis. This bivariate analysis 

is achieved in ASReml as follows, noting that the tmt factor here is equivalent to traits. 
this is for the paired data  
id 
pair 132 
run 66 
variety 44 !A  
yc ye 
ricem.asd !skip 1 !X syc !Y sye 
sqrt(yc) sqrt(ye) ~ Trait !r us(Trait).id(variety) us(Trait).id(run)  
residual id(units).us(Trait) 
predict variety 

A portion of the output from this analysis is 
8 LogL=-343.220 S2= 1.00000 262 df 
9 LogL=-343.220 S2= 1.00000 262 df 

 
- - - Results from analysis of sqrt(yc) sqrt(ye) - - -  

Akaike Information Criterion 704.44 (assuming 9 parameters).  
Bayesian Information Criterion 736.56 

 
Model_Term 
id(units).us(Trait) 

 
264 

Sigma 
effects 

Sigma Sigma/SE % C 

Trait US_V 1 1 2.14370 2.14370 4.44 0 P 
Trait US_C 2 1 0.987342 0.987342 2.59 0 P 
Trait US_V 2 2 2.34744 2.34744 4.62 0 P 
us(Trait).id(variety) 88 effects     
Trait US_V 1 1 3.83911 3.83911 3.47 0 P 
Trait US_C 2 1 2.33352 2.33352 3.01 0 P 
Trait US_V 2 2 1.96136 1.96136 2.69 0 P 
us(Trait).id(run) 132 effects     
Trait US_V 1 1 1.70810 1.70810 2.61 0 P 
Trait US_C 2 1 0.319444 0.319444 0.59 0 P 
Trait US_V 2 2 2.54360 2.54360 3.20 0 P 
Covariance/Variance/Correlation Matrix US Residual  
2.144 0.4401 
0.9873 2.347 
Covariance/Variance/Correlation Matrix US us(Trait).id(variety  
3.839 0.8504 
2.334 1.961 

Covariance/Variance/Correlation Matrix US us(Trait).id(run)  
1.708 0.1533 
0.3194 2.544  
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The resultant REML log-likelihood is identical to that of the heterogeneous univariate analysis 
(column (b) of  Table 16.8). The estimated variance parameters are given in Table 16.10. 

 
The predicted variety means in the .pvs file are used in the following section on interpretation 
of results. A portion of the file is presented below. There is a wide range in SED reflecting the 
imbalance of the variety concurrence within runs. 

 
Assuming Power transformation was (Y+0.000)^0.500  
The ignored set: run 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 16.9: BLUPs for treated for each variety plotted against BLUPs for control 
  

variety Trait Power_value Stand_Error Ecode Retransformed_value approx_SE 
AliCombo sqrt(yc) 14.9531 0.9181 E 223.5962 27.4568 
AliCombo sqrt(ye) 7.9941 0.7992 E 63.9050 12.7784 
Bluebelle sqrt(yc) 13.1036 0.9310 E 171.7046 24.3987 
Bluebelle sqrt(ye) 6.6302 0.8062 E 43.9598 10.6903 
C22 sqrt(yc) 16.6676 0.9181 E 277.8096 30.6050 
C22 sqrt(ye) 8.9541 0.7992 E 80.1756 14.3130 
. . . . . . . .       
YRK1 sqrt(yc) 15.1857 0.9549 E 230.6068 29.0018 
YRK1 sqrt(ye) 8.3355 0.8190 E 69.4806 13.6531 
YRK3 sqrt(yc) 13.3058 0.9549 E 177.0431 25.4114 
YRK3 sqrt(ye) 8.1134 0.8190 E 65.8265 13.2892 
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Table 16.10: Estimated variance parameters from  
bivariate analysis of bloodworm data 

Source 
control 

variance 
treated 

variance covariance 

us(trait).variety 3.84 1.96 
2.33 

us(trait).run 1.71 2.54 0.32 
us(trait).pair 2.14 2.35 0.99 

16.8.3 Interpretation of results 
Recall that the researcher is interested in varietal tolerance to bloodworms. This could be defined 
in various ways. One option is to consider the regression implicit in the variance structure for the 
trait by variety effects. The variance structure can arise from a regression of treated variety effects 
on control effects, namely 

𝒖𝒖𝑣𝑣𝑡𝑡 = 𝛽𝛽𝒖𝒖𝑣𝑣𝑐𝑐 + 𝝐𝝐 

where the slope 𝛽𝛽 = 𝜎𝜎𝑣𝑣𝑐𝑐𝑐𝑐/𝜎𝜎𝑣𝑣𝑐𝑐
2  . Tolerance can be defined in terms of the deviations from 

regression,𝝐𝝐. Varieties with large positive deviations have greatest tolerance to bloodworms. 
Note that this is similar to the researcher’s original intentions except that the regression has been 
conducted at the genotypic rather than the phenotypic level. In Figure 16.9 the BLUPs for treated 
have been plotted against the BLUPs for control for each variety and the fitted regression line 
(slope = 0.61) has been drawn. Varieties with large positive deviations from the regression line 
include YRK3, Calrose, HR19 and WC1403. 

 
Figure 16.10: Estimated deviations from regression of treated on control for each variety 

 plotted against estimate for control  
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An alternative definition of tolerance is the simple difference between treated and control BLUPs 
for each variety, namely 𝜹𝜹 = 𝒖𝒖𝑣𝑣𝑐𝑐 − 𝒖𝒖𝑣𝑣𝑡𝑡. Unless  𝛽𝛽 = 1 the two measures 𝝐𝝐 and 𝜹𝜹 have very 
different interpretations. The key difference is that E is a measure which is independent of 
inherent vigour whereas 𝜹𝜹 is not. To see this consider 

cov (𝝐𝝐) 𝒖𝒖𝑣𝑣𝑐𝑐
′ = cov (𝒖𝒖𝑣𝑣𝑡𝑡  −  𝛽𝛽𝒖𝒖𝑣𝑣𝑐𝑐  ) 𝒖𝒖𝑣𝑣𝑐𝑐

′  
 

= �𝜎𝜎𝑣𝑣𝑐𝑐𝑐𝑐 −
𝜎𝜎𝑣𝑣𝑐𝑐𝑐𝑐
𝜎𝜎𝑣𝑣𝑐𝑐2

𝜎𝜎𝑣𝑣𝑐𝑐
2 � 𝑰𝑰44 

= 𝟎𝟎 
Whereas 
 

cov (𝜹𝜹)𝒖𝒖𝑣𝑣𝑐𝑐
′  = cov(𝒖𝒖𝑣𝑣𝑐𝑐 − 𝒖𝒖𝑣𝑣𝑡𝑡) 𝒖𝒖𝑣𝑣𝑐𝑐

′  
 = �𝜎𝜎𝑣𝑣𝑐𝑐

2 − 𝜎𝜎𝑣𝑣𝑐𝑐𝑐𝑐�𝑰𝑰44 

 

Figure 16.11: Estimated difference between control and treated for each  
variety plotted against estimate for control 

 
The independence of 𝝐𝝐 and 𝒖𝒖𝑣𝑣𝑐𝑐  and dependence between 𝜹𝜹 and 𝒖𝒖𝑣𝑣𝑐𝑐  is clearly illustrated in Figure 
16.10 and Figure 16.11. In this example the two measures have provided very different rankings 
of the varieties. The choice of tolerance measure depends on the aim of the experiment. In this 
experiment the aim was to identify tolerance which is independent of inherent vigour so the 
deviations from regression measure is preferred. 
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16.9 Balanced longitudinal data: Random coefficients 
and cubic smoothing splines - Oranges 

We now illustrate the use of random coefficients and cubic smoothing splines for the analysis of 
balanced longitudinal data. The implementation of cubic smoothing splines in ASReml was 
originally based on the mixed model formulation presented by Verbyla et al. (1999). More recently 
the technology has been enhanced so that the user can specify knot points; in the original approach 
the knot points were taken to be the ordered set of unique values of the explanatory variable. The 
specification of knot points is particularly useful if the number of unique values in the explanatory 
variable is large, or if units are measured at different times. 
 
The data we use was originally reported by Draper and Smith (1998, ex24N, p559) and has recently 
been re-analysed by Pinheiro and Bates (2000, p338). The data are displayed in Figure 16.12 and 
are the trunk circumferences (in millimeters) of each of 5 trees taken at 7 times. All trees were 
measured at the same time so that the data are balanced. The aim of the study is unclear, though, 
both previous analyses involved modelling the overall ‘growth’ curve, accounting for the obvious 
variation in both level and shape between trees. Pinheiro and Bates (2000) used a nonlinear mixed 
effects modelling approach, in which they modelled the growth curves by a three-parameter logistic 
function of age, given by 

𝑦𝑦 = 
𝜙𝜙1 

(16.11) 
1 + exp [−(𝑥𝑥 − 𝜙𝜙2) / 𝜙𝜙3] 

where y is the trunk circumference, 𝑥𝑥 is the tree age in days since December 31 1968, 𝜙𝜙1 is the 
asymptotic height, 𝜙𝜙2 is the inflection point or the time at which the tree reaches 0.5𝜙𝜙1, 𝜙𝜙3 is the 
time elapsed between trees reaching half and about 3/4 of 𝜙𝜙1. 
 
 

Figure 16.12: Trellis plot of trunk circumference for each tree 
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The datafile consists of 5 columns viz, Tree, a factor with 5 levels, age, tree age in days since 
31st December 1968, circ the trunk circumference and season. The last column season 
was added after noting that tree age spans several years and if converted to day of year, 
measurements were taken in either Spring (April/May) or Autumn (September/October). 
 
First we demonstrate the fitting of a cubic spline in ASReml by restricting the dataset to tree 1 
only. The model includes the intercept and linear regression of trunk circumference on age and 
an additional random term spl(age,7) which instructs ASReml to include a random term with 
a special design matrix with 7 − 2 = 5 columns which relate to the vector, 𝜹𝜹 whose elements 
𝛿𝛿𝑖𝑖, 𝑖𝑖 = 2, . . . , 6 are the second differentials of the cubic spline at the knot points. The second 
differentials of a natural cubic spline are zero at the first and last knot points (Green and 
Silverman, 1994). The ASReml job is 
 
this is the orange data, for tree 1  
seq # record number is not used  
Tree 5 
age # 118 484 664 1004 1231 1372 1582 
circ 
season !L Spring Autumn 

orange.asd !skip 1 !filter 2 !select 1 
!SPLINE spl(age,7) 118 484 664 1004 1231 1372 1582 
!PVAL age 150 200:1500 
circ ~ mu age !r idv(spl(age,7))  
residual idv(units) 
predict age 

Note that the data for tree 1 has been selected by use of the !filter and !select qualifiers. 
Also note the use of !PVAL so that the spline curve is properly predicted at the additional 
nominated points. These additional data points are required for ASReml to form the design matrix 
to properly interpolate the cubic smoothing spline between knot points in the prediction process. 
Since the spline knot points are specifically nominated in the !SPLINE line, these extra points 
have no effect on the analysis run time. The !SPLINE line does not modify the analysis in this 
example since it simply nominates the 7 ages in the data file. The same analysis would result if the 
!SPLINE line was omitted and spl(age,7) in the model was replaced with spl(age). An 
extract of the output file is 

1 LogL=-20.9043 S2= 48.470 5 df 0.1000E+00 
2 LogL=-20.9013 S2= 49.152 5 df 0.9102E-01 
3 LogL=-20.8998 S2= 49.892 5 df 0.8221E-01 
4 LogL=-20.8996 S2= 50.273 5 df 0.7802E-01 

Final parameter values 0.7892E-01 
 

- - - Results from analysis of circ - - - 
Akaike Information Criterion 45.80 (assuming 2 parameters).  
Bayesian Information Criterion 45.02 

Approximate stratum variance decomposition 
Stratum Degrees-Freedom Variance Component Coefficients 
idv(spl(age,7)) 1.49 98.4896 12.  1.0 
Residual Variance 3.51 50.2726 0.  1.0 
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Model_Term 
idv(spl(age,7)) 

 
 

IDV_V 

 
Gamma 

5 0.789210E-01 

 
Sigma 

3.96756 

 
Sigma/SE 

0.40 

 
% C 
0 P 

 
Residual SCA_V 7 1.000000 50.2726 1.32 0 P 
Notice: The DenDF values are calculated ignoring fixed/boundary/singular  

variance parameters using algebraic derivatives. 
 

Estimate Standard Error T-value T-prev 
3 age 
  1 0.814772E-01 0.552336E-02 14.75 
7 mu 
  1 24.4378 5.75429 4.25 
6 spl(age,7)  5 effects fitted  

Finished: 19 Aug 2005 10:08:11.980 LogL Converged 

The REML estimate of the smoothing constant indicates that there is some nonlinearity. The fitted 
cubic smoothing spline is presented in Figure 16.13. The fitted values were obtained from the 
.pvs file. The four points below the line were the spring measurements. 
 

 

Figure 16.13: Fitted cubic smoothing spline for tree 1 

We now consider the analysis of the full dataset. Following Verbyla et al. (1999) we con- sider 
the analysis of variance decomposition (see Figure 16.11) which models the overall and individual 
curves. 
An overall spline is fitted as well as tree deviation splines. We note however, that the intercept and 
slope for the tree deviation splines are assumed to be random effects. This is consistent with 
Verbyla et al. (1999). In this sense the tree deviation splines play a role in modelling the 
conditional curves for each tree and variance modelling.   
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Table 16.11: Orange data: AOV decomposition 

stratum decomposition type df or ne 

constant 1 F 1 
age    
 age F 1 
 spl(age, 7) R 5 
 fac(age) R 7 
tree    
 tree RC 5 
age.tree    
 x.ttree RC 5 
 spl(age, 7) R 25 
error  R  

The intercept and slope for each tree are included as random coefficients (denoted by RC in Table 
16). Thus, if 𝑼𝑼5×2 is the matrix of intercepts (column 1) and slopes (column 2) for each tree, then 
we assume that 

var (vec(𝑼𝑼 )) = 𝚺𝚺⊗ 𝑰𝑰5 
where Σ is a 2 × 2 symmetric positive definite matrix. Non smooth variation can be modelled at 
the overall mean (across trees) level and this is achieved in ASReml by inclusion of fac(age) 
as a random term. 

Table 16.12: Sequence of models fitted to the Orange data 

model 
term 1 2 3 4 5 6 

 
tree 

 
y 

 
y 

 
y y 

 
y 

 
y 

age.tree y y y y y y 
(covariance) n n n n n y 
spl(age,7) y y y y n y 
tree.spl(age,7) y y y n y y 
fac(age) n y y n n n 
season n n y y y y 

 
REML log-likelihood 

 
-97.78 

 
-94.07 

 
-87.95 -91.22 

 
-90.18 

 
-87.43 
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An extract of the ASReml input file is 
 
circ ~ mu age !r str(Tree age.Tree us(2 !INIT 4.6 .00001 .000094).id(Tree)) idv(spl(age,7)), 
idv(spl(age,7).Tree) idv(fac(age)) 
predict age Tree !IGNORE fac(age) 

 
We stress the importance of model building in these settings, where we generally commence with 
relatively simple variance models and update to more complex variance models if appropriate. Table 
16.12 presents the sequence of fitted models we have used. Note that the REML log-likelihoods for 
models 1 and 2 are comparable and likewise for models 3 to 6. The REML log-likelihoods are not 
comparable between these groups due to the inclusion of the fixed season term in the second set 
of models. 
 
We begin by modelling the variance matrix for the intercept and slope for each tree, Σ, as a diagonal 
matrix as there is no point including a covariance component between the intercept and slope if the 
variance component(s) for one (or both) is zero. Model 1 also does not include a non-smooth 
component at the overall level (that is, fac(age)). Abbreviated output is shown below. 
 

 

6 LogL=-97.8517 S2= 7.2838 33 Df 
7 LogL=-97.7837 S2= 6.6673 33 Df 
8 LogL=-97.7792 S2= 6.4634 33 Df 
9 LogL=-97.7788 S2= 6.3911 33 Df 

10 LogL=-97.7788 S2= 6.3615 33 Df 

 
- - - Results from analysis of circ - - - 

Akaike Information Criterion 205.56 (assuming 5 parameters).  
Bayesian Information Criterion 213.04 
 
Model_Term Gamma Sigma Sigma/SE % C 

 
idv(spl(age,7)) IDV_V 5 100.466 639.116 1.55 0 P 
Residual SCA_V 35 1.000000 6.36154 1.74 0 P 
idv(Tree) ID_V 1 4.78778 30.4577 1.24 0 P 
idv(Tree.age) ID_V 1 0.939009E-04 0.597354E-03 1.41 0 P 
idv(spl(age,7).Tree) ID_V 1 1.11619 7.10070 1.44 0 P 

 
  

Source 
 
of 

 
Variation 

Wald F 
NumDF 

statistics 
DenDF 

 
F-inc 

 
P-inc 

9 mu   1 4.0 47.05 0.002 
3 age   1 4.0 95.00 <.001 
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Figure 16.14: Plot of fitted cubic smoothing spline for model 1 

A quick look suggests this is fine until we look at the predicted curves in Figure 16.14. The fit is 
unacceptable because the spline has picked up too much curvature, and suggests that there may be 
systematic non-smooth variation at the overall level. This can be formally examined by including 
the fac(age) term as a random effect. This increased the log-likelihood 3.71  
(P < 0.05) with the spl(age,7) smoothing constants heading to the boundary. There is a 
possible explanation in the season factor. When this is added (Model 3) it has an F ratio of 107.5 
(P < 0.01) while the fac(age) term goes to the boundary. Notice that the inclusion of the fixed 
term season in models 3 to 6 means that comparisons with models 1 and 2 on the basis of the 
log-likelihood are not valid. The spring measurements are lower than the autumn measurements 
so growth is slower in winter. Models 4 and 5 successively examined each term, indicating that 
both smoothing constants are significant (P < 0.05). Lastly we add the covariance parameter 
between the intercept and slope for each tree in model 6. This ensures that the covariance model 
will be translation invariant. A portion of the output file for model 6 is 

 
6 LogL=-87.5371 S2= 5.9488 32 df 
7 LogL=-87.4342 S2= 5.6885 32 df 
8 LogL=-87.4291 S2= 5.6434 32 df 
9 LogL=-87.4291 S2= 5.6412 32 df 

 
- - - Results from analysis of circ - - - 

Akaike Information Criterion 186.86 (assuming 6 parameters). 
Bayesian Information Criterion 195.65  
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Model_Term  Gamma Sigma Sigma/SE % C 
idv(spl(age,7)) IDV_V 5 2.17100 12.2471 1.09 0 P 
Residual SCA_V 35 1.000000 5.64123 1.72 0 P 
us(2).id(Tree)  10 effects   
2 US V 1 1 5.61715 31.6877 1.26 0 P 
2 US_C 2 1 -0.124098E-01 -0.700063E-01 -0.85 0 P 
2 US_V 2 2 0.108290E-03 0.610886E-03 1.41 0 P 
idv(spl(age,7).Tree) ID_V 1 1.38313 7.80258 1.48 0 P 
Covariance/Variance/Correlation Matrix US Tree 
31.69 -0.5032 

-0.7001E-01 0.6109E-03 
 
 

Wald F statistics 
 Source of Variation NumDF DenDF F-inc P-inc 
9 mu   1 2.4 169.87 0.006 
3 age   1 2.4 92.78 0.011 
5 Season   1 8.8 108.49 <.001 

 

Figure 16.15: Trellis plot of trunk circumference for each tree at sample dates (adjusted for 
season effects), with fitted profiles across time and confidence intervals 

 
Figure 16.15 presents the predicted growth over time for individual trees and a marginal prediction 
for trees with approximate confidence intervals (2 ±×) standard The conclusions from this 
analysis are quite different from those obtained by the nonlinear mixed effects analysis.  
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The individual curves for each tree are not convincingly modelled by a logistic function. Figure 
16.16 presents a plot of the residuals from the nonlinear model fitted on p340 of Pinheiro and 
Bates (2000). The distinct pattern in the residuals, which is the same for all trees is taken up in our 
analysis by the season term. 

Figure 16.16: Plot of the residuals from the nonlinear model of Pinheiro and Bates 

 

16.10 Generalized Linear (Mixed) Models 
 
ASReml uses an approximate likelihood technique called penalized quasi-likelihood (PQL) (see 
Section 6.8 to analyse data sampled from one of the common members of the exponential family. 
Two examples are presented in Section 16.10 of the ASReml User Guide: Structural Specification. 
The functional specification is compared to the structural specification in Section 3.9 of ASReml 
Update: What’s new in Release 4.1. 
 
16.11 Multivariate animal genetics data - Sheep 
The analysis of incomplete or unbalanced multivariate data often presents computational 
difficulties. These difficulties are exacerbated by either the number of random effects in the linear 
mixed model, the number of traits, the complexity of the variance models being fitted to the 
random effects or the size of the problem. In this section we illustrate two approaches to the 
analysis of a complex set of incomplete multivariate data. 
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Much of the difficulty in conducting such analyses in ASReml centres on obtaining good starting 
values. Derivative based algorithms such as the AI algorithm can be unreliable when fitting 
complex variance structures unless good starting values are available. Poor starting values may 
result in divergence of the algorithm or slow convergence. A particular problem with fitting 
unstructured variance models is keeping the estimated variance matrix positive definite. These are 
not simple issues and in the following we present a pragmatic approach to them. 
 
The data are taken from a large genetic study on Coopworth lambs. A total of 5 traits, namely 
weaning weight (wwt), yearling weight (ywt), greasy fleece weight (gfw), fibre diameter (fdm) 
and ultrasound fat depth at the C site (fat) were measured on 7043 lambs. The lambs were the 
progeny of 92 sires and 3561 dams, produced from 4871 litters over 49 flock-year combinations. 
Not all traits were measured on each group. No pedigree data was available for dams. 
 
The aim of the analysis is to estimate heritability (ℎ2) of each trait and to estimate the genetic 
correlations between the five traits. We will present two approaches, a half-sib analysis and an 
analysis based on the use of an animal model, which directly defines the genetic covariance 
between the progeny and sires and dams. 
 
The data fields included factors defining sire, dam and lamb (tag), covariates such as age, the 
age of the lamb at a set time, brr the birth rearing rank (1 = born single raised single, 2 = born 
twin raised single, 3 = born twin raised twin and 4 = other), sex (M, F) and grp a factor indicating 
the flock-year combination. 
 
16.11.1 Half-sib analysis 
 
In the half-sib analysis we include terms for the random effects of sires, dams and litters. 
In univariate analyses the variance component for sires is denoted by 𝜎𝜎𝑠𝑠2 = 1

4
𝜎𝜎𝐴𝐴2 where 𝜎𝜎𝐴𝐴2 is 

the additive genetic variance, the variance component for dams is denoted by 𝜎𝜎𝑑𝑑2 = 1
4

 𝜎𝜎𝐴𝐴2 + 𝜎𝜎𝑚𝑚2   
where 𝜎𝜎𝑚𝑚2  is the maternal variance component and the variance component for litters is denoted by 
𝜎𝜎𝑙𝑙𝑚𝑚 and represents variation attributable to the particular mating. 

For a multivariate analysis these variance components for sires, dams and litters are, in 
theory replaced by unstructured matrices, one for each term. Additionally we assume the residuals 
for each trait may be correlated. Thus for this example we would like to fit a total of 4 unstructured 
variance models. For such a situation, it is sensible to commence the modelling process with a series 
of univariate analyses. These give starting values for the diagonals of the variance matrices, but also 
indicate what variance components are estimable.   
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The ASReml job for the univariate analyses is 

!RENAME 1 !ARG 1 2 3 4 5 #Does 5 runs one for each trait  
Multivariate Sire & Dam model 
!DOPART $1 
!IF $1 == 1 !ASSIGN YV wwt #sets up dependent variable to each trait in turn 
!IF $1 == 2 !ASSIGN YV ywt 
!IF $1 == 3 !ASSIGN YV gfw 
!IF $1 == 4 !ASSIGN YV fdm 
!IF $1 == 5 !ASSIGN YV fat 
tag 
sire 92 !I 
dam 3561 !I 
grp 49 
sex 
brr 4 
litter 4871  
age 
wwt !M0 # !M0 identifies missing values  
ywt !M0 
gfw !M0 
fdm !M0 
fat !M0  
coop.fmt 
!PART 1 2 3 5 
$YV ~ mu age brr sex age.sex !r idv(sire) idv(dam) idv(lit) idv(age.grp),  
idv(sex.grp) !f grp #traits are substituted for $YV 
!PART 4 #leaves out sex.grp for fdm 
$YV ~ mu age brr sex age.sex !r idv(sire) idv(dam) idv(lit) idv(age.grp),  
!f grp #$fdm is substituted for $YV 

Table 16.13 and Table 16.14 present the summary of these analyses. Fibre diameter was 
measured on only 2 female lambs and so interactions with sex were not fitted. The dam variance 
component was quite small for both fibre diameter and fat. The REML estimate of the variance 
component associated with litters was effectively zero for fat. 
 
Thus in the multivariate analysis we consider fitting the following models to the sire, dam and 
litter effects, 

 var (𝒖𝒖𝑠𝑠) = 𝚺𝚺𝑠𝑠 ⊗ 𝑰𝑰92 
 var (𝒖𝒖𝑑𝑑) = 𝚺𝚺𝑑𝑑 ⊗ 𝑰𝑰3561 
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Table 16.13: REML estimates of a subset of the variance parameters for each trait  
for the genetic example, expressed as a ratio to their asymptotic s.e. 

term wwt ywt gfw fdm fat 

 
sire 

 
3.68 

 
3.57 

 
3.95 

 
1.92 

 
1.92 

dam 6.25 4.93 2.78 0.37 0.05 
litter 8.79 0.99 2.23 1.91 0.00 
age.grp 2.29 1.39 0.31 1.15 1.74 
sex.grp 2.90 3.43 3.70 - 1.83 

Table 16.14: Wald F statistics of the fixed effects for  
each trait for the genetic example 

term wwt ywt gfw fdm fat 

 
age 

 
331.3 

 
67.1 

 
52.4 

 
2.6 

 
7.5 

brr 554.6 73.4 14.9 0.3 13.9 
sex 196.1 123.3 0.2 2.9 0.6 

age.sex 10.3 1.7 1.9 - 5.0 

var (𝒖𝒖𝑙𝑙) = 𝚺𝚺𝑙𝑙 ⊗ 𝑰𝑰4891 

where 𝚺𝚺𝑠𝑠5×5,𝚺𝚺𝑑𝑑3×3 and 𝚺𝚺𝑙𝑙4×4 are positive definite symmetric matrices corresponding to the 
between traits variance matrices for sires, dams and litters respectively. The variance matrix for 
dams does not involve fibre diameter and fat depth, while the variance matrix for litters does not 
involve fat depth. The effects in each of the above vectors are ordered levels within traits. Lastly, 
we assume that the residual variance matrix is given by 

𝚺𝚺𝑒𝑒 ⊗ 𝑰𝑰7043 

Table 16.15 presents the sequence variance models fitted to each of the four random terms 
sire, dam, litter and error in the ASReml job 

!RENAME 1 !ARG 1 #CHANGE 1 TO 2 OR 3 FOR OTHER PATHS 
Multivariate Sire & Dam 
!DOPATH $1 
tag 
sire 92 !I 
dam 3561 !I 
grp 49 
sex 
brr 4 
litter 4871  
age  
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wwt !M0 # !M0 identifies missing values  
ywt !M0 
gfw !M0 
fdm !M0 
fat !M0 
!PATH 1 
coop.fmt 
!PATH 2 
coop.fmt !CONTINUE coopmf1.rsv # uses initial values from previous .rsv file 
!PATH 3 
coop.fmt !CONTINUE coopmf2.rsv 
 
!PATH 0 #SETTING UP TRAIT COMBINATIONS FOR DIFFERENT MODEL TERMS 
!SUBSET TrDam123 Trait 1 2 3 0 0 
!SUBSET TrLit1234 Trait 1 2 3 4 0 
!SUBSET TrAG1245 Trait 1 2 4 5 
!SUBSET TrSG123 Trait 1 2 3 0 0 

 
#USING !ASSIGN TO MAKE SPECIFICATION CLEARER 
#ASSIGN SIRE DAM LITTER AND RESIDUAL INITIAL VALUES FROM UNIVARIATE ANALYSES 
!ASSIGN SDIAGI !INIT 0.608 1.298 0.015 0.197 0.035 #Initial sire variances 
!ASSIGN DDIAGI !INIT 2.2 4.14 0.018 
!ASSIGN LDIAGI !INIT 3.74 0.97 0.019 0.941 
!ASSIGN RUSI !< !INIT 9.27 0.0 16.48 0.0 0.0 0.14 
0.0 0.0 0.0 3.37 0.0 0.0 0.0 0.0 1.14 !> 
 
 
!ASSIGN VARF !< 
diag(TrAG1245 !INIT 0.0024 0.0019 0.0020 0.00026).age.grp, 
   diag(TrSG123 !INIT 0.93 16.0 0.28).sex.grp  !> 
 
 
!PART 1 #DIAGONAL FOR SIRE DAM AND LITTER UNSTRUCTURED FOR RESIDUAL 
wwt ywt gfw fdm fat ~ Trait Trait.age Trait.brr Trait.sex Trait.age.sex !r $VARF, 
diag(Trait $SDIAGI).id(sire) diag(TrDam123 $DDIAGI).id(dam) diag(TrLit1234 $LDIAGI .id(lit), 
!f Trait.grp 
residual id(units).us(Trait $RUSI) 
!PART 2 #CHANGE DIAGONAL TO XFA1 FOR SIRE DAM AND LITTER 
wwt ywt gfw fdm fat ~ Trait Trait.age Trait.brr Trait.sex Trait.age.sex !r $VARF, 
xfa1(Trait).id(sire) xfa1(TrDam123).id(dam) xfa1(TrLit1234).id(lit), 
!f Trait.grp mv 
residual id(units).us(Trait) 
!PART 3 #CHANGE XFA1 TO UNSTRUCTURED FOR SIRE AND LITTER 
wwt ywt gfw fdm fat ~ Trait Trait.age Trait.brr Trait.sex Trait.age.sex !r $VARF, 
us(Trait).id(sire) xfa1(TrDam123).id(dam) us(TrLit1234).id(lit), 
!f Trait.grp mv 
residual id(units).us(Trait) 

 
!PART 3  
VPREDICT !DEFINE 
#USING !ASSIGN TO GIVE CONCISE VPREDICT 
!ASSIGN lusT lit;us(TrLit1234) # us(TrLit1234).id(lit);us(TrLit1234) 
!ASSIGN susT sire;us(Trait) #us(Trait).id(sire);us(Trait) 
!ASSIGN uusT id(units).us(Trait);us(Trait)  
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X Damv xfa1(TrDam123) # defines 54:59 
F phen $uusT[1:6]+$susT[1:6]+$lusT[1:6]+Damv  
# defines [1:6] elements of phen 
# defines 60:65= 1:6 + 23:28 + 44:49 + 54:59 
F phen $uusT[7:10]+$susT[7:10]+ $lusT[7:10]  
# defines [7:10] elements of phen 
# defines 66:69= 7:10 + 29:32 + 50:53 
F phen $uusT[11:15]+$susT[11:15] 
# defines [11:15] elements of phen 
# defines 70:74= 11:15 + 33:37 
F Direct $susT *4. #defines 75: 89= 23:37 * 4. 
F Maternal Damv -$susT[1:6] #defines 90: 95= 54:59 - 23:28  
F resid phen - $susT #defines  96:110= 60:74 - 23-37 
H WWTh2 Direct[1] phen[1] #defines 111= 75/ 60  
H YWTh2 Direct[3] phen[3] #defines 112= 77/ 62  
H GFWh2 Direct[6] phen[6] #defines 113= 80/ 65 
H FDMh2 Direct[10] phen[10] #defines 114= 84/ 69 
H FATh2 Direct[15] phen[15] #defines 115= 89/ 74  
R GenCor $susT  #defines 116:125 from 23:37 
R MatCor Maternal #defines 126:129 from 90:95 

Table 16.15: Variance models fitted for each part of the ASReml  
job in the analysis of the genetic example 

term matrix !PATH 1 !PATH 2 !PATH 3 

 
sire 

 
Σs 

 
diag 

 
fa1 

 
us 

dam Σd diag fa1 fa1 
litter Σl diag fa1 us 
error Σe us us us 

LogL  -1566.45 -1488.11 -1480.89 
Parameters  36 48 55 

The specification in Release 3 required specification of initial values for variance parameters and 
also through the use of !CONTINUE the generation of initial values from previous analyses. In 
Release 4, with the functional specification and no initial values specified, ASReml will estimate 
initial values. In this example we start by fitting diagonal matrices for sire, dam and litter using 
initial values from univariate analyses and estimate an unstructured residual matrix. Unfortunately, 
ASReml does not yet have an automatic way of taking the estimates from the univariate analyses 
and using them in the diagonal analysis. The Log-likelihood from this run is -20000 -1566.45. 
Once the model from PATH 1 has run we can rerun the analysis changing !ARG 1 to !ARG 2 
to obtain the next analysis. With the statement !CONTINUE coopmf1.rsv ASReml generates 
initial values from the coopmf1.rsv file, if no filename is given ASReml will look for the 
previous .rsv file to generate initial values. In analysis 2 we get estimates of the sire, dam and 
litter matrices based on a factor analysis parameterization. This can give better initial values for 
unstructured matrices and indicate if the estimated matrices are near singularity. The log-likelihood 
from this run is -20000 -1488.11.  
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 In this case the dam variance parameters are  
Source Model terms Gamma Sigma Sigma/SE % C 
xfa1(TrDam123).id(dam)  14244 effects     

TrDam123 XFA_V 0 1 0.405222 0.405222 1.30 0 P 
TrDam123 XFA_V 0 2 0.00000 0.00000 0.00 0 F 
TrDam123 XFA_V 0 3 0.616712E-02 0.616712E-02 1.14 0 P 
TrDam123 XFA_L 1 1 1.29793 1.29793 9.05 0 P 
TrDam123 XFA_L 1 2 1.68814 1.68814 9.96 0 P 
TrDam123 XFA_L 1 3 0.124492 0.124492 6.02   

 
And one of the dam specific variances is zero. The resulting dam matrix is 
 
Covariance/Variance/Correlation Matrix XFA xfa1(TrDam123).id(dam) 

2.090 0.8981 0.7590 0.8981 
2.190 2.845 0.8451 1.0000 

0.1613 0.2096 0.2162E-01 0.8451 
1.298 1.687 0.1243 1.0000 

 
And the eigen analysis in the .res file is 
 
Eigen Analysis of XFA matrix for xfa1(TrDam123).id(dam) 
Eigen values 4.704 0.246 0.006 

Percentage 94.919 4.957 0.124 
1 0.6431 -0.7647 0.0009 
2 0.7637 0.6404 -0.0743 
3 0.0563 0.0484 0.9972 

 
showing that the smallest eigenvalue is 0.006. On the basis of this ASReml with !ARG 3, fits 
unstructured matrices for sire and litter and xfa1 for dam using initial values derived from 
the previous analysis in coopmf2.rsv. Portions of the .asr file from the Path 3 run are 
 
Notice: ReStartValues taken from coopmf2.rsv 
Notice: LogL values are reported relative to a base of -20000.000 
Notice: US matrix updates modified 1 time(s) to keep them positive definite. 
Notice: 1084 singularities detected in design matrix. 
1 LogL=-1488.11 S2= 1.00000 18085 df : 11 components restrained 
2 LogL=-1486.27 S2= 1.00000 18085 df : 2 components restrained 
3 LogL=-1483.34 S2= 1.00000 18085 df : 1 components restrained 
4 LogL=-1481.89 S2= 1.00000 18085 df    
5 LogL=-1481.10 S2= 1.00000 18085 df    
6 LogL=-1480.91 S2= 1.00000 18085 df    
7 LogL=-1480.89 S2= 1.00000 18085 df    
8 LogL=-1480.89 S2= 1.00000 18085 df    
9 LogL=-1480.89 S2= 1.00000 18085 df    

- - - Results from analysis of wwt ywt gfw fdm fat - - - 
Notice: US structures were modified 1 times to make them positive definite. 

If ASReml has fixed the structure [flagged by B], it may not have 
converged to a maximum likelihood solution. 

Used !EMFLAG 5 Single standard EM update when AI update unacceptable 
You could try !GU (negative definite US) or use XFA instead. 

Akaike Information Criterion 43065.77 (assuming 52 parameters).  
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Bayesian Information Criterion 43471.52 
Model_Term 
id(units).us(Trait) 

 
35200 

Sigma 
effects 

Sigma Sigma/SE % C 

Trait US_V 1 1 9.46109 9.46109 33.29 0 P 
Trait US_C 2 1 7.34181 7.34181 20.55 0 P 
Trait US_V 2 2 17.6050 17.6050 27.09 0 P 
Trait US_C 3 1 0.272536 0.272536 8.38 0 P 
Trait US_C 3 2 0.668009 0.668009 13.99 0 P 
Trait US_V 3 3 0.141595 0.141595 23.70 0 P 
Trait US_C 4 1 0.963017 0.963017 2.89 0 P 
Trait US_C 4 2 1.99771 1.99771 3.64 0 P 
Trait US_C 4 3 0.286984 0.286984 5.08 0 P 
Trait US_V 4 4 3.64374 3.64374 9.00 0 P 
Trait US_C 5 1 0.850282 0.850282 8.48 0 P 
Trait US_C 5 2 2.48313 2.48313 19.33 0 P 
Trait US_C 5 3 0.786089E-01 0.786089E-01 7.04 0 P 
Trait US_C 5 4 0.115894 0.115894 1.17 0 P 
Trait US_V 5 5 1.63175 1.63175 32.90 0 P 
diag(TrSG123).sex.grp   147 effects     
TrSG123 DIAG_V  1 1.01106 1.01106 2.97 0 P 
TrSG123 DIAG_V  2 16.0229 16.0229 3.51 0 P 
TrSG123 DIAG_V  3 0.280259 0.280259 3.71 0 P 
diag(TrAG1245).age.grp   196 effects     
TrAG1245 DIAG_V  1 0.132755E-02 0.132755E-02 2.01 0 P 
TrAG1245 DIAG_V  2 0.976533E-03 0.976533E-03 1.21 0 P 
TrAG1245 DIAG_V  3 0.176684E-02 0.176684E-02 1.13 0 P 
TrAG1245 DIAG_V  4 0.208076E-03 0.208076E-03 1.62 0 P 
us(Trait).id(sire)    460 effects     
Trait US_V 1 1 0.593942 0.593942 3.68 0 P 
Trait US_C 2 1 0.677334 0.677334 3.18 0 P 
Trait US_V 2 2 1.55632 1.55632 3.90 0 P 
Trait US_C 3 1 0.280482E-01 0.280482E-01 1.53 0 P 
Trait US_C 3 2 0.287861E-02 0.287861E-02 0.10 0 P 
Trait US_V 3 3 0.150192E-01 0.150192E-01 4.01 0 P 
Trait US_C 4 1 0.596227E-01 0.596227E-01 0.54 0 P 
Trait US_C 4 2 -0.657014E-01 -0.657014E-01 -0.41 0 P 
Trait US_C 4 3 0.477561E-02 0.477561E-02 0.25 0 P 
Trait US_V 4 4 0.157854 0.157854 1.84 0 P 
Trait US_C 5 1 0.407282E-01 0.407282E-01 0.99 0 P 
Trait US_C 5 2 0.133338 0.133338 1.98 0 P 
Trait US_C 5 3 0.877122E-03 0.877122E-03 0.15 0 P 
Trait US_C 5 4 -0.472300E-01 -0.472300E-01 -1.53 0 P 
Trait US_V 5 5 0.326718E-01 0.326718E-01 2.00 0 P 
xfa1(TrDam123).id(dam)   14244 effects      

TrDam123 XFA_V 0 1 0.126746E-01 0.126746E-01 0.03 0 P 
TrDam123 XFA_V 0 2 0.00000 0.00000 0.00 0 F 
TrDam123 XFA_V 0 3 0.661114E-02 0.661114E-02 1.25 0 P 
TrDam123 XFA_L 1 1 1.46479 1.46479 8.06 0 P 
TrDam123 XFA_L 1 2 1.51911 1.51911 7.30 0 P 
TrDam123 XFA_L 1 3 0.110770 0.110770 5.08 0 P 
us(TrLit1234).id(lit)   19484 effects      

TrLit1234 US_V 1 1 3.55275 3.55275 8.54 0 P 
TrLit1234 US_C 2 1 1.53980 1.53980 3.30 0 P 
TrLit1234 US_V 2 2 2.55497 2.55497 3.15 0 P 

  



16.11 Multivariate animal genetics data - Sheep 

328 
 

TrLit1234 US_C 3 1 -0.310141E-01 -0.310141E-01 -0.73 0 P 
TrLit1234 US_C 3 2 0.450851E-01 0.450851E-01 0.74 0 P 
TrLit1234 US_V 3 3 0.191030E-01 0.191030E-01 2.43 0 P 
TrLit1234 US_C 4 1 -0.721026E-01 -0.721026E-01 -0.22 0 P 
TrLit1234 US_C 4 2 -0.794020 -0.794020 -1.55 0 P 
TrLit1234 US_C 4 3 -0.417001E-01 -0.417001E-01 -0.76 0 P 
TrLit1234 US_V 4 4 0.897161 0.897161 2.29 0 P 
Covariance/Variance/Correlation Matrix US Residual 
9.461 0.5689 0.2355 0.1640 0.2164 
7.342 17.60 0.4231 0.2494 0.4633 
0.2725 0.6680 0.1416 0.3995 0.1635 
0.9630 1.998 0.2870 3.644 0.4753E-01 
0.8503 2.483 0.7861E-01 0.1159 1.632 
Covariance/Variance/Correlation Matrix US us(Tra  
0.5939 0.7045 0.2970 0.1947 

it).id(sire) 
0.2924 

0.6773 1.556 0.1883E-01 -0.1326 0.5913 
0.2805E-01 0.2879E-02 0.1502E-01 0.9808E-01 0.3960E-01 
0.5962E-01 -0.6570E-01 0.4776E-02 0.1579 -0.6577 
0.4073E-01 0.1333 0.8771E-03 -0.4723E-01 0.3267E-01 

Covariance/Variance/Correlation Matrix XFA xfa1(TrDam123).id(dam) 
2.158 0.9961 0.8035 0.9961 
2.225 2.312 0.8066 1.0000 
0.1623 0.1687 0.1891E-01 0.8066 
1.463 1.521 0.1109 1.0000 

Covariance/Variance/Correlation Matrix US us(TrLit1234).id(lit) 
3.553 0.5111 -0.1190 -0.4039E-01 
1.540 2.555 0.2041 -0.5244 

-0.3101E-01 0.4509E-01 0.1910E-01 -0.3185 
-0.7210E-01 -0.7940 -0.4170E-01 0.8972 

 

Wald F statistics 
Source of Variation NumDF F-inc 

19 Trait.age 5   100.11  
20 Trait.brr 15   116.72 
21 Trait.sex 5   77.97 
23 Trait.age.sex 4   4.17 
29 diag(TrSG123).sex.grp  147 effects fitted ( 37 are zero) 
26 diag(TrAG1245).age.grp  196 effects fitted ( 69 are zero) 
36 Trait.grp  180 effects fitted (+ 65 singular) 
31 us(Trait).sire 460 effects fitted ( 20 are zero) 
33 xfa1(TrDam123).dam 10683 effects fitted ( 8 are zero) 
35 us(TrLit1234).lit 19484 effects fitted ( 20 are zero) 

 
The REML estimates of all the variance matrices except for the dam components are positive 
definite. Heritabilities for each trait can be calculated using the VPREDICT facility of ASReml. 
The heritability is given by 

ℎ2 =
𝜎𝜎𝐴𝐴2

𝜎𝜎𝑃𝑃2
 

where 𝜎𝜎𝑃𝑃2 is the phenotypic variance and is given by 

𝜎𝜎𝑃𝑃2 = 𝜎𝜎𝑠𝑠2 + 𝜎𝜎𝑑𝑑2 + 𝜎𝜎𝑙𝑙2 + 𝜎𝜎𝑒𝑒2  
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recalling that 

𝜎𝜎𝑠𝑠2 =
1
4
𝜎𝜎𝐴𝐴2 

𝜎𝜎𝑑𝑑2 =
1
4
𝜎𝜎𝐴𝐴2 + 𝜎𝜎𝑚𝑚2  

 
In the half-sib analysis we only use the estimate of additive genetic variance from the sire variance 
component. ASReml then carries out the VPREDICT instructions in the .asr file, stores the 
instructions in a .pin file and produces the following output in a .pvc file. 
 
ASReml 4.1 [01 Dec 2014] Multivariate Sire & Dam 

coopmf3.pvc created 27 Mar 2015 10:14:12.751 
 

- - - Results from analysis of wwt ywt gfw fdm fat - - -  
 

id(units).us(Trait) 35200 effects 
1 id(units).us(Trait);us(Trait) V 1 1 9.46109 0.284202 
2 id(units).us(Trait);us(Trait) C 2 1 7.34181 0.357266 
3 id(units).us(Trait);us(Trait) V 2 2 17.6050 0.649871 
4 id(units).us(Trait);us(Trait) C 3 1 0.272536 0.325222E-01 
5 id(units).us(Trait);us(Trait) C 3 2 0.668009 0.477490E-01 
6 id(units).us(Trait);us(Trait) V 3 3 0.141595 0.597447E-02 
7 id(units).us(Trait);us(Trait) C 4 1 0.963017 0.333224 
8 id(units).us(Trait);us(Trait) C 4 2 1.99771 0.548821 
9 id(units).us(Trait);us(Trait) C 4 3 0.286984 0.564929E-01 
10 id(units).us(Trait);us(Trait) V 4 4 3.64374 0.404860 
11 id(units).us(Trait);us(Trait) C 5 1 0.850282 0.100269 
12 id(units).us(Trait);us(Trait) C 5 2 2.48313 0.128460 
13 id(units).us(Trait);us(Trait) C 5 3 0.786089E-01 0.111660E-01 
14 id(units).us(Trait);us(Trait) C 5 4 0.115894 0.990547E-01 
15 id(units).us(Trait);us(Trait) V 5 5 1.63175 0.495973E-01 
diag(TrSG123).sex.grp 147 effects      
16 diag(TrSG123).sex.grp;diag(TrSG123) V  1 1.01106 0.340424 
17 diag(TrSG123).sex.grp;diag(TrSG123) V  2 16.0229 4.56493 
18 diag(TrSG123).sex.grp;diag(TrSG123) V  3 0.280259 0.755415E-01 
diag(TrAG1245).age.grp 196 effects      
19 diag(TrAG1245).age.grp;diag(TrAG1245) V  1 0.132755E-02 0.660473E-03 
20 diag(TrAG1245).age.grp;diag(TrAG1245) V  2 0.976533E-03 0.807052E-03 
21 diag(TrAG1245).age.grp;diag(TrAG1245) V  3 0.176684E-02 0.156358E-02 
22 diag(TrAG1245).age.grp;diag(TrAG1245) V  4 0.208076E-03 0.128442E-03 
us(Trait).id(sire) 460 effects      
23 us(Trait).id(sire);us(Trait) V 1 1 0.593942 0.161397 
24 us(Trait).id(sire);us(Trait) C 2 1 0.677334 0.212998 
25 us(Trait).id(sire);us(Trait) V 2 2 1.55632 0.399056 
26 us(Trait).id(sire);us(Trait) C 3 1 0.280482E-01 0.183322E-01 
27 us(Trait).id(sire);us(Trait) C 3 2 0.287861E-02 0.287861E-01 
28 us(Trait).id(sire);us(Trait) V 3 3 0.150192E-01 0.374544E-02 
29 us(Trait).id(sire);us(Trait) C 4 1 0.596227E-01 0.110412 
30 us(Trait).id(sire);us(Trait) C 4 2 -0.657014E-01 -0.410000 
31 us(Trait).id(sire);us(Trait) C 4 3 0.477561E-02 0.191024E-01 
32 us(Trait).id(sire);us(Trait) V 4 4 0.157854 0.857902E-01 
33 us(Trait).id(sire);us(Trait) C 5 1 0.407282E-01 0.411396E-01 
34 us(Trait).id(sire);us(Trait) C 5 2 0.133338 0.673424E-01 
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35 us(Trait).id(sire);us(Trait)  C 5 3 0.877122E-03 0.584748E-02 
36 us(Trait).id(sire);us(Trait)  C 5 4 -0.472300E-01 -1.53000 
37 us(Trait).id(sire);us(Trait)  V 5 5 0.326718E-01 0.163359E-01 
xfa1(TrDam123).id(dam) 14244 effects      

38 xfa1(TrDam123).id(dam);xfa1(TrDam123) V 0 1 0.126746E-01 0.422487 
39 xfa1(TrDam123).id(dam);xfa1(TrDam123) V 0 2 0.00000 0.00000 
40 xfa1(TrDam123).id(dam);xfa1(TrDam123) V 0 3 0.661114E-02 0.528891E-02 
41 xfa1(TrDam123).id(dam);xfa1(TrDam123) L 1 1 1.46479 0.181736 
42 xfa1(TrDam123).id(dam);xfa1(TrDam123) L 1 2 1.51911 0.208097 
43 xfa1(TrDam123).id(dam);xfa1(TrDam123) L 1 3 0.110770 0.218051E-01 
us(TrLit1234).id(lit) 19484 effects      

44 us(TrLit1234).id(lit);us(TrLit1234) V 1 1 3.55275 0.416013 
45 us(TrLit1234).id(lit);us(TrLit1234) C 2 1 1.53980 0.466606 
46 us(TrLit1234).id(lit);us(TrLit1234) V 2 2 2.55497 0.811102 
47 us(TrLit1234).id(lit);us(TrLit1234) C 3 1 -0.310141E-01 -0.730000 
48 us(TrLit1234).id(lit);us(TrLit1234) C 3 2 0.450851E-01 0.609258E-01 
49 us(TrLit1234).id(lit);us(TrLit1234) V 3 3 0.191030E-01 0.786132E-02 
50 us(TrLit1234).id(lit);us(TrLit1234) C 4 1 -0.721026E-01 -0.220000 
51 us(TrLit1234).id(lit);us(TrLit1234) C 4 2 -0.794020 -1.55000 
52 us(TrLit1234).id(lit);us(TrLit1234) C 4 3 -0.417001E-01 -0.760000 
53 us(TrLit1234).id(lit);us(TrLit1234) V 4 4 0.897161 0.391773 
54 Damv  2.1583 0.33589 
55 Damv  2.2252 0.37368 
56 Damv  2.3077 0.63232 
57 Damv  0.16225 0.32785E-01 
58 Damv  0.16827 0.47001E-01 
59 Damv  0.18881E-01 0.59274E-02 
60 phen 1  15.766 0.31286 
61 phen 2  11.784 0.37589 
62 phen 3  24.024 0.63510 
63 phen 4  0.43182 0.33038E-01 
64 phen 5  0.88424 0.44563E-01 
65 phen 6  0.19460 0.55003E-02 
66 phen 7  0.95054 0.29825 
67 phen 8  1.1380 0.37755 
68 phen 9  0.25006 0.37255E-01 
69 phen 10  4.6988 0.22522 
70 phen 11  0.89101 0.10759 
71 phen 12  2.6165 0.14261 
72 phen 13  0.79486E-01 0.12431E-01 
73 phen 14  0.68664E-01 0.10198 
74 phen 15  1.6644 0.51205E-01 
75 Direct 23 2.3758 0.64586 
76 Direct 24 2.7093 0.85213 
77 Direct 25 6.2253 1.5966 
78 Direct 26 0.11219 0.73359E-01 
79 Direct 27 0.11514E-01 0.11109 
80 Direct 28 0.60077E-01 0.14996E-01 
81 Direct 29 0.23849 0.44400 
82 Direct 30 -0.26281 0.64674 
83 Direct 31 0.19102E-01 0.76604E-01 
84 Direct 32 0.63142 0.34354 
85 Direct 33 0.16291 0.16518 
86 Direct 34 0.53335 0.27002 
87 Direct 35 0.35085E-02 0.23889E-01 
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88 Direct 36     -0.18892 0.12314  
89 Direct 37     0.13069 0.65488E-01 
90 Maternal 54    1.5643 0.37542 
91 Maternal 55    1.5478 0.43280 
92 Maternal 56    0.75138 0.75145 
93 Maternal 57    0.13421 0.37770E-01 
94 Maternal 58    0.16539 0.54770E-01 
95 Maternal 59    0.38619E-02 0.70075E-02 
96 resid 60     15.172 0.27571 
97 resid 61     11.107 0.31755 
98 resid 62     22.468 0.50789 
99 resid 63     0.40378 0.28124E-01 

100 resid 64     0.88137 0.35903E-01 
101 resid 65     0.17958 0.41634E-02 
102 resid 66     0.89091 0.28008 
103 resid 67     1.2037 0.34725 
104 resid 68     0.24528 0.32775E-01 
105 resid 69     4.5409 0.21411 
106 resid 70     0.85028 0.10023 
107 resid 71     2.4831 0.12849 
108 resid 72     0.78609E-01 0.11170E-01 
109 resid 73     0.11589 0.99338E-01 
110 resid 74     1.6318 0.49595E-01 

 WWTh2  = Direct 2 75/phen 1 60= 0.1507 0.0396 
 YWTh2  = Direct 2 77/phen 3 62= 0.2591 0.0626 
 GFWh2  = Direct 2 80/phen 6 65= 0.3087 0.0717 
 FDMh2  = Direct 3 84/phen 10 69= 0.1344 0.0713 
 FATh2  = Direct 3 89/phen 15 74= 0.0785 0.0388 

GenCor 2 1 = us(Tr 24/SQR[us(Tr 23*us(Tr 25]= 0.7045 0.1024 
GenCor 3 1 = us(Tr 26/SQR[us(Tr 23*us(Tr 28]= 0.2970 0.1720 
GenCor 3 2 = us(Tr 27/SQR[us(Tr 25*us(Tr 28]= 0.0188 0.1808 
GenCor 4 1 = us(Tr 29/SQR[us(Tr 23*us(Tr 32]= 0.1947 0.3521 
GenCor 4 2 = us(Tr 30/SQR[us(Tr 25*us(Tr 32]= -0.1326 0.3249 
GenCor 4 3 = us(Tr 31/SQR[us(Tr 28*us(Tr 32]= 0.0981 0.3874 
GenCor 5 1 = us(Tr 33/SQR[us(Tr 23*us(Tr 37]= 0.2924 0.2747 
GenCor 5 2 = us(Tr 34/SQR[us(Tr 25*us(Tr 37]= 0.5913 0.2026 
GenCor 5 3 = us(Tr 35/SQR[us(Tr 28*us(Tr 37]= 0.0396 0.2687 
GenCor 5 4 = us(Tr 36/SQR[us(Tr 32*us(Tr 37]= -0.6577 0.3854 
MatCor 2 1 = Mater 91/SQR[Mater 90*Mater 92]= 1.4277 0.5305 
MatCor 3 1 = Mater 93/SQR[Mater 90*Mater 95]= 1.7267 1.4388 
MatCor 3 2 = Mater 94/SQR[Mater 92*Mater 95]= 3.0703 2.9688 

Notice: The parameter estimates are followed by  
their approximate standard errors. 

16.11.2 Animal model 
In this section we will illustrate the use of a pedigree file to define the genetic relationships between 
animals. This is an alternate method of estimating additive genetic variance for these data. The data 
file has been modified by adding 10000 to the dam ID (now 10001:13561) so that the lamb, sire and 
dam ID’s are distinct. They appear as the first genetic relationships are available for this data so the 
data file doubles as the pedigree file.  
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The multi-trait additive genetic variance matrix, 𝚺𝚺𝐴𝐴 of the animals (sires, dams and lambs) is given 
by 

var (𝒖𝒖𝐴𝐴) = 𝚺𝚺𝐴𝐴 ⊗ 𝑨𝑨 
where A is the genetic relationship matrix and 𝒖𝒖𝐴𝐴 are the trait BLUPs ordered animals within traits There 
are a total of 10696 = 92 + 3561 + 7043 animals in the pedigree. 

 
Multivariate analysis involving several strata (here animal (direct/additive genetic), dam 
(maternal) and litter) typically involves several runs. The ASReml input file presented below 
has five parts which show the use of FA structures to get initial values for estimation of 
unstructured matrices, and their use when estimated unstructured matrices are not positive definite 
as is the case with the tag matrix here, but omits earlier runs involved with linear model selection 
and obtaining initial values. This model is not equivalent to the sire/dam/litter model with respect 
to the animal/litter components for gfw, fd and fat. 

 
!RENAME 1 !ARG 1 #CHANGE 1 TO 2,3,4 OR 5 FOR OTHER PATHS 
Multivariate Animal model 
!DOPART $1 
tag !P 
sire  92 !I  
dam !P 
grp 49 
sex 
brr 4 
litter 4871  
age 
wwt !M0 # !M0 identifies missing values  
ywt !M0 
gfw !M0 
fdm !M0 
fat !M0 
pcoop.fmt # read pedigree from first three fields 
!PATH 1 // pcoop.fmt  
!PATH 2 // pcoop.fmt !CONTINUE pcoopf1.rsv !MAXI 40 
!PATH 3 // pcoop.fmt !CONTINUE pcoopf2.rsv !MAXI 40 
!PATH 4 // pcoop.fmt !CONTINUE pcoopf2.rsv !MAXI 40 
!PATH 5 // pcoop.fmt !CONTINUE pcoopf4.rsv !MAXI 40 

!PART 0 
!SUBSET TrDam12 Trait 1 2 0 0 0 
!SUBSET TrLit1234 Trait 1 2 3 4 0 
!SUBSET TrAG1245 Trait 1 2 4 5 
!SUBSET TrSG123 Trait 1 2 3 0 0 
!SUBSET TrDa123 Trait 1 2 3 0 0 

 
#USING !ASSIGN TO MAKE SPECIFICATION CLEARER 
!ASSIGN TDIAGI !INIT 2.3759 6.2256 0.60075E-01 0.63086 0.13069 !GP 
!ASSIGN DDIAGI !INIT 2.1584 2.3048 !GP   

!ASSIGN LDIAGI !INIT 3.55265 2.55777 0.191238E-01 0.897272 !GP 
!ASSIGN RUSI !< !INIT 13.390 9.0747 17.798 0.31961 0.87272 0.13452 
0.71374 1.4028 0.23141 4.0677 0.72812 2.0831 0.75977E-01 0.25782 1.5337 !GP !> 
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!ASSIGN VARF !< 
diag(TrAG1245 !INIT 0.0024 0.0019 0.0020 0.00026).age.grp, 

diag(TrSG123 !INIT 0.93 16.0 0.28).sex.grp !> 
 

!PATH 1 
wwt ywt gfw fdm fat ~ Trait Trait.age Trait.brr Trait.sex Trait.age.sex !r $VARF,  
diag(Trait $TDIAGI).nrm(tag) diag(TrDam12 $DDIAGI).nrm(dam) diag(TrLit1234 $LDIAGI).id(lit), 
!f Trait.grp 
residual id(units).us(Trait $RUSI) 

 
!PATH 2 
wwt ywt gfw fdm fat ~ Trait Trait.age Trait.brr Trait.sex Trait.age.sex !r $VARF, 
xfa1(Trait).nrm(tag) xfa1(TrDam12).nrm(dam) xfa1(TrLit1234).id(lit), 
!f Trait.grp 
residual id(units).us(Trait) 

 
!PATH 3 
wwt ywt gfw fdm fat ~ Trait Trait.age Trait.brr Trait.sex Trait.age.sex !r $VARF,  
us(Trait).nrm(tag) xfa1(TrDam12).nrm(dam) us(TrLit1234).id(lit), 
!f Trait.grp 
residual id(units).us(Trait) 

 
!PATH 4 
wwt ywt gfw fdm fat ~ Trait Trait.age Trait.brr Trait.sex Trait.age.sex !r $VARF,  
xfa2(Trait).nrm(tag) xfa1(TrDam12).nrm(dam) us(TrLit1234).id(lit), 
!f Trait.grp 
residual id(units).us(Trait) 

 
!PART 5 
wwt ywt gfw fdm fat ~ Trait Trait.age Trait.brr Trait.sex Trait.age.sex !r $VARF,  
xfa3(Trait).nrm(tag) xfa1(TrDam12).nrm(dam) us(TrLit1234).id(lit), 
!f Trait.grp 
residual id(units).us(Trait) 

 
The term function(Tr).nrm(tag) now replaces the function(Tr).id(sire) and picks up 
part of function(TrDam12).id(dam) variation present in the half-sib analysis. This analysis 
uses information from both sires and dams to estimate additive genetic variance. The dam variance 
component is this analysis estimates the maternal variance component. It is only significant for the 
weaning and yearling weights. The litter variation remains unchanged. Notice again how the 
maternal effect is only fitted for the first 2 trait and the litter effect for the first 4 traits. The critical 
detail is that SUBSET is used to setup TrDam12, a variable using the first two traits. ASReml uses 
the relationship matrix for the dam dimension 1 since dam is defined with !P. In this case there is 
no difference between fitting nrm(dam) and id(ide(dam)) since there is no pedigree information 
on dams. It is preferable to be explicit (specify nrm(dam) when the relationship matrix is required, 
and id(ide(dam)) in the G structure definition). 

 
 

1reported in the .asr file  
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In this case PATH 1, 2 and 3 were run in turn but in PATH 3 ASReml had trouble converging 
because in each iteration the unstructured us(tag) matrix is not positive definite and so ASReml 
uses a slower EM algorithm that keeps the estimates in the parameter space but the convergence is 
very slow. Here is the convergence log for PATH 3 
 
Notice: 15358 singularities detected in design matrix. 

1 LogL=-1543.55 S2= 1.00000  18085 df : 15 components restrained 
Notice: US matrix updates modified 1 time(s) to keep them positive definite. 

2 LogL=-1540.93 S2= 1.00000  18085 df : 15 components restrained 
Notice: US matrix updates modified 1 time(s) to keep them positive definite. 
: : : : 
38 LogL=-1538.34 S2= 1.00000 18085 df : 15 components restrained 
39 LogL=-1538.33 S2= 1.00000 18085 df : 14 components restrained 
40 LogL=-1538.32 S2= 1.00000 18085 df : 15 components restrained 

 
To avoid this problem in PATH 4 and 5 we use xfa2 and xfa3 structures. These converge 
much faster. Here is the convergence log and resulting estimates for PATH 5 
 
Notice: ReStartValues taken from pcoopf4.rsv 
Notice: LogL values are reported relative to a base of -20000.000 

 
Note: XFA model: lower loadings initially held fixed. 

Notice: 29764 singularities detected in design matrix. 
1 LogL=-1558.44 S2= 1.00000 18085 df : 1 components restrained 
2 LogL=-1541.77 S2= 1.00000 18085 df : 8 components restrained 
3 LogL=-1538.27 S2= 1.00000 18085 df : 1 components restrained 
4 LogL=-1534.53 S2= 1.00000 18085 df : 1 components restrained 
5 LogL=-1532.53 S2= 1.00000 18085 df : 1 components restrained 
6 LogL=-1531.90 S2= 1.00000 18085 df : 1 components restrained 

 
Note: XFA model fitted with rotation. 
7 LogL=-1531.73 S2= 1.00000 18085 df : 1 components restrained 
8 LogL=-1531.66 S2= 1.00000 18085 df    
9 LogL=-1531.64 S2= 1.00000 18085 df    
10 LogL=-1531.64 S2= 1.00000 18085 df    

 
- - - Results from analysis of wwt ywt gfw fdm fat - - - 

Akaike Information Criterion 43151.28 (assuming 44 parameters). 
Bayesian Information Criterion 43494.60 

 
Model_Term 
id(units).us(Trait) 

 
35200 

Sigma 
effects 

Sigma Sigma/SE % C 

Trait US_V 1 1 8.73848 8.73848 30.29 0 P 
Trait US_C 2 1 7.28418 7.28418 20.19 0 P 
Trait US_V 2 2 17.7519 17.7519 26.87 0 P 
Trait US_C 3 1 0.247701 0.247701 5.87 0 P 
Trait US_C 3 2 0.705206 0.705206 14.31 0 P 
Trait US_V 3 3 0.109534 0.109534 11.21 0 P 
Trait US_C 4 1 0.816946 0.816946 2.22 0 P 
Trait US_C 4 2 2.03823 2.03823 3.68 0 P 
Trait US_C 4 3 0.252623 0.252623 3.82 0 P 
Trait US_V 4 4 3.31364 3.31364 7.50 0 P 
Trait US_C 5 1 0.871291 0.871291 6.95 0 P 
Trait US_C 5 2 2.53142 2.53142 19.25 0 P 
Trait US_C 5 3 0.821032E-01 0.821032E-01 4.52 0 P 

 
Trait US_C 5 4 0.208739 0.208739 1.60 0 P 
Trait US_V 5 5 1.54280 1.54280 24.00 0 P 
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diag(TrSG123).sex.grp  147 effects     
TrSG123 DIAG_V 1 1.01250 1.01250 2.96 0 P 
TrSG123 DIAG_V 2 15.2159 15.2159 3.49 0 P 
TrSG123 DIAG_V 3 0.279183 0.279183 3.71 0 P 
diag(TrAG1245).age.grp  196 effects     
TrAG1245 DIAG_V 1 0.142096E-02 0.142096E-02 2.04 0 P 
TrAG1245 DIAG_V 2 0.143897E-02 0.143897E-02 1.54 0 P 
TrAG1245 DIAG_V 3 0.163778E-02 0.163778E-02 1.10 0 P 
TrAG1245 DIAG_V 4 0.207274E-03 0.207274E-03 1.61 0 P 
us(TrLit1234).id(lit)  19484 effects     
TrLit1234 US_V 1 1 3.84738 3.84738 9.19 0 P 
TrLit1234 US_C 2 1 2.52256 2.52256 5.47 0 P 
TrLit1234 US_V 2 2 4.07860 4.07860 5.46 0 P 
TrLit1234 US_C 3 1 0.767402E-01 0.767402E-01 2.05 0 P 
TrLit1234 US_C 3 2 0.206265 0.206265 4.36 0 P 
TrLit1234 US_V 3 3 0.250400E-01 0.250400E-01 3.30 0 P 
TrLit1234 US_C 4 1 -0.118244 -0.118244 -0.35 0 P 
TrLit1234 US_C 4 2 -0.824135 -0.824135 -1.58 0 P 
TrLit1234 US_C 4 3 -0.492320E-01 -0.492320E-01 -0.85 0 P 
TrLit1234 US_V 4 4 0.704947 0.704947 1.74 0 P 
xfa1(TrDam12).id(dam)  32088 effects     
TrDam12 XFA_V 0 1 0.00000 0.00000 0.00 0 F 
TrDam12 XFA_V 0 2 0.00000 0.00000 0.00 0 F 
TrDam12 XFA_L 1 1 1.27045 1.27045 10.00 0 P 
TrDam12 XFA_L 1 2 1.15350 1.15350 5.66 0 P 
xfa3(Trait).nrm(tag)  85568 effects     
Trait XFA_V 0 1 0.00000 0.00000 0.00 0 F 
Trait XFA_V 0 2 0.00000 0.00000 0.00 0 F 
Trait XFA_V 0 3 0.00000 0.00000 0.00 0 F 
Trait XFA_V 0 4 0.423585 0.423585 1.21 0 P 
Trait XFA_V 0 5 0.00000 0.00000 0.00 0 B 
Trait XFA_L 1 1 -0.109659E-02 -0.109659E-02 0.00 0 F 
Trait XFA_L 1 2 -0.180117 -0.180117 -2.88 0 P 
Trait XFA_L 1 3 0.219215 0.219215 3.53 0 P 
Trait XFA_L 1 4 0.214461E-01 0.214461E-01 0.07 0 P 
Trait XFA_L 1 5 0.177932 0.177932 1.18 0 P 
Trait XFA_L 2 1 1.17261 1.17261 0.00 0 F 
Trait XFA_L 2 2 0.530954E-01 0.530954E-01 0.00 0 F 
Trait XFA_L 2 3 0.604977E-01 0.604977E-01 1.31 0 P 
Trait XFA_L 2 4 0.286377 0.286377 0.99 0 P 
Trait XFA_L 2 5 -0.460967E-01 -0.460967E-01 -0.33 0 P 
Trait XFA_L 3 1 -0.123499 -0.123499 -0.28 0 P 
Trait XFA_L 3 2 -0.938092E-01 -0.938092E-01 -1.09 0 P 
Trait XFA_L 3 3 0.115989 0.115989 1.12 0 P 
Trait XFA_L 3 4 0.439945 0.439945 1.40 0 P 
Trait XFA_L 3 5 -0.288612 -0.288612 -2.62 0 P 
tag NRM 10696 
Warning: Code B - fixed at a boundary (!GP) F - fixed by user 

? - liable to change from P to B P - positive definite 
C - Constrained by user (!VCC) U - unbounded 
S - Singular Information matrix 

S means there is no information in the data for this parameter. 
Very small components with Comp/SE ratios of zero sometimes indicate poor 

scaling. Consider rescaling the design matrix in such cases. 
 
 

Covariance/Variance/Correlation Matrix US Residual 
8.738 0.5848 0.2532 0.1518 0.2373 
7.284 17.75 0.5057 0.2658 0.4837 
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0.2477 0.7052 0.1095 0.4193 0.1997 
0.8169 2.038 0.2526 3.314 0.9232E-01 
0.8713 2.531 0.8210E-01 0.2087 1.543 
Covariance/Variance/Correlation Matrix US us(TrLit1234).id(lit 
3.847 0.6368 0.2472 -0.7180E-01 
2.523 4.079 0.6454 -0.4860 
0.7674E-01 0.2063 0.2504E-01 -0.3706 

-0.1182 -0.8241 -0.4923E-01 0.7049 
Covariance/Variance/Correlation Matrix XFA xfa1(TrDam12).id(dam 
1.614 1.0000 1.0000 
1.465 1.330 1.0000 
1.270 1.153 1.0000 

Covariance/Variance/Correlation Matrix XFA xfa3(Trait).nrm(tag) 
1.389 0.2978 0.1871 0.2861 -0.4630E-01 -0.9303E-03 0.9948 -0.1017 
0.7379E-01 0.4419E-01 -0.8809 -0.1709 -0.1009 -0.8568 0.2526 -0.4495 
0.5629E-01 -0.4726E-01 0.6514E-01 0.3410 0.3155E-01 0.8583 0.2355 0.4560 
0.2820 -0.3004E-01 0.7277E-01 0.6992 -0.4761 0.2416E-01 0.3414 0.5260 

-0.1869E-01 -0.7261E-02 0.2757E-02 -0.1363 0.1173 0.5210 -0.1323 -0.8432 
-0.1097E-02 -0.1801 0.2190 0.2020E-01 0.1784 1.0000 0.000 0.000 
1.173 0.5310E-01 0.6011E-01 0.2855 -0.4530E-01 0.000 1.0000 0.000 

-0.1199 -0.9449E-01 0.1164 0.4398 -0.2888 0.000 0.000 1.0000 
 

Note that the XFA matrix associated with tag has 8 rows (and columns) the first five relate to the 
five traits and the last three relate to the three factors 
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